

COMMODORE 64
PROGRAMMER'S
REFERENCE GUIDE

ii

REPRODUCED – 2026
BASED ON ORIGINAL DOCUMENTATION:
FIRST PUBLISHED – 1982
THIS REVISION: R260110-01

iii

TABLE OF CONTENTS

INTRODUCTION .. ix

What's Included? .. x

How To Use This Reference Guide ... xi

Commodore 64 Applications Guide ... xii

Commodore Information Network ... xvii

1. BASIC PROGRAMMING RULES ... 1

Introduction .. 2

Screen Display Codes (BASIC Character Set) ... 2

The Operating System (OS) ... 2

Programming Numbers and Variables ... 4

Integer, Floating-Point and String Constants.. 4

Integer, Floating-Point and String Variables ... 7

Integer, Floating-Point and String Arrays .. 8

Expressions and Operators .. 9

Arithmetic Expressions .. 10

Arithmetic Operations .. 10

Relational Operators .. 12

Logical Operators ... 13

Hierarchy of Operations .. 15

String Operations ... 16

String Expressions ... 17

Programming Techniques ... 18

Data Conversions .. 18

Using the INPUT Statement .. 18

Using the GET Statement ... 22

How to Crunch BASIC Programs ... 24

2. BASIC LANGUAGE VOCABULARY .. 29

Introduction ... 30

BASIC Keywords, Abbreviations, and Function Types ... 31

Description of BASIC Keywords .. 35

The Commodore 64 Keyboard and Features ... 93

Screen Editor .. 94

iv

3. PROGRAMMING GRAPHICS ON THE COMMODORE 64.. 99

Graphics Overview ... 100

Character Display Modes .. 100

Bitmap Modes.. 100

Sprites ... 100

Graphics Locations .. 101

Video Bank Selection .. 101

Screen Memory ... 102

Color Memory.. 103

Character Memory ... 103

Standard Character Mode .. 107

Character Definitions .. 107

Programmable Characters .. 108

Multicolor Mode Graphics ... 115

Multicolor Mode Bit... 115

Extended Background Color Mode .. 120

Bitmapped Graphics .. 121

Standard High-Resolution Bitmap Mode ... 122

How It Works ... 122

Multicolor Bitmap Mode ... 127

Smooth Scrolling .. 128

Sprites ... 131

Defining a Sprite ... 131

Sprite Pointers ... 133

Turning Sprites On .. 134

Turning Sprites Off ... 135

Colors .. 135

Multicolor Mode .. 135

Settlng a Sprite to Multicolor Mode ... 136

Expanded Sprites ... 136

Sprite Positioning .. 137

Vertical Positioning ... 138

Horizontal Positioning ... 139

Sprite Positioning Summary ... 143

Sprite Display Priorities ... 144

Collision Detects .. 144

Sprite to Sprite Collisions ... 145

Sprite to Data Collisions .. 145

Other Graphics Features ... 150

Screen Blanking ... 150

Raster Register .. 150

Interrupt Status Register ... 151

Suggested Screen and Character Color Combinations ... 152

v

Programming Sprites – Another Look .. 153

Making Sprites in BASIC – A Short Program .. 153

Crunching Your Sprite Programs ... 156

Positioning Sprites on the Screen .. 157

Sprite Priorities .. 161

Drawing A Sprite .. 162

Creating A Sprite… Step by Step ... 163

Moving Your Sprite on the Screen .. 165

Vertical Scrolling ... 166

The Dancing Mouse – A Sprite Program Example ... 166

Easy Spritemaking Chart ... 176

Sprite Making Notes... 177

4. PROGRAMMING SOUND AND MUSIC ON YOUR COMMODORE 64 183

Introduction ... 184

Volume Control .. 186

Frequencies of Sound Waves.. 186

Using Multiple Voices ... 187

Controlling Multiple Voices .. 191

Changing Waveforms .. 192

Understanding Waveforms ... 194

The Envelope Generator .. 196

Filtering ... 199

Advanced Techniques ... 202

Synchronization and Ring Modulation.. 207

5. BASIC TO MACHINE LANGUAGE ... 209

What Is Machine Language? ... 210

What Does Machine Code Look Like? ... 211

Simple Memory Map of the Commodore 64 ... 212

The Registers Inside the 6510 Microprocessor ... 213

 How Do You Write Machine Language Programs? ... 214

64MON .. 215

Hexadecimal Notation ... 215

Your First Machine Language Instruction ... 218

Writing Your First Program ... 220

Addressing Modes .. 221

Zero Page .. 221

The Stack .. 222

vi

Indexing .. 223

Indirect Indexed .. 223

Indexed Indirect .. 224

Branches And Testing .. 226

Subroutines ... 228

Useful Tips for the Beginner .. 229

Approaching a Large Task .. 230

MCS6510 Microprocessor Instruction Set – Alphabetic Sequence .. 232

Instruction Addressing Modes and Related Execution Times .. 254

Memory Management on the Commodore 64 ... 260

The KERNAL .. 268

KERNAL Power-Up Activities ... 269

How to Use The KERNAL .. 270

User Callable KERNAL Routines .. 272

Error Codes .. 306

Using Machine Language From BASIC ... 307

Where to Put Machine Language Routines ... 309

How to Enter Machine Language.. 309

Commodore 64 Memory Map .. 310

Commodore 64 Input/Output Assignments ... 320

6. INPUT/OUTPUT GUIDE ... 335

Introduction ... 336

Output to the TV .. 336

Output to Other Devices .. 337

Output to Printer ... 338

Output to Modem.. 339

Working With Cassette Tape ... 340

Data Storage On Floppy Diskettes .. 342

The Game Ports ... 343

Paddles ... 346

Light Pen ... 348

RS-232 Interface Description .. 348

General Outline .. 348

Opening an RS-232 Channel .. 349

Getting Data from an RS-232 Channel .. 352

Sending Data to an RS-232 Channel .. 353

Closing an RS-232 Data Channel ... 354

Sample BASIC Programs .. 356

vii

Receiver/Transmitter Buffer Base Location Pointers .. 357

Zero-Page Memory Locations and Usage .. 358

Nonzero-Page Memory Locations and Usage.. 358

The User Port ... 359

Port Pin Description ... 359

The Serial Bus .. 362

Serial Bus Pinouts .. 363

The Expansion Port .. 366

Z-80 Microprocessor Cartridge .. 368

Using Commodore CP/M® .. 369

Running Commodore CP/M® .. 369

APPENDICES .. 373

A. Abbreviations For BASIC Keywords .. 374

B. Screen Display Codes .. 376

C. ASCII And CHR$ Codes ... 379

D. Screen and Color Memory Maps... 382

E. Music Note Values .. 384

F. Bibliography .. 388

G. VIC Chip Register Map ... 391

H. Deriving Mathematical Functions.. 394

I. Pinouts for Input/Output Devices ... 395

J. Converting Standard BASIC Programs to Commodore 64 BASIC ... 398

K. Error Messages ... 400

L. 6510 Microprocessor Chip Specifications ... 402

M. 6526 Complex Interface Adapter (CIA) Chip Specifications ... 419

N. 6566/6567 (VIC-II) Chip Specifications .. 436

O. 6581 Sound Interface Device (SID) Chip Specifications ... 457

P. Glossary ... 482

INDEX ... 483

INTRODUCTION ix

INTRODUCTION

The COMMODORE 64 PROGRAMMER'S REFERENCE GUIDE has been

developed as a working tool and reference source for those of you who want to

maximize your use of the built-in capabilities of your COMMODORE 64. This

manual contains the information you need for your programs, from the simplest

example all the way to the most complex. The PROGRAMMER'S REFERENCE

GUIDE is designed so that everyone from the beginning BASIC programmer to

the professional experienced in 6502 machine language can get information to

develop his or her own creative programs. At the same time this book shows you

how clever your COMMODORE 64 really is.

This REFERENCE GUIDE is not designed to teach the BASIC programming

language or the 6502 machine language. There is, however, an extensive

glossary of terms and a "semi-tutorial" approach to many of the sections in the

book. If you don't already have a working knowledge of BASIC and how to use

it to program, we suggest that you study the COMMODORE 64 USER'S GUIDE

that came with your computer. The USER'S GUIDE gives you an easy to read

introduction to the BASIC programming language. If you still have difficulty

understanding how to use BASIC then turn to the back of this book (or Appendix

N in the USER'S GUIDE) and check out the Bibliography.

The COMMODORE 64 PROGRAMMER'S REFERENCE GUIDE is just that; a

reference. Like most reference books, your ability to apply the information

creatively really depends on how much knowledge you have about the subject.

In other words if you are a novice programmer you will not be able to use all

the facts and figures in this book until you expand your current programming

knowledge.

x INTRODUCTION

What you can do with this book is to find a considerable amount of valuable

programming reference information written in easy to read, plain English with

the programmer's jargon explained. On the other hand the programming

professional will find all the information needed to use the capabilities of the

COMMODORE 64 effectively.

WHAT'S INCLUDED?

 Our complete "BASIC dictionary" includes Commodore BASIC language
 commands, statements and functions listed in alphabetical order. We've
 created a "quicklist" which contains all the words and their
 abbreviations. This is followed by a section containing a more detailed
 definition of each word along with sample BASIC programs to illustrate
 how they work.

 If you need an introduction to using machine language with BASIC
 programs our layman's overview will get you started.

 A powerful feature of all Commodore computers is called the
 KERNAL. It helps ensure that the programs you write today can
 also be used on your Commodore computer of tomorrow.

 The Input/Output Programming section gives you the opportunity
 to use your computer to the limit. It describes how to hook-up and
 use everything from light pens and joysticks to disk drives,
 printers, and telecommunication devices called modems.

 You can explore the world of SPRITES, programmable characters, and
 high resolution graphics for the most detailed and advanced animated
 pictures in the microcomputer industry.

 You can also enter the world of music synthesis and create your
 own songs and sound effects with the best built-in synthesizer
 available in any personal computer.

 If you're an experienced programmer, the soft load language section
 gives you information about the COMMODORE 64's ability to run
 CP/M * and high level languages.

This is in addition to BASIC. Think of your COMMODORE 64 PROGRAMMER'S

REFERENCE GUIDE as a useful tool to help you and you will enjoy the hours of

programming ahead of you.

* CP/M is a registered trademark of Digital Research, Inc.

INTRODUCTION xi

HOW TO USE THIS REFERENCE GUIDE

Throughout this manual certain conventional notations are used to describe the
syntax (programming sentence structure) of BASIC commands or statements and
to show both the required and optional parts of each BASIC keyword. The rules
to use for interpreting statement syntax are as follows:

1. BASIC keywords are shown in capital letters. They must appear where
 shown in the statement, entered and spelled exactly as shown.

2. Items shown within quotation marks (" ") indicate variable data which
 you must put in. Both the quotation marks and the data inside the quotes
 must appear where shown in each statement.

3. Items inside the square brackets ([]) indicate an optional statement
 parameter. A parameter is a limitation or additional qualifier for your
 statements. If you use an optional parameter you must supply the data
 for that optional parameter. In addition, ellipses (. . .) show that an
 optional item can be repeated as many times as a programming line
 allows.

4. If an item in the square brackets ([]) is UNDERLINED, that means that
 you MUST use those certain characters in the optional parameters, and
 they also have to be spelled exactly as shown.

5. Items inside angle brackets (<>) indicate variable data which you
 provide. While the slash (/) indicates that you must make a choice
 between two mutually exclusive options.

EXAMPLE OF SYNTAX FORMAT:

OPEN<file-number>,<device> [,<address>], ["<drive>: <file-name>]
[,<mode>]"

EXAMPLES OF ACTUAL STATEMENTS:

10 OPEN 2,8,6,"0:STOCK FOLIO,S,W"
20 OPEN 1,1,2,"CHECKBOOK"
30 OPEN 3,4

When you actually apply the syntax conventions in a practical situation, the
sequence of parameters in your statements might not be exactly the same as the
sequence shown in syntax examples. The examples are not meant to show every
possible sequence. They are intended to present all required and optional
parameters.

xii INTRODUCTION

Programming examples in this book are shown with blanks separating words and

operators for the sake of readability. Normally though, BASIC doesn't require

blanks between words unless leaving them out would give you an ambiguous or

incorrect syntax.

Shown below are some examples and descriptions of the symbols used for

various statement parameters in the following chapters. The list is not meant to

show every possibility, but to give you a better understanding as to how syntax

examples are presented.

SYMBOL EXAMPLE DESCRIPTION

<file-number> 50 A logical file number

<device> 4 A hardware device number

<address> 15 A serial bus secondary device address

<drive> 0 A physical disk drive number

<file-name> "TEST.DATA" The name of a data or program file

<constant> "ABCDEFG" Literal data supplied by the

programmer

<variable> X145 Any BASIC data variable name or

constant

<string> ABS Use of a string type variable required

<number> 12345 Use of a numeric type variable

required

<line-number> 1000 An actual program line number

<numeric> 1.5E4 An integer or floating-point variable

COMMODORE 64 APPLICATIONS GUIDE

When you first thought about buying a computer you probably asked yourself,

"Now that I can afford to buy a computer, what can I do with it once I get one?"

The great thing about your COMMODORE 64 is that you can make it do what

YOU want it to do! You can make it calculate and keep track of home and

business budget needs. You can use it for word processing. You can make it play

arcade-style action games. You can make it sing. You can even create your own

animated cartoons, and more. The best part of owning a COMMODORE 64 is

that even if it did only one of the things listed below it would be well worth the

price you paid for it. But the 64 is a complete computer and it does do

EVERYTHING listed and then some!

INTRODUCTION xiii

By the way, in addition to everything here you can pick up a lot of other creative

and practical ideas by signing up with a local Commodore User's Club,

subscribing to the COMMODORE and POWER/PLAY magazines, and joining the

COMMODORE INFORMATION NETWORK on CompuServe™.

APPLICATION COMMENT/REQUIREMENTS

ACTION PACKED

GAMES

You can get real Bally Midway arcade games

like Omega Race, Gorf, Wizard of Wor, as well

as "play and learn" games like Math Teacher 1,

Home Babysitter and Commodore Artist.

ADVERTISING &

MERCHANDISING

Hook your COMMODORE 64 to a TV, put it in a

store window with a flashing, animated, and

musical message and you've got a great point of

purchase store display.

ANIMATION Commodore's Sprite Graphics allow you to

create real cartoons with 8 different levels so

that shapes can move in front of or behind each

other.

BABYSITTING The COMMODORE 64 HOME BABYSITTER

cartridge can keep your youngest child occupied

for hours and teach alphabet/keyboard

recognition at the same time. It also teaches

special learning concepts and relationships.

BASIC PROGRAMMING Your COMMODORE 64 USER'S GUIDE and the

TEACH YOURSELF PROGRAMMING series of

books and tapes offer an excellent starting

point.

BUSINESS SPREADSHEET The COMMODORE 64 offers the "Easy" series

of business aids including the most powerful word

processor and largest spreadsheet available for

any personal computer.

COMMUNICATION Enter the fascinating world of computer

"networking." If you hook a VICMODEM to your

COMMODORE 64 you can communicate with

other computer owners all around the world.

xiv INTRODUCTION

Not only that, if you join the COMMODORE

INFORMATION NETWORK on CompuServe™

you can get the latest news and updates on all

Commodore products, financial information, shop

at home services, you can even play games with

the friends you make through the information

systems you join.

COMPOSING SONGS The COMMODORE 64 is equipped with the most
sophisticated built-in music synthesiser available
on any computer. It has three completely
programmable voices, nine full music octaves,
and four controllable waveforms. Look for
Commodore Music Cartridges and Commodore
Music books to help you create or reproduce all
kinds of music and sound effects.

CP/M* Commodore offers a CP/M* add-on and access
to software through an easy-to-load cartridge.

DEXTERITY TRAINING Hand/Eye coordination and manual dexterity
are aided by several Commodore games…
including "Jupiter Lander" and night driving
simulation.

EDUCATION While working with a computer is an education
in itself, the COMMODORE Educational Resource
Book contains general information on the
educational uses of computers. We also have a
variety of learning cartridges designed to teach
everything from music to math and art to
astronomy.

FOREIGN LANGUAGE The COMMODORE 64 programmable character

set lets you replace the standard character set

with user defined foreign language characters.

GRAPHICS AND ART In addition to the Sprite Graphics mentioned

above, the COMMODORE 64 offers high-

resolution, multicolor graphics plotting,

programmable characters, and combinations of

* CP/M is a registered trademark of Digital Research, Inc.

INTRODUCTION xv

all the different graphics and character display

modes.

INSTRUMENT CONTROL Your COMMODORE 64 has a serial port, RS-

232 port and a user port for use with a variety

of special industrial applications. An IEEE/488

cartridge is also available as an optional extra.

JOURNALS AND
CREATIVE WRITING

The COMMODORE 64 will soon offer an
exceptional word-processing system that
matches or exceeds the qualities and flexibilities
of most "high priced" word-processors available.
Of course you can save the information on either
a 1541 Disk Drive or a Datasette™ recorder
and have it printed out using a VIC-PRINTER or
PLOTTER.

LIGHTPEN CONTROL Applications requiring the use of a lightpen can

be performed by any lightpen that will fit the

COMMODORE 64 game port connector.

MACHINE CODE
PROGRAMMING

Your COMMODORE 64 PROGRAMMER'S
REFERENCE GUIDE includes a machine
language section, as well as a BASIC to machine
code interface section. There's even a
bibliography available for more in-depth study.

PAYROLL & FORMS
PRINTOUT

The COMMODORE 64 can be programmed to
handle a variety of entry-type business
applications. Upper/lower case letters combined
with C64 "business form" graphics make it easy
for you to design forms which can then be printed
on your printer.

PRINTING The COMMODORE 64 interfaces with a variety

of dot matrix and letter quality printers as well

as plotters.

RECIPES You can store your favourite recipes on your

COMMODORE 64 and its disk or cassette

storage unit, and end the need for messy recipe

cards that often get lost when you need them

most.

xvi INTRODUCTION

SIMULATIONS Computer simulations let you conduct dangerous
or expensive experiments at minimum risk and
cost.

SPORTS DATA The Source™ and CompuServe™ both offer
sports information which you can get using your
COMMODORE 64 and a VICMODEM.

STOCK QUOTES With a VICMODEM and a subscription to any of
the appropriate network services, your
COMMODORE 64 becomes your own private
stock ticker.

These are just a few of the many applications for you and your COMMODORE

64. As you can see, for work or play, at home, in school or the office, your

COMMODORE 64 gives you a practical solution for just about any need.

Commodore wants you to know that our support for users only STARTS with your

purchase of a Commodore computer. That's why we've created two publications

with Commodore information from around the world, and a "two-way" computer

information network with valuable input for users in the U.S. and Canada from

coast to coast.

In addition, we wholeheartedly encourage and support the growth of

Commodore Users' Clubs around the world. They are an excellent source of

information for every Commodore computer owner from the beginner to the most

advanced. The magazines and network, which are more fully described below,

have the most up-to-date information about how to get involved with the Users'

Club in your area.

Finally, your local Commodore dealer is a useful source of Commodore support

and information.

POWER/PLAY
The Home Computer Magazine

When it comes to entertainment, learning at home and practical home

applications, POWER/PLAY is THE prime source of information for Commodore

home users. Find out where your nearest user clubs are and what they're doing,

learn about software, games, programming techniques, telecommunications, and

new products. POWER/PLAY is your personal connection to other Commodore

users, outside software and hardware developers, and to Commodore itself.

Published quarterly. Only $10.00 for a year of home computing excitement.

INTRODUCTION xvii

COMMODORE

The Microcomputer Magazine

Widely read by educators, businessmen and students, as well as home

computerists, COMMODORE Magazine is our main vehicle for sharing exclusive

information on the more technical use of Commodore systems. Regular

departments cover business, science and education, programming tips, "excerpts

from a technical notebook," and many other features of interest to anyone who

uses or is thinking about purchasing Commodore equipment for business, scientific

or educational applications. COMMODORE is the ideal complement to

POWER/PLAY. Published bi-monthly. Subscription price: $15.00 per year.

AND FOR EVEN MORE INFORMATION…

… DIAL UP OUR PAPERLESS USER MAGAZINE

COMMODORE INFORMATION NETWORK

The magazine of the future is here. To supplement and enhance your subscription

to POWER/PLAY and COMMODORE magazines, the COMMODORE

INFORMATION NETWORK – our "paperless magazine" – is available now over

the telephone using your Commodore computer and modem.

Join our computer club, get help with a computing problem, "talk" to other

Commodore friends, or get up-to-the-minute information on new products,

software and educational resources. Soon you will even be able to save yourself

the trouble of typing in the program listings you find in POWER/PLAY or

COMMODORE by downloading direct from the Information Network (a new

user service planned for early 1983). The best part is that most of the answers

are there before you even ask the questions. (How's that for service?)

To call our electronic magazine you need only a modem and a subscription to

CompuServe™, one of the nation's largest telecommunications networks. (To

make it easy for you Commodore includes a FREE year's subscription to

CompuServe™ in each VICMODEM package.) Just dial your local number for

the CompuServe™ data bank and connect your phone to the modem. When the

CompuServe™ video text appears on your screen type G CBM on your

computer keyboard. When the COMMODORE INFORMATION NETWORK'S

table of contents, or "menu," appears on your screen choose from one of our

sixteen departments, make yourself comfortable, and enjoy the paperless

magazine other magazines are writing about.

xviii INTRODUCTION

For more information, visit your Commodore dealer or contact CompuServe™
customer service at 800-848-8990 (in Ohio, 614-457-8600).

COMMODORE INFORMATION NETWORK
Main Menu Description Commodore Dealers
Direct Access Codes Educational Resources
Special Commands User Groups
User Questions Descriptions
Public Bulletin Board Questions and Answers
Magazines and Newsletters Software Tips
Products Announced Technical Tips
Commodore News Direct Directory Descriptions

CHAPTER 1

BASIC
PROGRAMMING

RULES

 Introduction

 Screen Display Codes (BASIC

 Character Set)

 Programming Numbers and

 Variables

 Expressions and Operators

 Programming Techniques

2 BASIC PROGRAMMING RULES

INTRODUCTION

This chapter talks about how BASIC stores and manipulates data. The topics
include:

1. A brief mention of the operating system components and functions as
 well as the character set used in the Commodore 64.

2. The formation of constants and variables. What types of variables
 there are, and how constants and variables are stored in memory.

3. The rules for arithmetic calculations, relationship tests, string handling,
 and logical operations. Also included are the rules for forming
 expressions, and the data conversions necessary when you're using
 BASIC with mixed data types.

SCREEN DISPLAY CODES (BASIC CHARACTER SET)

THE OPERATING SYSTEM (OS)

The Operating System is contained in the Read Only Memory (ROM) chips and

is a combination of three separate, but interrelated, program modules:

1. The BASIC Interpreter

2. The KERNAL

3. The Screen Editor

1. The BASIC Interpreter is responsible for analyzing BASIC statement

 syntax and for performing the required calculations and/or data

 manipulation. The BASIC Interpreter has a vocabulary of 65

 "keywords" which have special meanings. The upper and lower case

 alphabet and the digits 0-9 are used to make both keywords and

 variable names. Certain punctuation characters and special symbols

 also have meanings for the Interpreter. Table1-1 lists the special

 characters and their uses.

2. The KERNAL handles most of the interrupt level processing in the system

 (for details on interrupt level processing, see Chapter 5). The KERNAL

 also does the actual input and output of data.

3. The Screen Editor controls the output to the video screen (television set)

 and the editing of BASIC program text. In addition, the Screen Editor

 intercepts keyboard input so that it can decide whether the characters

BASIC PROGRAMMING RULES 3

TABLE 1-1. CBM BASIC CHARACTER SET

CHARACTER NAME and DESCRIPTION

 BLANK – separates keywords and variable names

; SEMI-COLON – used in variable lists to format output

= EQUAL SIGN – value assignment and relationship testing

+ PLUS SIGN – arithmetic addition or string concatenation

(concatenation: linking together in a chain)

- MINUS SIGN – arithmetic subtraction, unary minus (-1)

* ASTERISK – arithmetic multiplication

/ SLASH – arithmetic division

↑ UP ARROW – arithmetic exponentiation

(LEFT PARENTHESIS – expression evaluation and functions

) RIGHT PARENTHESIS – expression evaluation and functions

% PERCENT – declares variable name as an integer

NUMBER – comes before logical file number in input/output

statements

$ DOLLAR SIGN – declares variable name as a string

, COMMA – used in variable lists to format output; also

separates command parameters

. PERIOD – decimal point in floating-point constants

" QUOTATION MARK – encloses string constants

: COLON – separates multiple BASIC statements in a line

? QUESTION MARK – abbreviation for the keyword PRINT

< LESS THAN – used in relationship tests

> GREATER THAN – used in relationship tests

ππππ PI – the number constant 3.141592654

put in should be acted upon immediately or passed on to the BASIC Interpreter.

The Operating System gives you two modes of BASIC operation:

1. DIRECT Mode

2. PROGRAM Mode

1. When you're using the DIRECT mode, BASIC statements don't have line
 numbers in front of the statement. They are executed whenever the
 RETURN key is pressed.

4 BASIC PROGRAMMING RULES

2. The PROGRAM mode is the one you use for running programs. When
 using the PROGRAM mode, all of your BASIC statements must have line
 numbers in front of them. You can have more than one BASIC statement
 in a line of your program, but the number of statements is limited by
 the fact that you can only put 80 characters on a logical screen line.
 This means that if you are going to go over the 80 character limit you
 have to put the entire BASIC statement that doesn't fit on a new line
 with a new line number.

NOTE: Always type NEW and hit RETURN before starting a new program.

The Commodore 64 has two complete character sets that you can use, either
from the keyboard or in your programs.

In SET 1, the upper case alphabet and the numbers 0-9 are available without
pressing the SHIFT key. If you hold down the SHIFT key while typing, the
graphics characters on the RIGHT side of the front of the keys are used. If you
hold down the  key while typing, the graphics characters on the LEFT side of
the front of the key are used. Holding down the SHIFT key while typing any
character that doesn't have graphic symbols on the front of the key gives you
the symbol on the top most part of the key.

In SET 2, the lower case alphabet and the numbers 0-9 are available without
pressing the SHIFT key. The upper case alphabet is available when you hold
down the SHIFT key while typing. Again, the graphic symbols on the LEFT side
of the front of the keys are displayed by pressing the  key, while the symbols
on the top most part of any key, without graphics characters, are selected when
you hold down the SHIFT key while typing.

To switch from one character set to the other press the  and the SHIFT keys
together.

PROGRAMMING NUMBERS AND VARIABLES

INTEGER, FLOATING-POINT AND STRING CONSTANTS

Constants are the data values that you put in your BASIC statements. BASIC uses
these values to represent data during statement execution. CBM BASIC can
recognize and manipulate three types of constants:

1. INTEGER NUMBERS
2. FLOATING-POINT NUMBERS
3. STRINGS

BASIC PROGRAMMING RULES 5

Integer constants are whole numbers (numbers without decimal points). Integer

constants must be between -32768 and +32767. Integer constants do not have

decimal points or commas between digits. If the plus (+) sign is left out, the constant

is assumed to be a positive number. Zeros coming before a constant are ignored

and shouldn't be used since they waste memory and slow down your program.

However, they won't cause an error. Integers are stored in memory as two-byte

binary numbers. Some examples of integer constants are:

-12
8765
-32768
+44
0
-32767

NOTE: Do NOT put commas inside any number. For example, always type 32,000 as 32000. If

you put a comma in the middle of a number you will get the BASIC error message: ?SYNTAX

ERROR.

Floating-point constants are positive or negative numbers and can contain

fractions. Fractional parts of a number may be shown using a decimal point.

Once again remember that commas are NOT used between numbers. If the plus

sign (+) is left off the front of a number, the Commodore 64 assumes that the

number is positive. If you leave off the decimal point the computer will assume

that it follows the last digit of the number. And as with integers, zeros that come

before a constant are ignored. Floating-point constants can be used in two ways:

1. SIMPLE NUMBER
2. SCIENTIFIC NOTATION

Floating-point constants will show you up to nine digits on your screen. These

digits can represent values between -999999999 and +999999999. If you

enter more than nine digits the number will be rounded based on the tenth digit.

If the tenth digit is greater than or equal to 5 the number will be rounded

upward. Less than 5 the number will be rounded downward. This could be

important to the final totals of some numbers you may want to work with.

Floating-point numbers are stored (using five bytes of memory) and are

manipulated in calculations with ten places of accuracy. However, the numbers

are rounded to nine digits when results are printed. Some examples of simple

floating-point numbers are:

6 BASIC PROGRAMMING RULES

1.23

–.998877

+3.1459

.7777777

-333.

.01

Numbers smaller than .01 or larger than 999999999 will be printed in scientific

notation. In scientific notation a floating-point constant is made up of three parts:

1. THE MANTISSA

2. THE LETTER E

3. THE EXPONENT

The mantissa is a simple floating-point number. The letter E is used to tell you that

you're seeing the number in exponential form. In other words E represents *10

(eg., 3E3=3*10↑3=3000). And the exponent is what multiplication power of

10 the number is raised to.

Both the mantissa and the exponent are signed (+ or –) numbers. The exponent's

range is from –39 to +38 and it indicates the number of places that the actual

decimal point in the mantissa would be moved to the left (–) or right (+) if the

value of the constant were represented as a simple number.

There is a limit to the size of floating-point numbers that BASIC can handle, even

in scientific notation: the largest number is +1.70141183E+38 and calculations

which would result in a larger number will display the BASIC error message

?OVERFLOW ERROR. The smallest floating-point number is +2.93873588E–39

and calculations which result in a smaller value give you zero as an answer and

NO error message. Some examples of floating-point numbers in scientific

notation (and their decimal values) are:

235.988E–3 (.235988)

2359E6 (2359000000.)

–7.09E–12 (–.00000000000709)

–3.14159E+5 (–314159.)

String constants are groups of alphanumeric information like letters, numbers

and symbols. When you enter a string from the keyboard, it can have any length

BASIC PROGRAMMING RULES 7

up to the space available in an 80-character line (that is, any character spaces

NOT taken up by the line number and other required parts of the statement).

A string constant can contain blanks, letters, numbers, punctuation and color or

cursor control characters in any combination. You can even put commas between

numbers. The only character which cannot be included in a string is the double quote

mark ("). This is because the double quote mark is used to define the beginning

and end of the string.

A string can also have a null value – which means that it can contain no character

data. You can leave the ending quote mark off of a string if it's the last item on

a line or if it's followed by a colon (:). Some examples of string constants are:

"" (a null string)

"HELLO"

"$25,000.00"

"NUMBER OF EMPLOYEES"

NOTE: use CHR$(34) to include quotes (") in strings.

INTEGER, FLOATING-POINT AND STRING VARIABLES

Variables are names that represent data values used in your BASIC statements.

The value represented by a variable can be assigned by setting it equal to a

constant, or it can be the result of calculations in the program. Variable data,

like constants, can be integers, floating-point numbers, or strings. If you refer to

a variable name in a program before a value has been assigned, the BASIC

Interpreter will automatically create the variable with a value of zero if it's an

integer or floating-point number. Or it will create a variable with a null value if

you're using strings.

Variable names can be any length but only the first two characters are

considered significant in CBM BASIC. This means that all names used for variables

must NOT have the same first two characters. Variable names may NOT be the

same as BASIC keywords and they may NOT contain keywords in the middle of

variable names. Keywords include all BASIC commands, statements, function

names and logical operator names. If you accidentally use a key word in the

middle of a variable name, the BASIC error message ?SYNTAX ERROR will

show up on your screen.

8 BASIC PROGRAMMING RULES

The characters used to form variable names are the alphabet and the numbers

0–9. The first character of the name must be a letter. Data type declaration

characters (%) and ($) can be used as the last character of the name. The percent

sign (%) declares the variable to be an integer and the dollar sign ($) declares

a string variable. If no type declaration character is used the Interpreter will

assume that the variable is a floating-point. Some examples of variable names,

value assignments and data types are:

A$="GROSS SALES" (string variable)

MTH$="JAN"+A$ (string variable)

K%=5 (integer variable)

CNT%=CNT%+1 (integer variable)

FP=12.5 (floating-point variable)

SUM=FP*CNT% (floating-point variable)

INTEGER, FLOATING-POINT AND STRING ARRAYS

An array is a table (or list) of associated data items referred to by a single

variable name. In other words, an array is a sequence of related variables. A

table of numbers can be seen as an array, for example. The individual numbers

within the table become "elements" of the array.

Arrays are a useful shorthand way of describing a large number of related

variables. Take a table of numbers for instance. Let's say that the table has 10

rows of numbers with 20 numbers in each row. That makes a total of 200 numbers

in the table. Without a single array name to call on you would have to assign a

unique name to each value in the table. But because you can use arrays you only

need one name for the array and all the elements in the array are identified by

their individual locations within the array.

Array names can be integers, floating-points or string data types and all

elements in the array have the same data type as the array name. Arrays can

have a single dimension (as in a simple list) or they can have multiple dimensions

(imagine a grid marked in rows and columns or a Rubik's Cube®). Each element

of an array is uniquely identified and referred to by a subscript (or index

variable) following the array name, enclosed within parentheses ().

The maximum number of dimensions an array can have in theory is 255 and the

number of elements in each dimension is limited to 32767. But for practical

purposes array sizes are limited by the memory space available to hold their

BASIC PROGRAMMING RULES 9

data and/or the 80-character logical screen line. If an array has only one

dimension and its subscript value will never exceed 10 (11 items: 0 through 10)

then the array will be created by the Interpreter and filled with zeros (or nulls if

string type) the first time any element of the array is referred to, otherwise the

BASIC DIM statement must be used to define the shape and size of the array.

The amount of memory required to store an array can be determined as follows:

 5 bytes for the array name
 + 2 bytes for each dimension of the array
 + 2 bytes per element for integers

OR + 5 bytes per element for floating-point
OR + 3 bytes per element for strings

AND + 1 byte per character in each string element

Subscripts can be integer constants, variables, or an arithmetic expression which

gives an integer result. Separate subscripts, with commas between them, are

required for each dimension of an array. Subscripts can have values from zero

up to the number of elements in the respective dimensions of the array. Values

outside that range will cause the BASIC error message ?BAD SUBSCRIPT. Some

examples of array names, value assignments and data types are:

A$(0)= "GROSS SALES" (string array)
MTH$(K%)="JAN" (string array)
G2%(X)=5 (integer array)
CNT%(G2%(X))=CNT%(1)–2 (integer array)
FP(12*K%)=24.8 (floating-point array)
SUM(CNT%(1))=FP↑K% (floating-point array)

A(5)=0 (sets the element in row position 5 in the 1 dimensional array

called "A" equal to zero)

B(5,6)=0 (sets the element in row position 5 and column position 6 in

the 2 dimensional array called "B" equal to zero)

C(1,2,3)=0 (sets the elements in row position 1, column position 2 and

depth position 3 in the 3 dimensional array called "C" equal

to zero)

EXPRESSIONS AND OPERATORS

Expressions are formed using constants, variables and/or arrays. An expression

can be a single constant, simple variable, or an array variable of any type. It

10 BASIC PROGRAMMING RULES

can also be a combination of constants and variables with arithmetic, relational

or logical operators designed to produce a single value. How operators work is

explained below. Expressions can be separated into two classes:

1. ARITHMETIC

2. STRING

Expressions are normally thought of as having two or more data items called

operands. Each operand is separated by a single operator to produce the

desired result. This is usually done by assigning the value of the expression to a

variable name. All of the examples of constants and variables that you've seen

so far, were also examples of expressions.

An operator is a special symbol the BASIC Interpreter in your Commodore 64

recognizes as representing an operation to be performed on the variables or

constant data. One or more operators, combined with one or more variables

and/or constants form an expression. Arithmetic, relational and logical operators

are recognized by Commodore 64 BASIC.

ARITHMETIC EXPRESSIONS

Arithmetic expressions, when solved, will give an integer or floating-point value.

The arithmetic operators (+,–, *, /, ↑) are used to perform addition, subtraction,

multiplication, division and exponentiation operations respectively.

ARITHMETIC OPERATIONS

An arithmetic operator defines an arithmetic operation which is performed on

the two operands on either side of the operator. Arithmetic operations are

performed using floating-point numbers. Integers are converted to floating-point

numbers before an arithmetic operation is performed. The result is converted

back to an integer if it is assigned to an integer variable name.

ADDITION (+): the plus sign (+) specifies that the operand on the right is added

to the operand on the left.

BASIC PROGRAMMING RULES 11

EXAMPLES:

2+2
A+B+C
X%+1
BR+10E–2

SUBTRACTION (–): The minus sign (–) specifies that the operand on the right is
subtracted from the operand on the left.

EXAMPLES:

4–1
100–64
A–B
55–142

The minus can also be used as a unary minus. That means that it is the minus sign in
front of a negative number. This is equal to subtracting the number from zero (0).

EXAMPLES:

–5
–9E4
–B
4–(–2) same as 4+2

MULTIPLICATION (*): An asterisk (*) specifies that the operand on the left is
multiplied by the operand on the right.

EXAMPLES:

100*2
50*0
A*X1
R%*14

DIVISION (/): The slash (/) specifies that the operand on the left is divided by
the operand on the right.

EXAMPLES:

10/2
6400/4
A/B
AE2/XR

12 BASIC PROGRAMMING RULES

EXPONENTIATION (↑): The up arrow (↑) specifies that the operand on the left

is raised to the power specified by the operand on the right (the exponent). If

the operand on the right is a 2, the number on the left is squared; if the exponent

is a 3, the number on the left is cubed, etc. The exponent can be any number so

long as the result of the operation gives a valid floating-point number.

EXAMPLES:

2↑2 Equivalent to: 2*2

3↑3 Equivalent to: 3*3*3

4↑4 Equivalent to: 4*4*4*4

AB↑CD

3↑–2 Equivalent to ⅓* ⅓

RELATIONAL OPERATORS

The relational operators (<, =, >, <=, >=, <>) are primarily used to compare

the values of two operands, but they also produce an arithmetic result. The

relational operators and the logical operators (AND, OR, and NOT), when used

in comparisons, actually produce an arithmetic true/false evaluation of an

expression. If the relationship stated in the expression is true the result is assigned

an integer value of –1 and if it's false a value of 0 is assigned. These are the

relational operators:

< LESS THAN
= EQUAL TO
> GREATER THAN
<= LESS THAN OR EQUAL TO
>= GREATER THAN OR EQUAL TO
<> NOT EQUAL TO

EXAMPLES:

1=5–4 result true (–1)
14>66 result false (0)
15>=15 result true (–1)

Relational operators can be used to compare strings. For comparison purposes,

the letters of the alphabet have the order A<B<C<D, etc. Strings are compared

by evaluating the relationship between corresponding characters from left to

right (see String Operations).

BASIC PROGRAMMING RULES 13

EXAMPLES:

"A"< "B" result true (–1)
"X"= "YY" result false (0)
BB$<>CC$

Numeric data items can only be compared (or assigned) to other numeric items.
The same is true when comparing strings, otherwise the BASIC error message
?TYPE MISMATCH will occur. Numeric operands are compared by first
converting the values of either or both operands from integer to floating-point
form, as necessary. Then the relationship of the floating-point values is evaluated
to give a true/false result.

At the end of all comparisons, you get an integer no matter what data type the
operand is (even if both are strings). Because of this, a comparison of two
operands can be used as an operand in performing calculations. The result will
be –1 or 0 and can be used as anything but a divisor, since division by zero is
illegal.

LOGICAL OPERATORS

The logical operators (AND, OR, NOT) can be used to modify the meanings of
the relational operators or to produce an arithmetic result. Logical operators can
produce results other than –1 and 0, though any nonzero result is considered true
when testing for a true/false condition.

The logical operators (sometimes called Boolean operators) can also be used to
perform logic operations on individual binary digits (bits) in two operands. But
when you're using the NOT operator, the operation is performed only on the
single operand to the right. The operands must be in the integer range of values
(–32768 to +32767) (floating-point numbers are converted to integers) and
logical operations give an integer result.

Logical operations are performed bit-by-corresponding-bit on the two
operands. The logical AND produces a bit result of 1 only if both operand bits
are 1. The logical OR produces a bit result of 1 if either operand bit is 1. The
logical NOT is the opposite value of each bit as a single operand. In other words,
it's really saying, "If it's NOT 1 then it is 0. If it's NOT 0 then it is 1."

The exclusive OR (XOR) doesn't have a logical operator but it is performed as
part of the WAIT statement. Exclusive OR means that if the bits of two operands
are equal then the result is 0 otherwise the result is 1.

Logical operations are defined by groups of statements which, taken together,
constitute a Boolean "truth table" as shown in Table 1–2.

14 BASIC PROGRAMMING RULES

TABLE 1–2. BOOLEAN TRUTH TABLE

The AND operation results in a 1 only if both bits are 1:

1 AND 1 = 1

0 AND 1 = 0

1 AND 0 = 0

0 AND 0 = 0

The OR operation results in a 1 if either bit is a 1:

1 OR 1 = 1

0 OR 1 = 1

1 OR 0 = 1

0 OR 0 = 0

The NOT operation logically compliments each bit:

NOT 1 = 0

NOT 0 = 1

The exclusive OR (XOR) is part of the WAIT statement:

1 XOR 1 = 0

1 XOR 0 = 1

0 XOR 1 = 1

0 XOR 0 = 0

The logical operators AND, OR and NOT specify a Boolean arithmetic operation
to be performed on the two operand expressions on either side of the operator.
In the case of NOT, ONLY the operand on the RIGHT is considered. Logical
operations (or Boolean arithmetic) aren't performed until all arithmetic and
relational operations in an expression have been completed.

EXAMPLES:

IF A=100 AND B=100 THEN 10 (if both A and B have a value of

100 then the result is true)

A = 96 AND 32: PRINT A (A = 32)

BASIC PROGRAMMING RULES 15

IF A=100 OR B=100 THEN 20 (if A or B is 100 then the result is

true)

A=64 OR 32: PRINT A (A = 96)

IF NOT X<Y THEN 30 (if X>=Y the result is true)

X = NOT 96 (result is –97 (two's complement))

HIERARCHY OF OPERATIONS

All expressions perform the different types of operations according to a fixed

hierarchy. In other words, certain operations are performed before other

operations. The normal order of operations can be modified by enclosing two or

more operands within parentheses (), creating a "subexpression." The parts of

an expression enclosed in parentheses will be reduced to a single value before

working on parts outside the parentheses.

When you use parentheses in expressions, they must be paired so that you

always have an equal number of left and right parentheses. Otherwise, the

BASIC error message ?SYNTAX ERROR will appear.

Expressions which have operands inside parentheses may themselves be

enclosed in parentheses, forming complex expressions of multiple levels. This is

called nesting. Parentheses can be nested in expressions to a maximum depth of

ten levels – ten matching sets of parentheses. The inner-most expression has its

operations performed first. Some examples of expressions are:

A+B

C↑(D+E)/2

((X–C↑(D+E)/2)*10)+1

GG$>HH$

JJ$+"MORE"

K%=1 AND M<>X

K%=2 OR (A=B AND M<X)

NOT (D=E)

The BASIC Interpreter will normally perform operations on expressions by

performing arithmetic operations first, then relational operations, and logical

16 BASIC PROGRAMMING RULES

operations last. Both arithmetic and logical operators have an order of

precedence (or hierarchy of operations) within themselves. On the other hand,

relational operators do not have an order of precedence and will be performed

as the expression is evaluated from left to right.

If all remaining operators in an expression have the same level of precedence

then operations happen from left to right. When performing operations on

expressions within parentheses, the normal order of precedence is maintained.

The hierarchy of arithmetic and logical operations is shown in Table 1–3 from

first to last, in order of precedence.

TABLE 1–3. HIERARCH OF OPERATIONS PERFORMED ON EXPRESSIONS

OPERATOR DESCRIPTION EXAMPLE

↑ Exponentiation BASE ↑ EXP

– Negation (Unary Minus) –A

* /
Multiplication

Division

AB * CD

EF / GH

+ –
Addition

Subtraction

CNT + 2

JK – PQ

> = < Relational Operations A <= B

NOT
Logical NOT

(Integer Two's Complement)
NOT K%

AND Logical AND JK AND 128

OR Logical OR PQ OR 15

STRING OPERATIONS

Strings are compared using the same relational operators (=, <>, <=, >=, <,

>) that are used for comparing numbers. String comparisons are made by taking

one character at a time (Ieft-to-right) from each string and evaluating each

character code position from the PET/CBM character set. If the character codes

are the same, the characters are equal. If the character codes differ, the

character with the lower code number is lower in the character set. The

comparison stops when the end of either string is reached. All other things being

BASIC PROGRAMMING RULES 17

equal, the shorter string is considered less than the longer string. Leading or

trailing blanks ARE significant.

Regardless of the data types, at the end of all comparisons you get an integer

result. This is true even if both operands are strings. Because of this a comparison

of two string operands can be used as an operand in performing calculations.

The result will be –1 or 0 (true or false) and can be used as anything but a

divisor since division by zero is illegal.

STRING EXPRESSIONS

Expressions are treated as if an implied "<>0" follows them. This means that if

an expression is true then the next BASIC statements on the same program line

are executed. If the expression is false the rest of the line is ignored and the

next line in the program is executed.

Just as with numbers, you can also perform operations on string variables. The

only string arithmetic operator recognized by CBM BASIC is the plus sign (+)

which is used to perform concatenation of strings. When strings are concatenated,

the string on the right of the plus sign is appended to the string on the left,

forming a third string as a result. The result can be printed immediately, used in

a comparison, or assigned to a variable name. If a string data item is compared

with (or set equal to) a numeric item, or vice-versa, the BASIC error message

?TYPE MISMATCH will occur. Some examples of string expressions and

concatenation are:

10 A$="FILE": B$="NAME"

20 NAM$ = A$ + B$ (gives the string: FILENAME)

30 RES$ = "NEW " + A$ + B$ (gives the string: NEW FILENAME)

Note space here.

18 BASIC PROGRAMMING RULES

PROGRAMMING TECHNIQUES

DATA CONVERSIONS

When necessary, the CBM BASIC Interpreter will convert a numeric data item

from an integer to floating-point, or vice-versa, according to the following rules:

 All arithmetic and relational operations are performed in floating-point

 format. Integers are converted to floating-point form for evaluation of

 the expression, and the result is converted back to integer. Logical

 operations convert their operands to integers and return an integer

 result.

 If a numeric variable name of one type is set equal to a numeric data

 item of a different type, the number will be converted and stored as

 the data type declared in the variable name.

 When a floating-point value is converted to an integer, the fractional

portion is truncated (eliminated) and a positive integer result is less than

or equal to the floating-point value. If the result is outside the range of

+32767 through –32768, the BASIC error message ?ILLEGAL

QUANTITY will occur.

USING THE INPUT STATEMENT

Now that you know what variables are, let's take that information and put it

together with the INPUT statement for some practical programming applications.

In our first example, you can think of a variable as a "storage compartment"

where the Commodore 64 stores the user's response to your prompt question. To

write a program which asks the user to type in a name, you might assign the

variable N$ to the name typed in. Now every time you PRINT N$ in your

program, the Commodore 64 will automatically PRINT the name that the user

typed in.

Type the word NEW on your Commodore 64. Hit the RETURN key, and try this

example:

10 PRINT "YOUR NAME": INPUT N$

20 PRINT "HELLO, " N$

BASIC PROGRAMMING RULES 19

In this example you used N to remind yourself that this variable stands for

"NAME." The dollar sign ($) is used to tell the computer that you're using a string

variable. It is important to differentiate between the two types of variables:

1. NUMERIC

2. STRING

You probably remember from the earlier sections that numeric variables are

used to store number values such as 1, 100, 4000, etc. A numeric variable can

be a single letter (A), any two letters (AB), a letter and a number (A1), or two

letters and a number (AB1). You can save memory space by using shorter

variables. Another helpful hint is to use letters and numbers for different

categories in the same program (A1, A2, A3). Also, if you want whole numbers

for an answer instead of numbers with decimal points, all you have to do is put

a percent sign (%) at the end of your variable name (AB%, A1%, etc.)

Now let's look at a few examples that use different types of variables and

expressions with the INPUT statement:

10 PRINT "ENTER A NUMBER": INPUT A

20 PRINT A

10 PRINT "ENTER A WORD": INPUT A$

20 PRINT A$

10 PRINT "ENTER A NUMBER": INPUT A

20 PRINT A "TIMES 5 EQUALS" A*5

NOTE: Example 3 shows that MESSAGES or PROMPTS are inside the quotation marks (" ") while

the variables are outside. Notice, too, that in line 20 the variable A was printed first, then the

message "TIMES 5 EQUALS", and then the calculation, multiply variable A by 5 (A*5).

Calculations are important in most programs. You have a choice of using "actual

numbers" or variables when doing calculations, but if you're working with

numbers supplied by a user you must use numeric variables. Begin by asking the

user to type in two numbers like this:

10 PRINT "TYPE 2 NUMBERS": INPUT A: INPUT B

20 BASIC PROGRAMMING RULES

INCOME/EXPENSE BUDGET EXAMPLE

5 PRINT ""
10 PRINT "MONTHLY INCOME": INPUT IN
20 PRINT
30 PRINT "EXPENSE CATEGORY 1": INPUT E1$
40 PRINT "EXPENSE AMOUNT": INPUT E1
50 PRINT
60 PRINT "EXPENSE CATEGORY 2": INPUT E2$
70 PRINT "EXPENSE AMOUNT": INPUT E2
80 PRINT
90 PRINT "EXPENSE CATEGORY 3": INPUT E3$
100 PRINT "EXPENSE AMOUNT": INPUT E3
110 PRINT ""
120 E=E1+E2+E3
130 EP=E/IN
140 PRINT "MONTHLY INCOME: $"IN
150 PRINT "TOTAL EXPENSES: $"E
160 PRINT "BALANCE EQUALS: $"IN-E
170 PRINT
180 PRINT E1$"="(E1/E)*100"% OF TOTAL EXPENSES"
190 PRINT E2$"="(E2/E)*100"% OF TOTAL EXPENSES"
200 PRINT E3$"="(E3/E)*100"% OF TOTAL EXPENSES"
210 PRINT
220 PRINT "YOUR EXPENSES ="EP*100"% OF YOUR TOTAL
INCOME"
230 FOR X=1TO5000:NEXT:PRINT
240 PRINT "REPEAT? (Y/N)":INPUT Y$:IF Y$="Y" THEN 5
250 PRINT "":END

NOTE: IN can NOT = 0, and E1, E2, E3 can NOT all be 0 at the same time.

 SHIFT CLR/HOME

 SHIFT CLR/HOME

 SHIFT CLR/HOME

BASIC PROGRAMMING RULES 21

LINE-BY-LINE EXPLANATION OF
INCOME/EXPENSES BUDGET EXAMPLE

Line(s) Description

5 Clears the screen.

10 PRINT/INPUT statement.

20 Inserts blank line.

30 Expense Category 1 = E1$.

40 Expense Amount = E1.

50 Inserts blank line.

60 Expense Category 2 = E2$.

70 Expense Amount = E2.

80 Inserts blank line.

90 Expense Category 3 = E3$.

100 Expense Amount = E3.

110 Clears the screen.

120 Add Expense Amounts = E.

130 Calculate Expense/Income%

140 Display Income.

150 Display Total Expenses.

160 Display Income – Expenses.

170 Inserts blank line.

180-200 Calculate % each Expense Amount is of Total Expenses

210 Inserts blank line.

220 Display E / IN %

230 Time delay loop.

Now multiply those two numbers together to create a new variable C as shown

in line 20 below:

20 C=A*B

To PRINT the result as a message type:

30 PRINT A "TIMES" B "EQUALS" C

Enter these 3 lines and RUN the program. Notice that the messages are inside

the quotes while the variables are not.

22 BASIC PROGRAMMING RULES

Now let's say that you wanted a dollar sign ($) in front of the number

represented by variable C. The $ must be PRINTed inside quotes and in front of

variable C. To add the $ to your program hit the RUN/STOP and RESTORE keys.

Now type in line 40 as follows:

40 PRINT "$" C

Now hit RETURN , type RUN and hit RETURN again.

The dollar sign goes in quotes because the variable C only represents a number

and can't contain a $. If the number represented by C was 100 then the

Commodore 64 screen would display $ 100. But, if you tried to PRINT $C without

using the quotes, you would get a ?SYNTAX ERROR message.

One last tip about $$$: You can create a variable that represents a dollar sign

which you can then substitute for the $ when you want to use it with numeric

variables. For example:

10 Z$="$"

Now whenever you need a dollar sign you can use the string variable Z$. Try

this:

10 Z$="$":INPUT A

20 PRINT Z$A

Line 10 defines the $ as a string variable called Z$, and then INPUTs a number

called A. Line 20 PRINTs Z$ ($) next to A (number).

You'll probably find that it's easier to assign certain characters, like dollar signs,

to a string variable than to type "$" every time you want to calculate dollars or

other items which require " " like %.

USING THE GET STATEMENT

Most simple programs use the INPUT statement to get data from the person

operating the computer. When you're dealing with more complex needs, like

protection from typing errors, the GET statement gives you more flexibility and

your program more "intelligence." This section shows you how to use the GET

statement to add some special screen editing features to your programs.

BASIC PROGRAMMING RULES 23

The Commodore 64 has a keyboard buffer that holds up to 10 characters. This

means that if the computer is busy doing some operation and it's not reading the

keyboard, you can still type in up to 10 characters, which will be used as soon

as the Commodore 64 finishes what it was doing. To demonstrate this, type in

this program on your Commodore 64:

NEW

10 TI$="000000"

20 IF TI$ < "000015" THEN 20

Now type RUN, hit RETURN and while the program is RUNning type in the word:

HELLO.

Notice that nothing happened for about 15 seconds when the program started.

Only then did the message HELLO appear on the screen.

Imagine standing in line for a movie. The first person in the line is the first to get

a ticket and leave the line. The last person in line is last for a ticket. The GET

statement acts like a ticket taker. First it looks to see if there are any characters

"in line." In other words, have any keys been typed? If the answer is yes then

that character gets placed in the appropriate variable. If no key was pressed

then an empty value is assigned to a variable.

At this point it's important to note that if you try to put more than 10 characters

into the buffer at one time, all those over the 10th character will be lost.

Since the GET statement will keep going even when no character is typed, it is

often necessary to put the GET statement into a loop so that it will have to wait

until someone hits a key or until a character is received through your program.

Below is the recommended form for the GET statement. Type NEW to erase your

previous program.

10 GET A$: IF A$= "" THEN 10

Notice that there is NO SPACE between the quote marks ("") on this line. This

indicates an empty value and sends the program back to the GET statement in

a continuous loop until someone hits a key on the computer. Once a key is hit the

program will continue with the line following line 10. Add this line to your

program:

100 PRINT A$;: GOTO 10

24 BASIC PROGRAMMING RULES

Now RUN the program. Notice that no cursor █ appears on the screen, but any

character you type will be printed in the screen. This 2-line program can be

turned into part of a screen editor program as shown below.

There are many things you can do with a screen editor. You can have a flashing

cursor. You can keep certain keys like CLR/HOME from accidentally erasing the

whole screen. You might even want to be able to use your function keys to

represent whole words or phrases. And speaking of function keys, the following

program lines give each function key a special purpose. Remember this is only

the beginning of a program that you can customize for your needs.

20 IF A$ = CHR$(133) THEN POKE 53280,8 : GOTO 10

30 IF A$ = CHR$(134) THEN POKE 53281,4 : GOTO 10

40 IF A$ = CHR$(135) THEN A$ = "DEAR SIR:" + CHR$(13)

50 IF A$ = CHR$(136) THEN A$ = "SINCERELY," + CHR$(13)

The CHR$ numbers in parentheses come from the CHR$ code chart in Appendix

C. The chart lists a different number for each character. The four function keys

are set up to perform the tasks represented by the instructions that follow the

word THEN in each line. By changing the CHR$ number inside each set of

parentheses you can designate different keys. Different instructions would be

performed if you changed the information after the THEN statement.

HOW TO CRUNCH BASIC PROGRAMS

You can pack more instructions – and power – into your BASIC programs by

making each program as short as possible. This process of shortening programs

is called "crunching."

Crunching programs lets you squeeze the maximum possible number of

instructions into your program. It also helps you reduce the size of programs

which might not otherwise run in a given size; and if you're writing a program

which requires the input of data such as inventory items, numbers or text, a short

program will leave more memory space free to hold data.

BASIC PROGRAMMING RULES 25

ABBREVIATING KEYWORDS

A list of keyword abbreviations is given in Appendix A. This is helpful when you
program because you can actually crowd more information on each line using
abbreviations. The most frequently used abbreviation is the question mark (?)
which is the BASIC abbreviation for the PRINT command. However, if you LIST a
program that has abbreviations, the Commodore 64 will automatically print out
the listing with the full-length keywords. If any program line exceeds 80
characters (2 lines on the screen) with the keywords unabbreviated, and you
want to change it, you will have to re-enter that line with the abbreviations
before saving the program. SAVEing a program incorporates the keywords
without inflating any lines because BASIC keywords are tokenized by the
Commodore 64. Usually, abbreviations are added after a program is written
and it isn't going to be LISTed any more before SAVEing.

SHORTENING PROGRAM LINE NUMBERS

Most programmers start their programs at line 100 and number each line at

intervals of 10 (i.e., 100, 110, 120). This allows extra lines of instruction to be

added (111, 112, etc.) as the program is developed. One means of crunching

the program after it is completed is to change the line numbers to the lowest

numbers possible (i.e.,1, 2, 3) because longer line numbers take more memory

than shorter numbers when referenced by GOTO and GOSUB statements. For

instance, the number 100 uses 3 bytes of memory (one for each number) while

the number 1 uses only 1 byte.

PUTTING MULTIPLE INSTRUCTIONS ON EACH LINE

You can put more than one instruction on each numbered line in your program

by separating them by a colon. The only limitation is that all the instructions on

each line, including colons, should not exceed the standard 80-character line

length. Here is an example of two programs, before and after crunching:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 PRINT "HELLO…"; 10 PRINT"HELLO…";:FOR

T=1TO500:NEXT:PRINT"HELL
O, AGAIN…":GOTO 10

20 FOR T = 1 TO 500: NEXT
30 PRINT "HELLO, AGAIN…"
40 GOTO 10

REMOVING REM STATEMENTS

REM statements are helpful in reminding yourself – or showing other

programmers – what a particular section of a program is doing. However, when

26 BASIC PROGRAMMING RULES

the program is completed and ready to use, you probably won't need those REM

statements anymore and you can save quite a bit of space by removing the REM

statements. If you plan to revise or study the program structure in the future, it's

a good idea to keep a copy on file with the REM statements intact.

USING VARIABLES

If a number, word or sentence is used repeatedly in your program it's usually

best to define those long words or numbers with a one or two letter variable.

Numbers can be defined as single letters. Words and sentences can be defined

as string variables using a letter and dollar sign. Here's one example:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 POKE 54296,15 10 V=54296:F=54273

20 POKE 54276,33 20 POKEV,15:POKE54276,33
30 POKE 54273,10 30 POKEF,10:POKEF,40:POKEF,70
40 POKE 54273,40 40 POKEV,0

50 POKE 54273,70
60 POKE 54296,0

USING READ AND DATA STATEMENTS

Large amounts of data can be typed in as one piece of data at a time, over

and over again… or you can print the instructional part of the program ONCE

and print all the data to be handled in a long running list called the DATA

statement. This is especially good for crowding large lists of numbers into a

program.

USING ARRAYS AND MATRICES

Arrays and matrices are similar to DATA statements in that long amounts of data

can be handled as a list, with the data handling portion of the program drawing

from that list, in sequence. Arrays differ in that the list can be multi-dimensional.

ELIMINATING SPACES

One of the easiest ways to reduce the size of your program is to eliminate all

the spaces. Although we often include spaces in sample programs to provide

clarity, you actually don't need any spaces in your program and will save space

if you eliminate them.

BASIC PROGRAMMING RULES 27

USING GOSUB ROUTINES

If you use a particular line or instruction over and over, it might be wise to
GOSUB to the line from several places in your program, rather than write the
whole line or instruction every time you use it.

USING TAB AND SPC

Instead of PRINTing several cursor commands to position a character on the
screen, it is often more economical to use the TAB and SPC instructions to position
words or characters on the screen.

28 BASIC PROGRAMMING RULES

CHAPTER 2

BASIC LANGUAGE
VOCABULARY

 Introduction

 BASIC Keywords, Abbreviations, and

Function Types

 Description of BASIC Keywords

(Alphabetical)

 The COMMODORE 64 Keyboard and

Features

 Screen Editor

30 BASIC LANGUAGE VOCABULARY

INTRODUCTION

This chapter explains CBM BASIC Language keywords. First we give you an

easy to read list of keywords, their abbreviations and what each letter looks like

on the screen. Then we explain how the syntax and operation of each keyword

works in detail, and examples are shown to give you an idea as to how to use

them in your programs.

As a convenience, Commodore 64 BASIC allows you to abbreviate most

keywords. Abbreviations are entered by typing enough letters of the keyword

to distinguish it from all other keywords, with the last letter or graphics entered

holding down the SHIFT key.

Abbreviations do NOT save any memory when they're used in programs,

because all keywords are reduced to single-character "tokens" by the BASIC

Interpreter. When a program containing abbreviations is listed, all keywords

appear in their fully spelled form. You can use abbreviations to put more

statements onto a program line even if they won't fit onto the 80-character

logical screen line. The Screen Editor works on an 80-character line. This means

that if you use abbreviations on any line that goes over 80 characters, you will

NOT be able to edit that line when LISTed. Instead, what you'll have to do is (1)

retype the entire line including all abbreviations, or (2) break the single line of

code into two lines, each with its own line number, etc.

A complete list of keywords, abbreviations, and their appearance on the screen

is presented in Table 2–1. They are followed by an alphabetical description of

all the statements, commands, and functions available on your Commodore 64.

This chapter also explains the BASIC functions built into the BASIC Language

Interpreter. Built-in functions can be used in direct mode statements or in any

program, without having to define the function further. This is NOT the case with

user-defined functions. The results of built-in BASIC functions can be used as

immediate output or they can be assigned to a variable name of an appropriate

type. There are two types of BASIC functions:

1. NUMERIC

2. STRING

Arguments of built-in functions are always enclosed in parentheses (). The

parentheses always come directly after the function keyword and NO SPACES

between the last letter of the keyword and the left parenthesis (.

BASIC LANGUAGE VOCABULARY 31

The type of argument needed is generally decided by the data type in the
result. Functions which return a string value as their result are identified by having
a dollar sign ($) as the last character of the keyword. In some cases string
functions contain one or more numeric argument.

Numeric functions will convert between integer and floating-point format as
needed. In the descriptions that follow, the data type of the value returned is
shown with each function name. The types of arguments are also given with the
statement format.

TABLE 2–1. COMMODORE 64 BASIC KEYWORDS
BASIC Keywords, Abbreviations, and Function Types

COMMAND ABBREVIATION SCREEN FUNCTION TYPE

ABS A SHIFT B A  NUMERIC

AND A SHIFT N A 

ASC A SHIFT S A  NUMERIC

ATN A SHIFT T A  NUMERIC

CHR$ C SHIFT H C  STRING

CLOSE CL SHIFT O CL 

CLR C SHIFT L C 

CMD C SHIFT M C 

CONT C SHIFT O C 

COS NONE COS NUMERIC

DATA D SHIFT A D 

DEF D SHIFT E D 

DIM D SHIFT I D 

32 BASIC LANGUAGE VOCABULARY

COMMAND ABBREVIATION SCREEN FUNCTION TYPE

END E SHIFT N E 

EXP E SHIFT X E  NUMERIC

FN NONE FN

FOR F SHIFT O F 

FRE F SHIFT R F  NUMERIC

GET G SHIFT E G 

GET# NONE GET#

GOSUB GO SHIFT S GO 

GOTO G SHIFT O G 

IF NONE IF

INPUT NONE INPUT

INPUT# I SHIFT N I 

INT NONE INT NUMERIC

LEFT$ LE SHIFT F LE  STRING

LEN NONE LEN NUMERIC

LET L SHIFT E L 

LIST L SHIFT I L 

LOAD L SHIFT O L 

LOG NONE LOG NUMERIC

BASIC LANGUAGE VOCABULARY 33

COMMAND ABBREVIATION SCREEN FUNCTION TYPE

MID$ M SHIFT I M  STRING

NEW NONE NEW

NEXT N SHIFT E N 

NOT N SHIFT O N 

ON NONE ON

OPEN O SHIFT P O 

OR NONE OR

PEEK P SHIFT E P  NUMERIC

POKE P SHIFT O P 

POS NONE POS NUMERIC

PRINT ? ?

PRINT# P SHIFT R P 

READ R SHIFT E R 

REM NONE REM

RESTORE RE SHIFT S RE 

RETURN RE SHIFT T RE 

RIGHT$ R SHIFT I R  STRING

RND R SHIFT N R  NUMERIC

RUN R SHIFT U R 

34 BASIC LANGUAGE VOCABULARY

COMMAND ABBREVIATION SCREEN FUNCTION TYPE

SAVE S SHIFT A S 

SGN S SHIFT G S  NUMERIC

SIN S SHIFT I S  NUMERIC

SPC(S SHIFT P S  SPECIAL

SQR S SHIFT Q S  NUMERIC

STATUS ST ST NUMERIC

STEP ST SHIFT E ST 

STOP S SHIFT T S 

STR$ ST SHIFT R ST  STRING

SYS S SHIFT Y S 

TAB(T SHIFT A T  SPECIAL

TAN NONE TAN NUMERIC

THEN T SHIFT H T 

TIME TI TI NUMERIC

TIME$ TI$ TI$ STRING

TO NONE TO

USR U SHIFT S U  NUMERIC

VAL V SHIFT A V  NUMERIC

VERIFY V SHIFT E V 

WAIT W SHIFT A W 

BASIC LANGUAGE VOCABULARY 35

DESCRIPTION OF BASIC KEYWORDS

ABS

TYPE: Function–Numeric
FORMAT: ABS (<expression>)

Action: Returns the absolute value of the number, which is its value without any

signs. The absolute value of a negative number is that number multiplied by –1.

EXAMPLES of ABS Function:

10 X = ABS (Y)

10 PRINT ABS (X * J)

10 IF X = ABS (X) THEN PRINT "POSITIVE"

AND

TYPE: Operator
FORMAT: <expression> AND <expression>

Action: AND is used in Boolean operations to test bits. It is also used in operations

to check the truth of both operands.

In Boolean algebra, the result of an AND operation is 1 only if both numbers

being ANDed are 1. The result is 0 if either or both is 0 (false).

EXAMPLES of 1-Bit AND Operation:

0 1 0 1

AND 0 AND 0 AND 1 AND 1

0 0 0 1

The Commodore 64 performs the AND operation on numbers in the range from

–32768 to +32767. Any fractional values are not used, and numbers beyond

the range will cause an ?ILLEGAL QUANTITY error message. When converted

36 BASIC LANGUAGE VOCABULARY

to binary format, the range allowed yields 16 bits for each number.

Corresponding bits are ANDed together, forming a 16-bit result in the same

range.

EXAMPLES of 16–Bit AND Operation:

 17

 AND 194

 0000000000010001

 AND 0000000011000010

 (BINARY) 0000000000000000

 (DECIMAL) 0

 32007

 AND 28761

 0111110100000111

 AND 0111000001011001

 (BINARY) 0111000000000001

 (DECIMAL) 28673

 –241

 AND 15359

 1111111100001111

 AND 0011101111111111

 (BINARY) 0011101100001111

 (DECIMAL) 15119

BASIC LANGUAGE VOCABULARY 37

When evaluating a number for truth or falsehood, the computer assumes the

number is true as long as its value isn't 0. When evaluating a comparison, it

assigns a value of –1 if the result is true, while false has a value of 0. In binary

format, –1 is all 1's and 0 is all 0's. Therefore, when ANDing true/false

evaluations, the result will be true if any bits in the result are true.

EXAMPLES of Using AND with True/False Evaluations:

50 IF X=7 AND W=3 THEN GOTO 10: REM ONLY TRUE IF BOTH

X=7 AND W=3 ARE TRUE

60 IF A AND Q=7 THEN GOTO 10: REM TRUE IF A IS NON-

ZERO AND Q=7 IS TRUE

ASC

TYPE: Function–Numeric
FORMAT: ASC (<string>)

Action: ASC will return a number from 0 to 255 which corresponds to the

Commodore ASCII value of the first character in the string. The table of

Commodore ASCII values is shown in Appendix C.

EXAMPLES OF ASC Function:

10 PRINT ASC("Z")

20 X = ASC("ZEBRA")

30 J = ASC(J$)

If there are no characters in the string, an ?ILLEGAL QUANTITY error results. In

the third example above, if J$="", the ASC function will not work. The GET and

GET# statement read a CHR$(0) as a null string. To eliminate this problem, you

should add a CHR$(0) to the end of the string as shown below.

EXAMPLE of ASC Function Avoiding ILLEGAL QUANTITY ERROR:

30 J = ASC(J$ +CHR$(0))

38 BASIC LANGUAGE VOCABULARY

ATN

TYPE: Function–Numeric

FORMAT: ATN (<number>)

Action: This mathematical function returns the arctangent of the number. The

result is the angle (in radians) whose tangent is the number given. The result is

always in the range –ππππ/2 to +ππππ/2.

EXAMPLES of ATN Function:

10 PRINT ATN (0)

20 X=ATN (J) * 180 / ππππ: REM CONVERT TO DEGREES

CHR$

TYPE: Function–String

FORMAT: CHR$ (<number>)

Action: This function converts a Commodore ASCII code to its character

equivalent. See Appendix C for a list of characters and their codes. The number

must have a value between 0 and 255, or an ?ILLEGAL QUANTITY error

message results.

EXAMPLES of CHR$ Function:

10 PRINT CHR$(65): REM 65 = UPPER CASE A

20 A$=CHR$(13): REM 13 = RETURN KEY

50 A=ASC(A$) : A$=CHR$(A): REM CONVERTS TO C64 ASCII CODE

AND BACK

BASIC LANGUAGE VOCABULARY 39

CLOSE

TYPE: I/O Statement

FORMAT: CLOSE <file-number>

Action: This statement shuts off any data file or channel to a device. The file

number is the same as when the file or device was OPENed (see OPEN statement

and the section on INPUT/OUTPUT programming).

When working with storage devices like cassette tape and disks, the CLOSE

operation stores any incomplete buffers to the device. When this is not

performed, the file will be incomplete on the tape and unreadable on the disk.

The CLOSE operation isn't as necessary with other devices, but it does free up

memory for other files. See your external device manual for more details.

EXAMPLES of CLOSE Statement:

10 CLOSE 1

20 CLOSE X

30 CLOSE 9 * (1 + J)

CLR

TYPE: Statement

FORMAT: CLR

Action: This statement makes available RAM memory that had been used but is

no longer needed. Any BASIC program in memory is untouched, but all variables,

arrays, GOSUB addresses, FOR… NEXT loops, user-defined functions, and files

are erased from memory, and their space is made available to new variables,

etc.

40 BASIC LANGUAGE VOCABULARY

In the case of files to the disk and cassette tape, they are not properly CLOSEd

by the CLR statement. The information about the files is lost to the computer,

including any incomplete buffers. The disk drive will still think the file is OPEN.

See the CLOSE statement for more information on this.

EXAMPLE of CLR Statement:

10 X = 25

20 CLR

30 PRINT X

RUN

0

READY

CMD

TYPE: I/O Statement

FORMAT: CMD <file-number> [, string]

Action: This statement switches the primary output device from the TV screen to

the file specified. This file could be on disk, tape, printer, or an I/O device like

the modem. The file number must be specified in a prior OPEN statement. The

string, when specified, is sent to the file. This is handy for titling printouts, etc.

When this command is in effect, any PRINT statements and LIST commands will

not display on the screen, but will send the text in the same format to the file.

To re-direct the output back to the screen, the PRINT# command should send a

blank line to the CMD device before CLOSEing, so it will stop expecting data

(called "un-listening" the device).

BASIC LANGUAGE VOCABULARY 41

Any system error (like ?SYNTAX ERROR) will cause output to return to the screen.

Devices aren't un-listened by this, so you should send a blank line after an error

condition. (See your printer or disk manual for more details.)

EXAMPLES of CMD Statement:

OPEN 4,4: CMD 4, "TITLE": LIST: REM LISTS PROGRAM ON
PRINTER
PRINT# 4: CLOSE 4: REM UN-LISTENS AND CLOSES PRINTER

10 OPEN 1, 1, 1, "TEST": REM CREATE SEQ FILE
20 CMD 1: REM OUTPUT TO TAPE FILE, NOT SCREEN
30 FOR L = 1 TO 100
40 PRINT L: REM PUTS NUMBER IN TAPE BUFFER
50 NEXT
60 PRINT# 1: REM UNLISTEN
70 CLOSE 1: REM WRITE UNFINISHED BUFFER, PROPERLY
FINISH

CONT

TYPE: Command
FORMAT: CONT

Action: This command re-starts the execution of a program which was halted by

a STOP or END statement or the RUN/STOP key being pressed. The program

will re-start at the exact place from which it left off.

While the program is stopped, the user can inspect or change any variables or

look at the program. When de-bugging or examining a program, STOP

statements can be placed at strategic locations to allow examination of variables

and to check the flow of the program.

The error message ?CAN'T CONTINUE will result from editing the program

(even just hitting RETURN with the cursor on an unchanged line), or if the program

halted due to an error, or if you caused an error before typing CONT to re-start

the program.

EXAMPLE of CONT Command:

10 PI=0: C=1
20 PI=PI+4/C-4/(C+2)
30 PRINT PI
40 C=C+4: GOTO 20

42 BASIC LANGUAGE VOCABULARY

This program calculates the value of PI. RUN this program, and after a short

while hit the RUN/STOP key. You will see the display:

BREAK IN 20

NOTE: Might be different number.

Type the command PRINT C to see how far the Commodore 64 has gotten. Then

use CONT to resume from where the Commodore 64 left off.

COS

TYPE: Function

FORMAT: COS (<number>)

Action: This mathematical function calculates the cosine of the number, where the

number is an angle in radians.

EXAMPLES of COS Function:

10 PRINT COS (0)

20 X=COS (Y * ππππ/ 180): REM CONVERT DEGREES TO RADIANS

DATA

TYPE: Statement

FORMAT: DATA <list of constants>

Action: DATA statements store information within a program. The program uses

the information by means of the READ statement, which pulls successive constants

from the DATA statements.

The DATA statements don't have to be executed by the program, they only have

to be present. Therefore, they are usually placed at the end of the program.

All data statements in a program are treated as a continuous list. Data is READ

from left to right, from the lowest numbered line to the highest. If the READ

statement encounters data that doesn't fit the type requested (if it needs a

number and finds a string) an error message occurs.

BASIC LANGUAGE VOCABULARY 43

Any characters can be included as data, but if certain ones are used the data

item must be enclosed by quote marks (" "). These include punctuation like comma

(,), colon (:), blank spaces, and shifted letters, graphics, and cursor control

characters.

EXAMPLES of DATA Statement:

10 DATA 1, 10, 5, 8

20 DATA JOHN, PAUL, GEORGE, RINGO

30 DATA "DEAR MARY, HOW ARE YOU, LOVE, BILL"

40 DATA -1.7E-9, 3.33

DEF FN

TYPE: Statement

FORMAT: DEF FN <name> (<variable>) = <expression>

Action: This sets up a user-defined function that can be used later in the program.

The function can consist of any mathematical formula.

User-defined functions save space in programs where a long formula is used in

several places. The formula need only be specified once, in the definition

statement, and then it is abbreviated as a function name. It must be executed

once, but any subsequent executions are ignored.

The function name is the letters FN followed by any variable name.

This can be 1 or 2 characters, the first being a letter and the second a letter or

digit.

EXAMPLES of DEF FN Statement:

10 DEF FN A(X) = X + 7

20 DEF FN AA (X) = Y*Z

30 DEF FN A9(Q) = INT(RND(1)*Q+1)

The function is called later in the program by using the function name with a

variable in parentheses. This function name is used like any other variable, and

its value is automatically calculated.

44 BASIC LANGUAGE VOCABULARY

EXAMPLES of FN Use:

40 PRINT FN A (9)

50 R = FNAA (9)

60 G = G + FN A9 (10)

In line 50 above, the number 9 inside the parentheses does not affect the

outcome of the function, because the function definition in line 20 doesn't use the

variable in the parentheses. The result is Y times Z, regardless of the value of X.

In the other two functions, the value in parentheses does affect the result.

DIM

TYPE: Statement

FORMAT: DIM <variable> (<subscripts>) [,

 <variable> (<subscripts>)…]

Action: This statement defines an array or matrix of variables. This allows you

to use the variable name with a subscript. The subscript points to the element

being used. The lowest element number in an array is zero, and the highest is the

number given in the DIM statement, which has a maximum of 32767.

The DIM statement must be executed once and only once for each array. A

?REDIM'D ARRAY error occurs if this line is re-executed. Therefore, most

programs perform all DIM operations at the very beginning.

There may be any number of dimensions and 255 subscripts in an array, limited

only by the amount of RAM memory which is available to hold the variables. The

array may be made up of normal numeric variables, as shown above, or of

strings or integer numbers. If the variables are other than normal numeric, use

the $ or % signs after the variable name to indicate string or integer variables.

BASIC LANGUAGE VOCABULARY 45

If an array referenced in a program was never DIMensioned, it is automatically

dimensioned to 11 elements in each dimension used in the first reference.

EXAMPLES of DIM Statement:

10 DIM A (100)

20 DIM Z (5, 7), Y(3,4,5)

30 DIM Y7% (Q)

40 DIM PH$ (1000)

50 F(4)=9: REM AUTOMATICALLY PERFORMS DIM F (10)

EXAMPLE of FOOTBALL SCORE-KEEPING Using DIM:

10 DIM S(1,5), T$(1)

20 INPUT "TEAM NAMES"; T$(0), T$(1)

30 FOR Q = 1 TO 5: FOR T= 0 TO 1

40 PRINT T$(T), "SCORE IN QUARTER" Q

50 INPUT S(T,Q): S(T,0)= S(T,0) + S(T,Q)

60 NEXTT,Q

70 PRINT CHR$(147) "SCOREBOARD"

80 PRINT "QUARTER"

90 FOR Q = l TO 5

100 PRINT TAB(Q*2 +9) Q;

110 NEXT: PRINT TAB(15) "TOTAL"

120 FOR T = 0 TO 1: PRINTT$(T);

130 FOR Q = 1 TO 5

140 PRINT TAB(Q*2 +9) S(T,Q);

150 NEXT: PRINT TAB(15) S(T,0)

160 NEXT

CALCULATING MEMORY USED BY DIM:

5 bytes for the array name

2 bytes for each dimension

2 bytes/element for integer variables

5 bytes/element for normal numeric variables

3 bytes/element for string variables

1 byte for each character in each string element

46 BASIC LANGUAGE VOCABULARY

END

TYPE: Statement

FORMAT: END

Action: This finishes a program's execution and displays the READY message,

returning control to the person operating the computer. There may be any

number of END statements within a program. While it is not necessary to include

any END statements at all, it is recommended that a program does conclude with

one, rather than just running out of lines.

The END statement is similar to the STOP statement. The only difference is that

STOP causes the computer to display the message BREAK IN XX and END just

displays READY. Both statements allow the computer to resume execution by

typing the CONT command.

EXAMPLES of END Statement:

10 PRINT "DO YOU REALLY WANT TO RUN THIS PROGRAM"

20 INPUT A$

30 IF A$ = "NO" THEN END

40 REM REST OF PROGRAM...

999 END

EXP

TYPE: Function–Numeric

FORMAT: EXP (<number>)

Action: This mathematical function calculates the constant e (2.71828183) raised

to the power of the number given. A value greater than 88.0296919 causes an

?OVERFlOW error to occur.

EXAMPLES of EXP Function:

10 PRINT EXP (1)

20 X=Y * EXP (Z * Q)

BASIC LANGUAGE VOCABULARY 47

FN

TYPE: Function–Numeric

FORMAT: FN <name> (<number>)

Action: This function references the previously DEFined formula specified by

name. The number is substituted into its place (if any) and the formula is

calculated. The result will be a numeric value.

This function can be used in direct mode, as long as the statement DEFining it has

been executed.

If an FN is executed before the DEF statement which defines it, an ?UNDEF'D

FUNCTION error occurs.

EXAMPLES of FN (User Defined) Function:

PRINT FN A (Q)

1100 J = FN J (7) + FN J (9)

9990 IF FN B7 (I+1) = 6 THEN END

FOR… TO… [STEP…]

TYPE: Statement

FORMAT: FOR <variable> = <start> TO <limit> [STEP <increment>]

Action: This is a special BASIC statement that lets you easily use a variable as a

counter. You must specify certain parameters: the floating-point variable name,

its starting value, the limit of the count, and how much to add during each cycle.

Here is a simple BASIC program that counts from 1 to 10, PRINTing each number

and ENDing when complete, and using no FOR statements:

100 L = 1

110 PRINT L

120 L = L + 1

130 IF L <= 10 THEN 110

140 END

48 BASIC LANGUAGE VOCABULARY

Using the FOR statement, here is the same program:

100 FOR L = 1 TO 10

110 PRINT L

120 NEXT L

130 END

As you can see, the program is shorter and easier to understand using the FOR

statement.

When the FOR statement is executed, several operations take place. The <start>

value is placed in the <variable> being used in the counter. In the example

above, a 1 is placed in L.

When the NEXT statement is reached, the <increment> value is added to the

<variable>. If a STEP was not included, the <increment> is set to + 1. The first

time the program above hits line 120, 1 is added to L, so the new value of L is

2.

Now the value in the <variable> is compared to the <limit>. If the <limit> has

not been reached yet, the program GOes TO the line after the original FOR

statement. In this case, the value of 2 in L is less than the limit of 10, so it GOes

TO line 110.

Eventually, the value of <limit> is exceeded by the <variable>. At that time,

the loop is concluded and the program continues with the line following the NEXT

statement. In our example, the value of L reaches 11, which exceeds the limit of

10, and the program goes on with line 130.

When the value of <increment> is positive, the <variable> must exceed the

<limit>, and when it is negative it must become less than the <limit>.

NOTE: A loop always executes at least once.

EXAMPLES of FOR… TO… STEP… Statement:

100 FOR L = 100 TO 0 STEP -1

100 FOR L = PI TO 6* ππππ STEP .01

100 FOR AA = 3 TO 3

BASIC LANGUAGE VOCABULARY 49

FRE

TYPE: Function

FORMAT: FRE (<variable>)

Action: This function tells you how much RAM is available for your program and

its variables. If a program tries to use more space than is available, the ?OUT

OF MEMORY error results.

The number in parentheses can have any value, and it is not used in the

calculation.

NOTE: If the result of FRE is negative, add 65536 to the FRE number to get the number of bytes
available in memory.

EXAMPLES of FRE Function:

PRINT FRE (0)
10 X = (FRE(K)-1000) / 7
950 IF FRE (0) < 100 THEN PRINT "NOT ENOUGH ROOM"

NOTE: The following always tells you the current available RAM:

PRINT FRE(0)–(FRE(0)<0) * 65536

GET

TYPE: Statement

FORMAT: GET <variable list>

Action: This statement reads each key typed by the user. As the user is typing,

the characters are stored in the Commodore 64's keyboard buffer. Up to 10

characters are stored here, and any keys struck after the 10th are lost. Reading

one of the characters with the GET statement makes room for another character.

If the GET statement specifies numeric data, and the user types a key other than

a number, the message ?SYNTAX ERROR appears. To be safe, read the keys

as strings and convert them to numbers later.

50 BASIC LANGUAGE VOCABULARY

The GET statement can be used to avoid some of the limitations of the INPUT

statement. For more on this, see the section on Using the GET Statement in the

Programming Techniques section.

EXAMPLES of GET Statement:

10 GET A$: IF A$ = "" THEN 10: REM LOOPS IN 10 UNTIL

 ANY KEY HIT

20 GET A$, B$, C$, D$, E$: REM READS 5 KEYS

30 GET A, A$

GET#

TYPE: I/O Statement

FORMAT: GET# <file-number>, <variable list>

Action: This statement reads characters one-at-a-time from the device or file

specified. It works the same as the GET statement, except that the data comes

from a different place than the keyboard. If no character is received, the

variable is set to an empty string (equal to "") or to 0 for numeric variables.

Characters used to separate data in files, like the comma (,) or RETURN key

code (ASC code of 13), are received like any other character.

When used with device #3 (TV screen), this statement will read characters one

by one from the screen. Each use of GET# moves the cursor 1 position to the

right. The character at the end of the logical line is changed to a CHR$(13),

the RETURN key code.

EXAMPLES of GET# Statement:

5 GET#1, A$

10 OPEN 1, 3: GET# 1, Z7$

20 GET# 1, A, B, C$, D$

BASIC LANGUAGE VOCABULARY 51

GOSUB

TYPE: Statement

FORMAT: GOSUB <line-number>

Action: This is a specialized form of the GOTO statement, with one important

difference: GOSUB remembers where it came from. When the RETURN statement

(different from the RETURN key on the keyboard) is reached in the program,

the program jumps back to the statement immediately following the original

GOSUB statement.

The major use of a subroutine (GOSUB really means GO to a SUB-routine) is

when a small section of program is used by different sections of the program.

By using subroutines rather than repeating the same lines over and over at

different places in the program, you can save lots of program space. In this way,

GOSUB is similar to DEF FN. DEF FN lets you save space when using a formula,

while GOSUB saves space when using a several-line routine. Here is an inefficient

program that doesn't use GOSUB:

100 PRINT "THIS PROGRAM PRINTS"

110 FOR L = 1 TO 500 : NEXT

120 PRINT "SLOWLY ON THE SCREEN"

130 FOR L = 1 TO 500 : NEXT

140 PRINT "USING A SIMPLE LOOP"

150 FOR L = 1 TO 500 : NEXT

160 PRINT "AS A TIME DELAY:"

170 FOR L = 1 TO 500 : NEXT

Here is the same program using GOSUB:

100 PRINT "THIS PROGRAM PRINTS"

110 GOSUB 200

120 PRINT "SLOWLY ON THE SCREEN"

130 GOSUB 200

140 PRINT "USING A SIMPLE LOOP"

150 GOSUB 200

160 PRINT "AS A TIME DELAY."

170 GOSUB 200

180 END

200 FOR L = 1 TO 500: NEXT

210 RETURN

52 BASIC LANGUAGE VOCABULARY

Each time the program executes a GOSUB, the line number and position in the

program line are saved in a special area called the "stack," which takes up 256

bytes of your memory. This limits the amount of data that can be stored in the

stack. Therefore, the number of subroutine return addresses that can be stored

is limited, and care should be taken to make sure every GOSUB hits the

corresponding RETURN, or else you'll run out of memory even though you have

plenty of bytes free.

GOTO

TYPE: Statement

FORMAT: GOTO <line-number> or GO TO <line-number>

Action: This statement allows the BASIC program to execute lines out of

numerical order. The word GOTO followed by a number will make the program

jump to the line with that number. GOTO NOT followed by a number equals

GOTO 0. It must have the line number after the word GOTO.

It is possible to create loops with GOTO that will never end. The simplest

example of this is a line that GOes TO itself, like 10 GOTO 10.

These loops can be stopped using the RUN/STOP key on the keyboard.

EXAMPLES of GOTO Statement:

GOTO 100

10 GO TO 50

20 GOTO 999

IF… THEN…

TYPE: Statement

FORMAT: IF <expression> THEN <line-number>

 IF <expression> GOTO <line-number>

 IF <expression> THEN <statements>

Action: This is the statement that gives BASIC most of its "intelligence," the ability

to evaluate conditions and take different actions depending on the outcome.

BASIC LANGUAGE VOCABULARY 53

The word IF is followed by an expression, which can include variables, strings,

numbers, comparisons, and logical operators. The word THEN appears on the

same line and is followed by either a line number or one or more BASIC

statements. When the expression is false, everything after the word THEN on

that line is ignored, and execution continues with the next line number in the

program. A true result makes the program either branch to the line number after

the word THEN or execute whatever other BASIC statements are found on that

line.

EXAMPLE of IF… GOTO… Statement:

100 INPUT "TYPE A NUMBER"; N

110 IF N <= 0 GOTO 200

120 PRINT "SQUARE ROOT=" SQR(N)

130 GOTO 100

200 PRINT "NUMBER MUST BE >0"

210 GOTO 100

This program prints out the square root of any positive number. The IF statement

here is used to validate the result of the INPUT. When the result of N <= 0 is

true, the program skips to line 200, and when the result is false the next line to

be executed is 120. Note that THEN GOTO is not needed with IF. . .THEN, as in

line 110 where GOTO 200 actually means THEN GOTO 200.

EXAMPLE OF IF… THEN… Statement:

100 FOR L = 1 TO 100

110 IF RND(1)< .5 THEN X = X + 1 : GOTO 130

120 Y = Y + 1

130 NEXT L

140 PRINT "HEADS= " X

150 PRINT "TAILS= " Y

The IF in line 110 tests a random number to see if it is less than .5.

When the result is true, the whole series of statements following the word THEN

are executed: first X is incremented by 1, then the program skips to line 130.

When the result is false, the program drops to the next statement, line 120.

54 BASIC LANGUAGE VOCABULARY

INPUT

TYPE: Statement

FORMAT: INPUT ["<prompt>";] <variable list>

Action: This is a statement that lets the person RUNning the program "feed"

information into the computer. When executed, this statement PRINTs a question

mark (?) on the screen, and positions the cursor 1 space to the right of the question

mark. Now the computer waits, cursor blinking, for the operator to type in the

answer and press the RETURN key.

The word INPUT may be followed by any text contained in quote marks (" ").

This text is PRINTed on the screen, followed by the question mark.

After the text comes a semicolon (;) and the name of one or more variables

separated by commas. This variable is where the computer stores the information

that the operator types. The variable can be any legal variable name, and you

can have several different variable names, each for a different input.

EXAMPLES of INPUT Statement:

100 INPUT A

110 INPUT B, C, D

120 INPUT "PROMPT"; E

When this program RUNs, the question mark appears to prompt the operator

that the Commodore64 is expecting an input for line 100. Any number typed in

goes into A, for later use in the program. If the answer typed was not a number,

the ?REDO FROM START message appears, which means that a string was

received when a number was expected. If the operator just hits RETURN without

typing anything, the variable's value doesn't change.

Now the next question mark, for line 110, appears. If we type only one number

and hit RETURN , the Commodore 64 will now display 2 question marks (??),

which means that more input is required. You can just type as many inputs as you

BASIC LANGUAGE VOCABULARY 55

need separated by commas, which prevents the double question mark from

appearing. If you type more data than the INPUT statement requested, the

?EXTRA IGNORED message appears, which means that the extra items you

typed were not put into any variables.

Line 120 displays the word PROMPT before the question mark appears. The

semicolon is required between the prompt and any list of variables.

The INPUT statement can never be used outside a program. The Commodore 64

needs space for a buffer for the INPUT variables, the same space that is used

for commands.

INPUT#

TYPE: I/O Statement

FORMAT: INPUT# <file-number> , <variable list>

Action: This is usually the fastest and easiest way to retrieve data stored in a

file on disk or tape. The data is in the form of whole variables of up to 80

characters in length, as opposed to the one-at-a-time method of GET#. First, the

file must have been OPENed, then INPUT# can fill the variables.

The INPUT# command assumes a variable is finished when it reads a RETURN

code (CHR$ (13)), a comma (,), semicolon (;), or colon (:). Quote marks (") can be

used to enclose these characters when writing if they are needed (see PRINT#

statement).

If the variable type used is numeric, and non-numeric characters are received, a

BAD DATA error results. INPUT# can read strings up to 80 characters long,

beyond which a ?STRING TOO LONG error results.

When used with device #3 (the screen), this statement will read an entire logical

line and move the cursor down to the next line.

EXAMPLES of INPUT# Statement:

10 INPUT# 1, A

20 INPUT# 2, A$, B$

56 BASIC LANGUAGE VOCABULARY

INT

TYPE: Integer Function

FORMAT: INT (<numeric>)

Action: Returns the integer value of the expression. If the expression is positive,

the fractional part is left off. If the expression is negative, any fraction causes

the next lower integer to be returned.

EXAMPLES of INT Function:

120 PRINT INT(99.4343),INT(-12.34)

RUN

 99 -13

LEFT$

TYPE: String Function

FORMAT: LEFT$ (<string>, <integer>)

Action: Returns a string comprised of the leftmost <integer> characters of the

<string>. The integer argument value must be in the range 0 to 255. If the

integer is greater than the length of the string, the entire string will be returned.

If an <integer> value of zero is used, then a null string (of zero length) is

returned.

EXAMPLES of LEFT$ Function:

10 A$ = "COMMODORE COMPUTERS"

20 B$ = LEFT$(A$, 9): PRINTB$

RUN

COMMODORE

BASIC LANGUAGE VOCABULARY 57

LEN

TYPE: Integer Function

Format: LEN (<string>)

Action: Returns the number of characters in the string expression. Non-printed

characters and blanks are counted.

EXAMPLE of LEN Function:

CC$ = "COMMODORE COMPUTER": PRINT LEN(CC$)

 18

LET

TYPE: Statement

FORMAT: [LET] <variable> = <expression>

Action: The LET statement can be used to assign a value to a variable. But the

word LET is optional and therefore most advanced programmers leave LET out

because it's always understood and wastes valuable memory. The equal sign (=)

alone is sufficient when assigning the value of an expression to a variable name.

EXAMPLES of LET Statement:

10 LET D = 12 (This is the same as D=12)
20 LET E$ = "ABC"

30 F$ = "WORDS"

40 SUM$ = E$ + F$ (SUM$ would equal ABCWORDS)

58 BASIC LANGUAGE VOCABULARY

LIST

TYPE: Command

FORMAT: LIST [[<first-line>] – [<last-line>]]

Action: The LIST command allows you to look at lines of the BASIC program

currently in the memory of your Commodore 64. This lets you use your computer's

powerful screen editor to edit programs which you've LISTed both quickly and

easily.

The LIST system command displays all or part of the program that is currently in

memory on the default output device. The LIST will normally be directed to the

screen and the CMD statement can be used to switch output to an external device

such as a printer or a disk. The LIST command can appear in a program, but

BASIC always returns to the system READY message after a LIST is executed.

When you bring the program LIST onto the screen, the "scrolling" of the display

from the bottom of the screen to the top can be slowed by holding down the

ConTRol CTRL key. LIST is aborted by hitting the RUN/STOP key.

If no line numbers are given the entire program is listed. If only the first line

number is specified, and followed by a hyphen (–), that line and all higher-

numbered lines are listed. If only the last line number is specified, and it is

preceded by a hyphen, then all lines from the beginning of the program through

that line are listed. If both numbers are specified, the entire range, including the

line numbers LISTed, are displayed.

EXAMPLES of LIST Command:

LIST (lists the program currently in memory.)

LIST 500 (lists line 500 only.)

LIST 150- (lists all lines from150 to the end.)

LIST -1000 (lists all lines from the lowest through 1000.)

LIST 150-1000 (lists lines 150 through 1000, inclusive.)

10 PRINT "THIS IS LINE 10"

20 LIST (LIST used in Program Mode)
30 PRINT "THIS IS LINE 30"

BASIC LANGUAGE VOCABULARY 59

LOAD

TYPE: Command

FORMAT: LOAD ["<file-name>"] [,<device>] [,<address>]

Action: The LOAD statement reads the contents of a program file from tape or

disk into memory. That way you can use the information LOADed or change the

information in some way. The device number is optional, but when it is left out

the computer will automatically default to 1, the cassette unit. The disk unit is

normally device number 8. The LOAD closes all open files and, if it is used in

direct mode, it performs a CLR (clear) before reading the program. If LOAD is

executed from within a program, the program is RUN. This means that you can

use LOAD to "chain" several programs together. None of the variables are

cleared during a chain operation.

If you are using file-name pattern matching, the first file which matches the

pattern is loaded. The asterisk in quotes by itself ("*") causes the first file-name

in the disk directory to be loaded. If the file-name used does not exist or if it is

not a program file, the BASIC error message ?FILE NOT FOUND occurs.

When LOADing programs from tape, the <file-name> can be left out, and the

next program file on the tape will be read. The Commodore 64 will blank the

screen to the border color after the PLAY key is pressed. When the program is

found, the screen clears to the background color and the "FOUND" message is

displayed. When the  key, CTRL key, ← key, or SPACE BAR is pressed, the

file will be loaded. Programs will LOAD starting at memory location 2048 unless

a secondary <address> of 1 is used. If you use the secondary address of 1 this

will cause the program to LOAD to the memory location from which it was saved.

60 BASIC LANGUAGE VOCABULARY

EXAMPLES of LOAD Command:

LOAD (Reads the next program on tape)

LOAD A$ (Uses the name A$ to search)

LOAD "*",8 (LOADs first program from disk)

LOAD "",1,1 (Looks for the first program on tape,

and LOADs it into the same part of

memory that it came from)

LOAD "STAR TREK"

PRESS PLAY ON TAPE

FOUND STAR TREK

LOADING

READY.

(LOAD a files from tape)

LOAD "FUN",8

SEARCHING FOR FUN

LOADING

READY.

(LOAD a file from disk)

LOAD "GAME ONE",8,1

SEARCHING FOR GAME ONE

LOADING

READY.

(LOAD a file to the specific memory

location from which the program was

saved on the disk)

BASIC LANGUAGE VOCABULARY 61

LOG

TYPE: Floating-Point Function
FORMAT: LOG (<numeric>)

Action: Returns the natural logarithm (log to the base of e) of the argument. If

the value of the argument is zero or negative the BASIC error message ?ILLEGAL

QUANTITY will occur.

EXAMPLES of LOG Function:

25 PRINT LOG(45/7)
RUN

1.86075234

10 NUM=LOG(ARG)/LOG(10) (Calculates the LOG of ARG to the

base 10)

MID$

TYPE: String Function
FORMAT: MID$ (<string>, <numeric-1> [,<numeric-2>])

Action: The MID$ function returns a sub-string which is taken from within a larger

<string> argument. The starting position of the sub-string is defined by the

<numeric-1> argument and the length of the sub-string by the <numeric-2>

argument. Both of the numeric arguments can have values ranging from 0 to 255.

If the <numeric-1> value is greater than the length of the <string>, or if the

<numeric-2> value is zero, then MID$ gives a null string value. If the <numeric-

2> argument is left out, then the computer will assume that a length of the rest

of the string is to be used. And if the source string has fewer characters than

<numeric-2>, from the starting position to the end of the string argument, then

the whole rest of the string is used.

EXAMPLE of MID$ Function:

10 A$="GOOD"
20 B$="MORNING EVENING AFTERNOON"
30 PRINTA$ + MID$(B$, 8, 8)
RUN

GOOD EVENING

62 BASIC LANGUAGE VOCABULARY

NEW

TYPE: Command

FORMAT: NEW

Action: The NEW command is used to delete the program currently in memory

and clear all variables. Before typing in a new program, NEW should be used

in direct mode to clear memory. NEW can also be used in a program, but you

should be aware of the fact that it will erase everything that has gone before

and is still in the computer's memory. This can be particularly troublesome when

you're trying to debug your program.

BE CAREFUL: Not clearing out an old program before typing a new one can result in a confusing

mix of the two programs.

EXAMPLES of NEW Command:

NEW (Clears the program and all variables)

10 NEW (Performs a NEW operation and STOPs the program.)

NEXT

TYPE: Statement

FORMAT: NEXT [<counter>] [,<counter>]…

Action: The NEXT statement is used with FOR to establish the end of a FOR…

NEXT loop. The NEXT need not be physically the last statement in the loop, but

it is always the last statement executed in a loop. The <counter> is the loop

index's variable name used with FOR to start the loop. A single NEXT can stop

several nested loops when it is followed by each FOR's <counter> variable

name(s). To do this each name must appear in the order of inner-most nested

loop first, to outer-most nested loop last. When using a single NEXT to increment

and stop several variable names, each variable name must be separated by

commas. Loops can be nested to 9 levels. If the counter variable(s) are omitted,

the counter associated with the FOR of the current level (of the nested loops) is

incremented.

BASIC LANGUAGE VOCABULARY 63

When the NEXT is reached, the counter value is incremented by 1 or by an

optional STEP value. It is then tested against an end-value to see if it's time to

stop the loop. A loop will be stopped when a NEXT is found which has its counter

value greater than the end-value.

EXAMPLES of NEXT Statement:

10 FOR J=1 TO 5: FOR K=10 TO 20: FOR N=5 TO-5 STEP-1

20 NEXT N, K, J (Stopping Nested Loops)

10 FOR L = 1 TO 100

20 FOR M = 1 TO 10

30 NEXT M

400 NEXT L (Note how the loops do NOT cross each other)

10 FOR A = 1 TO 10

20 FOR B = 1 TO 20

30 NEXT

40 NEXT (Notice that no variable names are needed)

NOT

TYPE: Logical Operator

FORMAT: NOT <expression>

Action: The NOT logical operator "complements" the value of each bit in its

single operand, producing an integer "two's complement" result. In other words,

the NOT is really saying, "if it isn't. . . ". When working with a floating-point

number, the operands are converted to integers and any fractions are lost. The

NOT operator can also be used in a comparison to reverse the true/false value

which was the result of a relationship test and therefore it will reverse the

meaning of the comparison. In the first example below, if the "two's complement"

of "AA" is equal to "BB" and if "BB" is NOT equal to "CC" then the expression is

true.

64 BASIC LANGUAGE VOCABULARY

EXAMPLES of NOT Operator:

10 IF NOT AA = BB AND NOT (BB=CC) THEN…

NN%=NOT 96: PRINT NN%
-97

NOTE: To find the value of NOT use the expression X=(–(X+1)). (The two's complement of any
integer is the bit complement plus one.)

ON

TYPE: Statement
FORMAT: ON <variable> GOTO / GOSUB <Iine-number> [,<line-
 number>]. . .

Action: The ON statement is used to GOTO one of several given line numbers,
depending upon the value of a variable. The value of the variables can range
from zero through the number of lines given. If the value is a non-integer, the
fractional portion is left off. For example, if the variable value is 3, ON will
GOTO the third line number in the list.

If the value of the variable is negative, the BASIC error message ?ILLEGAL
QUANTITY occurs. If the number is zero, or greater than the number of items in
the list, the program just "ignores" the statement and continues with the statement
following the ON statement.

ON is really an underused variant of the IF… THEN… statement. Instead of using
a whole lot of IF statements each of which sends the program to 1 specific line,
1 ON statement can replace a list of IF statements. When you look at the first
example you should notice that the one ON statement replaces 4 IF… THEN…
statements.

EXAMPLES of ON Statement:

ON -(A=7) - 2*(A=3) - 3*(A<3) - 4*(A>7) GOTO 400,
900, 1000,100

ON X GOTO 100,130,180,220

ON X+3 GOSUB 9000, 20, 9000

100 ON NUM GOTO 150, 300, 320, 390

500 ON SUM / 2 + 1 GOSUB 50, 80, 20

BASIC LANGUAGE VOCABULARY 65

OPEN

TYPE: I/O Statement

FORMAT: OPEN <file-number>, [<device>] [,<address>] [,"<file-

 name> [,<type>] [,<mode>]"]

Action: This statement OPENs a channel for input and/or output to a peripheral

device. However, you may NOT need all those ports for every OPEN statement.

Some OPEN statements require only 2 codes:

1. LOGICAL FILE NUMBER

2. DEVICE NUMBER

The <file-number> is the logical file number, which relates the OPEN, CLOSE,

CMD, GET#, INPUT#, and PRINT# statements to each other and associates them

with the file-name and the piece of equipment being used. The logical file

number can range from 1 to 255 and you can assign it any number you want in

that range.

NOTE: File numbers over 128 were really designed for other uses so it's good practice to use

only numbers below 127 for file numbers.

Each peripheral device (printer, disk drive, cassette) in the system has its own

number which it answers to. The <device> number is used with OPEN to specify

on which device the data file exists. Peripherals like cassette decks, disk drives

or printers also answer to several secondary addresses. Think of these as codes

which tell each device what operation to perform. The device logical file number

is used with every GET#, INPUT#, and PRINT#.

If the <device> number is left out the computer will automatically assume that

you want your information to be sent to and received from the

Datasette™, which is device number 1. The file-name can also be left out, but

later on in your program, you can NOT call the file by name if you have not

already given it one. When you are storing files on cassette tape, the computer

will assume that the secondary <address> is zero (0) if you omit the secondary

address (a READ operation).

66 BASIC LANGUAGE VOCABULARY

A secondary address value of one (1) OPENs cassette tape files for writing. A

secondary address value of two (2) causes an end-of-tape marker to be written

when the file is later closed. The end-of-tape marker prevents accidentally

reading past the end of data which results in the BASIC error message ?DEVICE

NOT PRESENT.

For disk files, the secondary addresses 2 through 14 are available for data-

files, but other numbers have special meanings in DOS commands. You must use

a secondary address when using your disk drive(s). (See your disk drive manual

for DOS command details.)

The <file-name> is a string of 1 – 16 characters and is optional for cassette or

printer files. If the file <type> is left out the type of file will automatically default

to the Program file unless the <mode> is given. Sequential files are OPENed for

reading <mode>=R unless you specify that files should be OPENed for writing

<mode>=W. A file <type> can be used to OPEN an existing Relative file. Use

REL for <type> with Relative files. Relative and Sequential files are for disk

only.

If you try to access a file before it is OPENed the BASIC error message ?FILE

NOT OPEN will occur. If you try to OPEN a file for reading which does not exist

the BASIC error message ?FILE NOT FOUND will occur. If a file is OPENed to

disk for writing and the file-name already exists, the DOS error message FILE

EXISTS occurs. There is no check of this type available for tape files, so be sure

that the tape is properly positioned or you might accidentally write over some

data that had previously been SAVEd. If a file is OPENed that is already OPEN,

the BASIC error message FILE OPEN occurs. (See Printer Manual for further

details.)

BASIC LANGUAGE VOCABULARY 67

EXAMPLES of OPEN Statements:

10 OPEN 2, 8, 4 "DISK-
OUTPUT, SEQ,W"

(Opens sequential files on
disk)

10 OPEN 1, 1, 2, "TAPE-
WRITE"

(Write End-of-File on Close)

10 OPEN 50, 0 (Keyboard input)

10 OPEN 12, 3 (Screen output)

10 OPEN 130, 4 (Printer output)

10 OPEN 1, 1, 0, "NAME" (Read from cassette)

10 OPEN 1, 1, 1, "NAME" (Write to cassette)

10 OPEN 1, 2, 0, CHR$(10)
(Open channel to RS-232
device)

10 OPEN 1, 4, 0, "STRING"
(Send upper case/graphics to
the printer)

10 OPEN 1, 4, 7, "STRING"
(Send upper/lower case to
printer)

10 OPEN 1, 5, 7, "STRING"
(Send upper/lower case to
printer with device # 5)

10 OPEN 1, 8, 15, "COMMAND" (Send a command to disk)

68 BASIC LANGUAGE VOCABULARY

OR

TYPE: Logical Operator

FORMAT: <operand> OR <operand>

Action: Just as the relational operators can be used to make decisions regarding

program flow, logical operators can connect two or more relations and return a

true or false value which can then be used in a decision. When used in

calculations, the logical OR gives you a bit result of 1 if the corresponding bit of

either, or both, operands is 1. This will produce an integer as a result depending

on the values of the operands.

When used in comparisons the logical OR operator is also used to link two

expressions into a single compound expression. If either of the expressions are

true, the combined expression value is true (–1). In the first example below if AA

is equal to BB OR if XX is 20, the expression is true.

Logical operators work by converting their operands to 16-bit, signed, two's

complement integers in the range of –32768 to +32767. If the operands are

not in the range an error message results. Each bit of the result is determined by

the corresponding bits in the two operands.

EXAMPLES of OR Operator:

100 IF (AA=BB) OR (XX= 20) THEN…

230 KK%=64 OR 32: PRINT KK% (You typed this with a bit value of

1000000 for 64 and 100000 for

32)
96 (The computer responded with bit

value 1100000.

1100000=96.)

BASIC LANGUAGE VOCABULARY 69

PEEK

TYPE: Integer Function

FORMAT: PEEK (<numeric>)

Action: Returns an integer in the range of 0 to 255, which is read from a memory

location. The <numeric> expression is a memory location which must be in the

range of 0 to 65535. If it isn't then the BASIC error message ?ILLEGAL

QUANTITY occurs.

EXAMPLES of PEEK Function:

10 PRINT PEEK(53280) AND 15 (Returns value of screen border

color)

5 A% =PEEK(45)+PEEK(46)*256 (Returns address of BASIC variable

table)

POKE

TYPE: Statement

FORMAT: POKE <location>, <value>

Action: The POKE statement is used to write a one-byte (8-bits) binary value into

a given memory location or input/output register. The <location> is an arithmetic

expression which must equal a value in the range of 0 to 65535. The <value>

is an expression which can be reduced to an integer value of 0 to 255. If either

value is out of its respective range, the BASIC error message ?ILLEGAL

QUANTITY occurs.

The POKE statement and PEEK statement (which is a built-in function that looks at

a memory location) are useful for data storage, controlling graphics displays or

sound generation, loading assembly language subroutines, and passing

arguments and results to and from assembly language subroutines. In addition,

Operating System parameters can be examined using PEEK statements or

changed and manipulated using POKE statements. A complete memory map of

useful locations is given in Appendix G.

70 BASIC LANGUAGE VOCABULARY

EXAMPLES of POKE Statement:

POKE 1024, 1 (Puts an "A" at position 1 on the screen)
POKE 2040, PTR (Updates Sprite #0 data pointer)
10 POKE RED, 32
20 POKE 36879,8
2050 POKE A, B

POS

TYPE: Integer Function

FORMAT: POS (<dummy>)

Action: Tells you the current cursor position which, of course, is in the range of 0

(leftmost character) through position 79 on an 80-character logical screen line.

Since the Commodore 64 has a 40-column screen, any position from 40 through

79 will refer to the second screen line. The dummy argument is ignored.

EXAMPLE of POS Function:

1000 IF POS(0) > 38 THEN PRINT CHR$(13)

PRINT

TYPE: Statement

FORMAT: PRINT [<variable>] [<,/;><variable>]…

Action: The PRINT statement is normally used to write data items to the screen.

However, the CMD statement may be used to redirect that output to any other

device in the system. The <variable(s)> in the output-list are expressions of any

type. If no output-list is present, a blank line is printed. The position of each

printed item is determined by the punctuation used to separate items in the

output-list.

The punctuation characters that you can use are blanks, commas, or semicolons.

The 80 character logical screen line is divided into 8 print zones of 10 spaces

each. In the list of expressions, a comma causes the next value to be printed at

the beginning of the next zone. A semicolon causes the next value to be printed

immediately following the previous value. However, there are two exceptions to

this rule:

BASIC LANGUAGE VOCABULARY 71

1. Numeric items are followed by an added space.
2. Positive numbers have a space preceding them.

When you use blanks or no punctuation between string constants or variable
names it has the same effect as a semicolon. However, blanks between a string
and a numeric item or between two numeric items will stop output without printing
the second item.

If a comma or a semicolon is at the end of the output-list, the next PRINT statement
begins printing on the same line, and spaced accordingly. If no punctuation
finishes the list, a carriage-return and a line-feed are printed at the end of the
data. The next PRINT statement will begin on the next line. If your output is
directed to the screen and the data printed is longer than 40 columns, the output
is continued on the next screen line.

There is no statement in BASIC with more variety than the PRINT statement. There
are so many symbols, functions, and parameters associated with this statement
that it might almost be considered as a language of its own within BASIC; a
language specially designed for writing on the screen.

EXAMPLES of PRINT Statement:

1.

5 X = 5

10 PRINT -5*X, X-5, X+5, X↑5

-25 0 10 3125

2.

5 X = 9
10 PRINT X; "SQUARED IS";X*X;"AND";

20 PRINT X "CUBED IS" X↑3

9 SQUARED IS 81 AND 9 CUBED IS 729

3.

90 AA$="ALPHA":BB$="BAKER":CC$="CHARLIE":DD$="DOG":
EE$="ECHO"
100 PRINT AABB;CC$ DD$,EE$

ALPHABAKERCHARLIEDOG ECHO

72 BASIC LANGUAGE VOCABULARY

Quote Mode

Once the quote mark (SHIFT 2) is typed, the cursor controls stop operating
and start displaying reversed characters which actually stand for the cursor
control you are hitting. This allows you to program these cursor controls, because
once the text inside the quotes is PRINTed they perform their functions.
The INST/DEL key is the only cursor control not affected by "quote mode. "

1. Cursor Movement

The cursor controls which can be "programmed" in quote mode are:

KEY APPEARS AS

 CLR/HOME 

 SHIFT CLR/HOME 

 ↑CRSR↓ 

 SHIFT ↑CRSR↓ ◘

 ←CRSR→ 

 SHIFT ←CRSR→ 

If you wanted the word HELLO to PRINT diagonally from the upper left corner
of the screen, you would type:

PRINT " CLR/HOME H ↑CRSR↓ E ↑CRSR↓ L ↑CRSR↓ L ↑CRSR↓ O"

Which would appear as:

PRINT "  H  E  L  L  O"

2. Reverse Characters

Holding down the CTRL key and hitting 9 will cause R to appear inside the
quotes. This will make all characters start printing in reverse video (like a negative
of a picture). To end the reverse printing hit CTRL 0 , which prints a  or else
PRINT a RETURN (CHR$(13)). (Just ending the print statement without a semicolon
or comma will take care of this.)

3. Color Controls

Holding down the CTRL key or  key with any of the 8 color keys will make a
special reversed character appear in the quotes. When the character is PRINTed,
then the color change will occur.

BASIC LANGUAGE VOCABULARY 73

KEY COLOR APPEARS AS

 CTRL 1 Black 

 CTRL 2 White 

 CTRL 3 Red 

 CTRL 4 Cyan 

 CTRL 5 Purple 

 CTRL 6 Green 

 CTRL 7 Blue 

 CTRL 8 Yellow 

 1 Orange 

 2 Brown 

 3 Light Red 

 4 Grey 1 

 5 Grey 2 

 6 Light Green 

 7 Light Blue 

 8 Grey 3 

If you wanted to print the word HELLO in cyan and the word THERE in white,

type:

PRINT " CTRL 4 HELLO CTRL 2 THERE"

Which would appear as:

PRINT "  HELLO  THERE"

4. Insert Mode

The spaces created by using the INST/DEL key have some of the same

characteristics as quote mode. The cursor controls and color controls show up as

reversed characters. The only difference is in the INST and DEL , which performs

74 BASIC LANGUAGE VOCABULARY

its normal function even in quote mode, now creates the T . And INST , which

created a special character in quote mode, inserts spaces normally.

Because of this, it is possible to create a PRINT statement containing DELetes,

which cannot be PRINTed in quote mode. Here is an example of how this is done:

10 PRINT"HELLO" INST/DEL SHIFT INST/DEL SHIFT INST/DEL INST/DEL

 INST/DEL P"

which displays as:

10 PRINT "HELLO T T P"

When the above line is RUN, the word displayed will be HELP, because the last

two letters are deleted and the P is put in their place.

WARNING: The DELetes will work when LISTing as well as PRINTing, so editing a line with these

characters will be difficult.

The "insert mode" condition is ended when the RETURN (or SHIFT RETURN) key

is hit, or when as many characters have been typed as spaces were inserted.

5. Other Special Characters

There are some other characters that can be PRINTed for special functions,

although they are not easily available from the keyboard. In order to get these

into quotes, you must leave empty spaces for them in the line,

hit RETURN or SHIFT RETURN , and go back to the spaces with the cursor

controls. Now you must hit CTRL RVS/ON , to start typing reversed characters,

and type the keys shown below:

Function Type
Appears As

 SHIFT RETURN SHIFT M 
switch to lower case N 
switch to upper case SHIFT N 
disable case-switching keys H 
enable case-switching keys I 

BASIC LANGUAGE VOCABULARY 75

The SHIFT RETURN will work in the LISTing as well as PRINTing, so editing will

be almost impossible if this character is used. The LISTing will also look very

strange.

PRINT#

TYPE: I/O Statement

FORMAT: PRINT# <file-number> [<variable>]

 [<,/;><variable>] . . .

Actions: The PRINT# statement is used to write data items to a logical file. It

must use the same number used to OPEN the file. Output goes to the device

number used in the OPEN statement. The <variable> expressions in the output-

list can be of any type. The punctuation characters between items are the same

as with the PRINT statement and they can be used in the same ways. The effects

of punctuation are different in two significant respects.

When PRINT# is used with tape files, the comma, instead of spacing by print

zones, has the same effect as a semicolon. Therefore, whether blanks, commas,

semicolons or no punctuation characters are used between data items, the effect

on spacing is the same. The data items are written as a continuous stream of

characters. Numeric items are followed by a space and, if positive, are

preceded by a space.

If no punctuation finishes the list, a carriage-return and a line-feed are written

at the end of the data. If a comma or semicolon terminates the output-list, the

carriage-return and line-feed are suppressed. Regardless of the punctuation, the

next PRINT# statement begins output in the next available character position.

The line-feed will act as a stop when using the INPUT# statement, leaving an

empty variable when the next INPUT# is executed. The line-feed can be

suppressed or compensated for as shown in the examples below.

The easiest way to write more than one variable to a file on tape or disk is to

set a string variable to CHR$(13), and use that string in between all the other

variables when writing the file.

76 BASIC LANGUAGE VOCABULARY

EXAMPLES of PRINT# Statement:

1.

10 OPEN 1, 1, 1, "TAPE FILE"

20 R$ = CHR$(13)

30 PRINT# 1,1;R$;2;R$;3;R$;4;R$;5

40 PRINT# 1,6

50 PRINT# 1,7

(By changing the CHR$(13) to

CHR$(44) you put a "," between

each variable. CHR$(59) would put a

";" between each variable.)

2.

10 CO$=CHR$(44):CR$=CHR$(13)

20 PRINT#1, "AAA" CO$ "BBB",

 "CCC";"DDD";"EEE"CR$

 "FFF"CR$;

30 INPUT#1, A$,BCDE$,F$

AAA, BBB CCCDDDEEE

(carriage return)

FFF(carriage return)

3.

5 CR$=CHR$(13)

10 PRINT#2, "AAA";CR$;"BBB"

20 PRINT#2, "CCC";

30 INPUT#2, A$,B$,DUMMY$,C$

(10 blanks) AAA

BBB

(10 blanks) CCC

READ

TYPE: Statement

FORMAT: READ <variable> [,<variable>]…

Action: The READ statement is used to fill variable names from constants in DATA

statements. The data actually read must agree with the variable types specified

or the BASIC error message ?SYNTAX ERROR will result. Variables in the DATA

input-list must be separated by commas.

A single READ statement can access one or more DATA statements, which will be

accessed in order (see DATA), or several READ statements can access the same

DATA statement. If more READ statements are executed than the number of

BASIC LANGUAGE VOCABULARY 77

elements in DATA statements(s) in the program, the BASIC error message ?OUT

OF DATA is printed. If the number of variables specified is fewer than the

number of elements in the DATA statement(s), subsequent READ statements will

continue reading at the next data element. (See RESTORE.)

NOTE: The ?SYNTAX ERROR will appear with the line number from the DATA statement, NOT

the READ statement.

EXAMPLES of READ Statement:

110 READ A, B, C$

120 DATA 1, 2, HELLO

100 FOR X=1 TO 10: READA(X): NEXT

200 DATA 3.08, 5.19, 3.12, 3.98, 4.24

210 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Fills array items (line 1) in order of constants shown (line5))

1 READ CITY$, STATE$, ZIP

5 DATA DENVER, COLORADO, 80211

REM

TYPE: Statement

FORMAT: REM [<remark>]

Action: The REM statement makes your programs more easily understood when

LISTed. It's a reminder to yourself to tell you what you had in mind when you

were writing each section of the program. For instance, you might want to

remember what a variable is used for, or some other useful information. The

REMark can be any text, word, or character including the colon (:) or BASIC

keywords. The REM statement and anything following it on the same line number

are ignored by BASIC, but REMarks are printed exactly as entered when the

program is listed. A REM statement can be referred to by a GOTO or GOSUB

statement, and the execution of the program will continue with the next higher

program line having executable statements.

78 BASIC LANGUAGE VOCABULARY

EXAMPLES of REM Statement:

10 REM CALCULATE AVERAGE VELOCITY

20 FOR X=1 TO 20: REM LOOP FOR TWENTY VALUES

30 SUM=SUM + VEL(X): NEXT

40 AVG=SUM/20

RESTORE

TYPE: Statement

FORMAT: RESTORE

Action: BASIC maintains an internal pointer to the next DATA constant to be

READ. This pointer can be reset to the first DATA constant in a program using the

RESTORE statement. The RESTORE statement can be used anywhere in the

program to begin re-READing DATA.

EXAMPLES of RESTORE Statement:

100 FOR X=1 TO 10: READA(X): NEXT

200 RESTORE

300 FOR Y=1 TO 10: READ B(Y): NEXT

4000 DATA 3.08, 5.19, 3.12, 3.98, 4.24

4100 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Fills the two arrays with identical data)

10 DATA 1,2,3,4

20 DATA 5,6,7,8

30 FOR L=1 TO 8

40 READA: PRINT A

50 NEXT

60 RESTORE

70 FOR L=1TO 8

80 READA: PRINT A

90 NEXT

BASIC LANGUAGE VOCABULARY 79

RETURN

TYPE: Statement

FORMAT: RETURN

Action: The RETURN statement is used to exit from a subroutine called for by a

GOSUB statement. RETURN restarts the rest of your program at the next

executable statement following the GOSUB. If you are nesting subroutines, each

GOSUB must be paired with at least one RETURN statement. A subroutine can

contain any number of RETURN statements, but the first one encountered will exit

the subroutine.

EXAMPLE of RETURN Statement:

10 PRINT "THIS IS THE PROGRAM"

20 GOSUB 1000

30 PRINT "PROGRAM CONTINUES"

40 GOSUB 1000

50 PRINT "MORE PROGRAM"

60 END

1000 PRINT "THIS IS THE G0SUB": RETURN

RIGHT$

TYPE: String Function

FORMAT: RIGHT$ (<string>, <numeric>)

Action: The RIGHT$ function returns a sub-string taken from the right-most end

of the <string> argument. The length of the sub-string is defined by the

<numeric> argument which can be any integer in the range of 0 to 255. If the

value of the numeric expression is zero, then a null string ("") is returned. If the

value you give in the <numeric> argument is greater than the length of the

<string> then the entire string is returned.

EXAMPLE of RIGHT$ Function:

10 MSG$ ="COMMODORE COMPUTERS"
20 PRINT RIGHT$(MSG$,9)
RUN

COMPUTERS

80 BASIC LANGUAGE VOCABULARY

RND

TYPE: Floating-Point Function

FORMAT: RND (<numeric>)

Action: RND creates a floating-point random from 0.0 to 1.0. The computer

generates a sequence of random numbers by performing calculations on a

starting number, which in computer jargon is called a seed. The RND function is

seeded on system power-up. The <numeric> argument is a dummy, except for

its sign (positive, zero, or negative).

If the <numeric> argument is positive, the same "pseudorandom" sequence of

numbers is returned, starting from a given seed value. Different number

sequences will result from different seeds, but any sequence is repeatable by

starting from the same seed number. Having a known sequence of "random"

numbers is useful in testing programs.

If you choose a <numeric> argument of zero, then RND generates a number

directly from a free-running hardware clock (the system "jiffy clock"). Negative

arguments cause the RND function to be re-seeded with each function call.

EXAMPLES of RND Function:

220 PRINT INT(RND(0)*50) (Return random integers

0 – 49)

100 X=INT(RND(1)*6)+INT(RND(1)*6)+2 (Simulates 2 dice)

100 X=INT(RND(1)*1000)+1 (Random integers from
1 – 1000)

100 X=INT(RND(1)*150)+100 (Random numbers from
100 – 249)

100 X=RND(1)*(U-L)+L (Random numbers
between upper (U) and
lower (L) limits)

BASIC LANGUAGE VOCABULARY 81

RUN

TYPE: Command

FORMAT: RUN [<line-number>]

Action: The system command RUN is used to start the program currently in

memory. The RUN command causes an implied CLR operation to be performed

before starting the program. You can avoid the CLeaRing operation by using

CONT or GOTO to restart a program instead of RUN. If a <line-number> is

specified, your program will start on that line. Otherwise, the RUN command

starts at first line of the program.

The RUN command can also be used within a program. If the <line-number> you

specify doesn't exist, the BASIC error message ?UNDEF'D STATEMENT occurs.

A RUNning program stops and BASIC returns to direct mode when an END or

STOP statement is reached, when the last line of the program is finished, or when

a BASIC error occurs during execution.

EXAMPLES of RUN Command:

RUN (Starts at first line of program)
RUN 500 (Starts at line number 500)
RUN X (Starts at line X, or UNDEF'D STATEMENT ERROR if there

is no line X)

SAVE

TYPE: Command

FORMAT: SAVE ["<file-name>"] [,<device-number>] [,<address>]

Action: The SAVE command is used to store the program that is currently in

memory onto a tape or diskette file. The program being SAVEd is only affected

by the command while the SAVE is happening. The program remains in the

current computer memory even after the SAVE operation is completed until you

put something else there by using another command. The file type will be "prg"

(program). If the <device-number> is left out, then the C64 will automatically

assume that you want the program saved on cassette, device number 1. If the

<device-number> is an <8>, then the program is written onto disk. The SAVE

82 BASIC LANGUAGE VOCABULARY

statement can be used in your programs and execution will continue with the next

statement after the SAVE is completed.

Programs on tape are automatically stored twice, so that your Commodore 64

can check for errors when LOADing the program back in. When saving programs

to tape, the <file-name> and secondary <address> are optional. But following

a SAVE with a program name in quotes (" ") or by a string variable (---$) helps

your Commodore 64 find each program more easily. If the file-name is left out

it can NOT be LOADed by name later on.

A secondary address of 1 will tell the KERNAL to LOAD the tape at a later time,

with the program currently in memory instead of the normal 2048 location. A

secondary address of 2 will cause an end-of-tape marker to follow the program.

A secondary address of 3 combines both functions.

When saving programs onto a disk, the <file-name> must be pre-sent.

EXAMPLES of SAVE Command:

SAVE (Write to tape without a name)

SAVE "ALPHA", 1 (Store on tape as file-name "alpha")

SAVE "ALPHA", 1, 2 (Store "alpha" with end-of-tape marker)

SAVE "FUN.DISK", 8 (SAVEs on disk (device 8 is the disk))

SAVE A$ (Store on tape with the name A$)

10 SAVE "HI" (SAVEs program and then move to next
program line)

SAVE "ME", 1, 3 (Stores at same memory location and puts an
end-of-tape marker on)

BASIC LANGUAGE VOCABULARY 83

SGN

TYPE: Integer Function

FORMAT: SGN (<numeric>)

Action: SGN gives you an integer value depending upon the sign of the

<numeric> argument. If the argument is positive the result is 1, if zero the result

is also 0, if negative the result is –1.

EXAMPLE of SGN Function:

90 ON SGN(DV)+2 GOTO 100, 200, 300

(jump to 100 if DV=negative, 200 if DV=0, 300 if DV=positive)

SIN

TYPE: Floating-Point Function
FORMAT: SIN (<numeric>)

Action: SIN gives you the sine of the <numeric> argument, in radians. The value

of COS(x) is equal to SIN(x+3.14159265/2).

EXAMPLE of SIN Function:

235 AA = SIN(1.5): PRINT AA

 .997494987

SPC

TYPE: Special Function

FORMAT: SPC (<numeric>)

Action: The SPC function is used to control the formatting of data, as either an

output to the screen or into a logical file. The number of SPaCes given by the

<numeric> argument are printed, starting at the first available position. For

screen or tape files the value of the argument is in the range of 0 to 255 and

for disk files up to 254. For printer files, an automatic carriage-return and line-

feed will be performed by the printer if a SPaCe is printed in the last character

position of a line. No SPaCes are printed on the following line.

84 BASIC LANGUAGE VOCABULARY

EXAMPLE of SPC Function:

10 PRINT "RIGHT "; "HERE &";

20 PRINT SPC(5) "OVER" SPC(14) "THERE"

RUN

RIGHT HERE & OVER THERE

SQR

TYPE: Floating-Point Function.

FORMAT: SQR (<numeric>)

Action: SQR gives you the value of the SQuare Root of the <numeric> argument.

The value of the argument must not be negative, or the BASIC error message

?ILLEGAL QUANTITY will happen.

EXAMPLE of SQR Function:

FOR J=2 TO 5: PRINT J*5, SQR(J * 5): NEXT

 10 3.16227766

 15 3.87298335

 20 4.47213595

 25 5

READY.

STATUS

TYPE: Integer Function

FORMAT: STATUS

Action: Returns a completion STATUS for the last input/output operation which

was performed on an open file. The STATUS can be read from any peripheral

device. The STATUS (or simply ST) keyword is a system defined variable-name

BASIC LANGUAGE VOCABULARY 85

into which the KERNAL puts the STATUS of I/O operations. A table of STATUS

code values for tape, printer, disk and RS-232 file operations is shown below:

ST Bit

Position

ST Numeric

Value

Cassette

Read

Serial Bus

R/W

Tape Verify

+ Load

0 1
time out

write

1 2
time out

read

2 4 short block short block

3 8 long block long block

4 16
unrecoverable

read error
 any mismatch

5 32 checksum error
checksum

error

6 64 end of file EOI

7 –128 end of tape
device not

present
end of tape

EXAMPLE of STATUS Function:

10 OPEN 1, 4: OPEN 2, 8, 4, "MASTER FILE,SEQ,W"

20 GOSUB 100: REM CHECK STATUS

30 INTPUT#2, A$, B, C

40 IF STATUS AND 64 THEN 80: REM HANDLE END-OF-FILE

50 GOSUB 100: REM CHECK STATUS

60 PRINT#1, A$, B; C

70 GOTO 20

80 CLOSE1: CLOSE2

90 GOSUB 100: END

100 IF ST > 0 THEN 9000: REM HANDLE FILE I/O ERROR

110 RETURN

86 BASIC LANGUAGE VOCABULARY

STEP

TYPE: Statement
FORMAT: [STEP <expression>]

Action: The optional STEP keyword follows the <end-value> expression in a
FOR statement. It defines an increment value for the loop counter variable. Any
value can be used as the STEP increment. Of course, a STEP value of zero will
loop forever. If the STEP keyword is left out, the increment value will be + 1.
When the NEXT statement in a FOR loop is reached, the STEP increment happens.
Then the counter is tested against the end-value to see if the loop is finished.
(See FOR statement for more information.)

NOTE: The STEP value can NOT be changed once it's in the loop.

EXAMPLES of STEP Statement:

25 FOR XX = 2 TO 20 STEP 2 (Loop repeats 10 times)

35 FOR ZZ = 0 TO -20 STEP -2 (Loop repeats 11 times)

STOP

TYPE: Statement
FORMAT: STOP

Action: The STOP statement is used to halt execution of the current program and
return to direct mode. Typing the RUN/STOP key on the keyboard has the same
effect as a STOP statement. The BASIC error message BREAK IN XX is displayed
on the screen, followed by READY. The "XX" is the line number where the STOP
occurs. Any open files remain open and all variables are preserved and can be
examined. The program can be restarted by using CONT or GOTO statements.

EXAMPLES of STOP Statement:

10 INPUT#1, AA, BB, CC
20 IF AA = BB AND BB = CC THEN STOP
30 STOP

(If the variable AA is –1 and BB is equal to CC then:)
BREAK IN 20
BREAK IN 30 (For any other data values)

BASIC LANGUAGE VOCABULARY 87

STR$

TYPE: String Function

FORMAT: STR$ (<numeric>)

Action: STR$ gives you the STRing representation of the numeric value of the

argument. When the STR$ value is converted to each variable represented in

the <numeric> argument, any number shown is followed by a space and, if it's

positive, it is also preceded by a space.

EXAMPLE of STR$ Function:

100 FLT =1.5E4: ALPHA$ = STR$(FLT)

110 PRINT FLT, ALPHA$

 15000 15000

SYS

TYPE: Statement

FORMAT: SYS <memory-location>

Action: This is the most common way to mix a BASIC program with a machine

language program. The machine language program begins at the location given

in the SYS statement. The system command SYS is used in either direct or program

mode to transfer control of the microprocessor to an existing machine language

program in memory. The memory-location given is by numeric expression and

can be anywhere in memory, RAM or ROM.

When you're using the SYS statement you must end that section of machine

language code with an RTS (ReTurn from Subroutine) instruction so that when the

machine language program is finished, the BASIC execution will resume with the

statement following the SYS command.

EXAMPLES of SYS Statement:

SYS 64738 (Jump to System Cold Start in ROM)

10 POKE 4400,96: SYS 4400 (Goes to machine code location

4400 and returns immediately)

88 BASIC LANGUAGE VOCABULARY

TAB

TYPE: Special Function

FORMAT: TAB (<numeric>)

Action: The TAB function moves the cursor to a relative SPC move position on the

screen given by the <numeric> argument, starting with the left-most position of

the current line. The value of the argument can range from 0 to 255. The TAB

function should only be used with the PRINT statement, since it has no effect if

used with PRINT# to a logical file.

EXAMPLE of TAB Function:

100 PRINT "NAME" TAB(25) "AMOUNT": PRINT

110 INPUT#1, NAM$, AMT$

120 PRINT NAM$ TAB(25) AMT$

NAME AMOUNT

G.T. JONES 25.

TAN

TYPE: Floating-Point Function

FORMAT: TAN (<numeric>)

Action: Returns the tangent of the value of the <numeric> expression in radians.

If the TAN function overflows, the BASIC error message ?DIVISION BY ZERO is

displayed.

EXAMPLE of TAN Function:

10 XX = .785398163: YY = TAN(XX): PRINT YY

 1

BASIC LANGUAGE VOCABULARY 89

TIME

TYPE: Numeric Function

FORMAT: TI

Action: The TI function reads the interval TImer. This type of "clock" is called a

"jiffy clock." The "jiffy clock" value is set at zero (initialized) when you power-up

the system. This 1/60 second interval timer is turned off during tape I/O.

EXAMPLE of TI Function:

10 PRINT TI/60 "SECONDS SINCE POWER UP"

TlME$

TYPE: String Function

FORMAT: TI$

Action: The TI$ timer looks and works like a real clock as long as your system is

powered-on. The hardware interval timer (or jiffy clock) is read and used to

update the value of TI$, which will give you a TIme $tring of six characters in

hours, minutes and seconds. The TI$ timer can also be assigned an arbitrary

starting point similar to the way you set your wristwatch. The value of TI$ is not

accurate after tape I/O.

EXAMPLE of TI$ Function:

1 TI$ = "000000": FOR J=l TO 10000: NEXT: PRINT TI$

000011

90 BASIC LANGUAGE VOCABULARY

USR

TYPE: Floating-Point Function

FORMAT: USR (<numeric>)

Action: The USR function jumps to a User callable machine language SubRoutine

which has its starting address pointed to by the contents of memory locations

785 – 786. The starting address is established before calling the USR function

by using POKE statements to set up locations 785 – 786. Unless POKE statements

are used, locations 785 – 786 will give you an ?ILLEGAL QUANTITY error

message.

The value of the <numeric> argument is stored in the floating-point accumulator

starting at location 97, for access by the Assembler code, and the result of the

USR function is the value which ends up there when the subroutine returns to

BASIC.

EXAMPLES of USR Function:

10 B=T * SIN(Y)

20 C=USR (B/2)

30 D=USR (B/3)

VAL

TYPE: Numeric Function

FORMAT: VAL (<string>)

Action: Returns a numeric VALue representing the data in the <string> argument.

If the first non-blank character of the string is not a plus sign (+), minus sign (–),

or a digit the VALue returned is zero. String conversion is finished when the end

of the string or any non-digit character is found (except decimal point or

exponential e).

EXAMPLE of VAL Function:

10 INPUT#1, NAM$, ZIP$

20 IF VAL (ZIP$) < 19400 OR VAL (ZIP$) > 96699 THEN

PRINT NAM$ TAB(25) "GREATER PHILADELPHIA"

BASIC LANGUAGE VOCABULARY 91

VERIFY

TYPE: Command

FORMAT: VERIFY ["<file-name>"] [,<device>]

Action: The VERIFY command is used, in direct or program mode, to compare

the contents of a BASIC program file on tape or disk with the program currently

in memory. VERIFY is normally used right after a SAVE, to make sure that the

program was stored correctly on tape or disk.

If the <device> number is left out, the program is assumed to be on the

Datassette™ which is device number 1. For tape files, if the <file-name> is left

out, the next program found on the tape will be compared. For disk files (device

number 8), the file-name must be present. If any differences in program text are

found, the BASIC error message ?VERIFY ERROR is displayed.

A program name can be given either in quotes (" ") or as a string variable.

VERIFY is also used to position a tape just past the last program, so that a new

program can be added to the tape without accidentally writing over another

program.

EXAMPLES of VERIFY Command:

VERIFY (Checks 1st program on tape)
PRESS PLAY ON TAPE

OK

SEARCHING

FOUND <FILENAME>

VERIFYING

9000 SAVE"ME",8:

9010 VERIFY"ME",8 (Looks at device 8 for the program)

92 BASIC LANGUAGE VOCABULARY

WAIT

TYPE: Statement

FORMAT: WAIT <location>, <mask-1> [,<mask-2>]

Action: The WAIT statement causes program execution to be suspended until a

given memory address recognizes a specified bit pattern. In other words WAIT

can be used to halt the program until some external event has occurred. This is

done by monitoring the status of bits in the input/output registers. The data items

used with WAIT can be any numeric expressions, but they will be converted to

integer values.

For most programmers, this statement should never be used. It causes the

program to halt until a specific memory location's bits change in a specific way.

This is used for certain I/O operations and almost nothing else.

The WAIT statement takes the value in the memory location and performs a

logical AND operation with the value in mask-1. If there is a mask-2 in the

statement, the result of the first operation is exclusive-ORed with mask-2. In other

words mask-1 "filters out" any bits that you don't want to test. Where the bit is

0 in mask-1, the corresponding bit in the result will always be 0. The mask-2

value flips any bits, so that you can test for an off condition as well as an on

condition. Any bits being tested for a 0 should have a 1 in the corresponding

position in mask-2.

If corresponding bits of the <mask-1> and <mask-2> operands differ, the

exclusive-OR operation gives a bit result of 1. If corresponding bits get the same

result the bit is 0. It is possible to enter an infinite pause with the WAIT statement,

in which case the RUN/STOP and RESTORE keys can be used to recover. Hold

down the RUN/STOP key and then press RESTORE . The first example below

WAITs until a key is pressed on the tape unit to continue with the program. The

second example will WAIT until a sprite collides with the screen background.

EXAMPLES of WAIT Statement:

WAIT 1, 32, 32

WAIT 53273, 6, 6

WAIT 36868, 144, 16

(144 & 16 are masks.144 = 10010000 in

binary and 16=10000 in binary. The WAIT

statement will halt the program until the 128

bit is on or until the 16 bit is off)

BASIC LANGUAGE VOCABULARY 93

THE COMMODORE 64 KEYBOARD AND FEATURES

The Operating System has a ten-character keyboard "buffer" that is used to

hold incoming keystrokes until they can be processed. This buffer, or queue, holds

key strokes in the order in which they occur so that the first one put into the queue

is the first one processed. For example; if a second keystroke occurs before the

first can be processed, the second character is stored in the buffer, while

processing of the first character continues. After the program has finished with

the first character, the keyboard buffer is examined for more data, and the

second keystroke processed. Without this buffer, rapid keyboard input would

occasionally drop characters.

In other words, the keyboard buffer allows you to "type-ahead" of the system,

which means it can anticipate responses to INPUT prompts or GET statements. As

you type on the keys their character values are lined up, single-file (queued) into

the buffer to wait for processing in the order the keys were struck. This type-

ahead feature can give you an occasional problem where an accidental

keystroke causes a program to fetch an incorrect character from the buffer.

Normally, incorrect keystrokes present no problem, since they can be corrected

by the CuRSoR-Left ←CRSR or DELete INST/DEL keys and then retyping the

character, and the corrections will be processed before a following carriage-

return. However, if you press the RETURN key, no corrective action is possible,

since all characters in the buffer up to and including the carriage-return will be

processed before any corrections. This situation can be avoided by using a loop

to empty the keyboard buffer before reading an intended response:

10 GET JUNK$: IF JUNK$ <>"" THEN 10: REM EMPTY THE

KEYBOARD BUFFER

In addition to GET and INPUT, the keyboard can also be read using PEEK to

fetch from memory location 197 ($00C5) the integer value of the key currently

being pressed. If no key is being held when the PEEK is executed, a value of 64

is returned. The numeric keyboard values, keyboard symbols and character

equivalents (CHR$) are shown in Appendix C. The following example loops until

a key is pressed then converts the integer to a character value:

10 AA = PEEK(197): IF AA = 64 THEN 10

20 BB$ = CHR$(AA)

94 BASIC LANGUAGE VOCABULARY

The keyboard is treated as a set of switches organized into a matrix of 8 columns

by 8 rows. The keyboard matrix is scanned for key switch-closures by the

KERNAL using the CIA#1 I/O chip (MOS 6526 Complex Interface Adapter). Two

CIA registers are used to perform the scan: register#0 at location 56320

($DC00) for keyboard columns and register#1 at location 56321 ($DC01) for

keyboard rows.

Bits 0 – 7 of memory location 56320 correspond to the columns 0 – 7. Bits 0 –

7 of memory location 56321 correspond to rows 0 – 7. By writing column values

in sequence, then reading row values, the KERNAL decodes the switch closures

into the CHR$ (N) value of the key pressed.

Eight columns by eight rows yields 64 possible values. However, if you first strike

the RVS , CTRL or  keys or hold down the SHIFT key and type a second

character, additional values are generated. This is because the KERNAL decodes

these keys separately and "remembers" when one of the control keys was

pressed. The result of the keyboard scan is then placed in location 197.

Characters can also be written directly to the keyboard buffer at locations 631–

640 using a POKE statement. These characters will be processed when the POKE

is used to set a character count into location 198. These facts can be used to

cause a series of direct-mode commands to be executed automatically by

printing the statements onto the screen, putting carriage-returns into the buffer,

and then setting the character count. In the example below, the program will LIST

itself to the printer and then resume execution:

10 PRINT CHR$(147) "PRINT#1: CLOSE 1: GOTO 50"

20 POKE 631, 19: POKE 632, 13: POKE 633, 13: POKE 198, 3

30 OPEN 1, 4: CMD1: LIST

40 END

50 REM PROGRAM RE-STARTS HERE

SCREEN EDITOR

The SCREEN EDITOR provides you with powerful and convenient facilities for

editing program text. Once a section of a program is listed to the screen, the

cursor keys and other special keys are used to move around the screen so that

you can make any appropriate changes, After, making all the changes you want

to a specific line number of text, hitting the RETURN key anywhere on the line,

causes the SCREEN EDITOR to read the entire 80-character logical screen line.

BASIC LANGUAGE VOCABULARY 95

The text is then passed to the Interpreter to be tokenized and stored in the

program. The edited line replaces the old version of that line in memory. An

additional copy of any line of text can be created simply by changing the line

number and pressing RETURN .

If you use keyword abbreviations which cause a program line to exceed 80

characters, the excess characters will be lost when that line is edited, because

the EDITOR will read only two physical screen lines. This is also why using INPUT

for more than a total of 80 characters is not possible. Thus, for all practical

purposes, the length of a line of BASIC text is limited to 80 characters as

displayed on the screen.

Under certain conditions the SCREEN EDITOR treats the cursor control keys

differently from their normal mode of handling. If the CuRSoR is positioned to

the right of an odd number of double-quote marks (") the EDITOR operates in

what is known as the QUOTE MODE.

In quote mode data characters are entered normally but the cursor controls no

longer move the CuRSoR, instead reversed characters are displayed which

actually stand for the cursor control being entered. The same is true of the color

control keys. This allows you to include cursor and color controls inside string data

items in programs. You will find that this is a very important and powerful

feature. That's because when the text inside the quotes is printed to the screen it

performs the cursor positioning and color control functions automatically as part

of the string. An example of using cursor controls in strings is:

You type 10 PRINT "A(R)(R)B(L)(L)(L)C(R)(R)D":

REM(R) = CRSR RIGHT, (L) = CRSR LEFT

Computer prints AC BD

The DEL key is the only cursor control NOT affected by quote mode. Therefore,

if an error is made while keying in quote mode, the ←CRSR key can't be used

to back up and strike over the error – even the INST key produces a reverse

video character. Instead, finish entering the line, and then, after hitting

the RETURN key, you can edit the line normally. Another alternative, if no further

cursor-controls are needed in the string, is to press

the RUN/STOP and RESTORE keys which will cancel QUOTE MODE. The cursor

control keys that you can use in strings are shown in Table 2–2.

96 BASIC LANGUAGE VOCABULARY

TABLE 2–2. CURSOR CONTROL CHARACTERS IN QUOTE MODE

Control Key Appearance

CRSR up ↑CRSR ◘

CRSR down CRSR↓ 

CRSR left ←CRSR 

CRSR right CRSR→ 

CLR CLR/ 

HOME /HOME 

INST INST/DEL 

When you are NOT in quote mode, holding down the SHIFT key and then

pressing the INSerT INST key shifts data to the right of the cursor to open up

space between two characters for entering data between them. The Editor then

begins operating in INSERT MODE until all of the space opened up is filled.

The cursor controls and color controls again show as reversed characters in insert

mode. The only difference occurs on the DELete and INSerT INST/DEL key.

The DEL key instead of operating normally as in the quote mode, now creates

the reversed T . The INST key, which created a reverse character in quote mode,

inserts spaces normally.

This means that a PRINT statement can be created, containing DELetes, which

can't be done in quote mode. The insert mode is cancelled by pressing

the RETURN , SHIFT and RETURN or RUN/STOP and RESTORE keys. Or you can

cancel the insert mode by filling all the inserted spaces. An example of using DEL

characters in strings is:

10 PRINT "HELLO" DEL INST INST DEL DEL P"

(Keystroke sequence shown above, appearance when listed below)
10 PRINT "HELP"

When the example is RUN, the word displayed will be HELP, because the letters

LO are deleted before the P is printed. The DELete character in strings will work

with LIST as well as PRINT. You can use this to "hide" part or all of a line of text

using this technique. However, trying to edit a line with these characters will be

difficult if not impossible.

BASIC LANGUAGE VOCABULARY 97

There are some other characters that can be printed for special functions,
although they are not easily available from the keyboard. In order to get these
into quotes, you must leave empty spaces for them in the line, press RETURN and
go back to edit the line. Now you hold down the CTRL (ConTRoL) key and
type RVS/ON (ReVerSe-ON) to start typing reversed characters. Type the keys
as shown below:

Key Function Key Entered Appearance

Shifted RETURN SHIFT M 

Switch to upper/lower case N 

Switch to upper/graphics SHIFT N 

Holding down the SHIFT key and hitting RETURN causes a carriage-return and
line-feed on the screen but does not end the string. This works with LIST as well
as PRINT, so editing will be almost impossible if this character is used. When
output is switched to the printer via the CMD statement, the reverse "N" character
shifts the printer into its upper-lower case character set and the SHIFT "N" shifts
the printer into the upper-case/graphics character set.

Reverse video characters can be included in strings by holding down the
ConTRoL CTRL key and pressing ReVerSe RVS , causing a reversed R to appear
inside the quotes. This will make all characters print in reverse video (like a
negative of a photograph). To end the reverse printing,
press CTRL and RVS/OFF (ReVerSe OFF) which prints a reverse R. Numeric data
can be printed in reverse video by first printing a CHR$(18). Printing a
CHR$(146) or a carriage-return will cancel reverse video output.

98 BASIC LANGUAGE VOCABULARY

CHAPTER 3

PROGRAMMING
GRAPHICS

ON THE
COMMODORE 64

 Graphics Overview

 Graphics Locations

 Standard Character Mode

 Multicolor Mode Graphics

 Extended Background Color Mode

 Bitmapped Graphics

 Multicolor Bitmap Mode

 Smooth Scrolling

 Sprites

 Other Graphics Features

 Programming Sprites – Another Look

100 PROGRAMMING GRAPHICS

GRAPHICS OVERVIEW

All of the graphics abilities of the Commodore 64 come from the 6567 Video

Interface Chip (also known as the VIC-II chip). This chip gives a variety of

graphics modes, including a 40 column by 25 line text display, a 320 by 200

dot high resolution display, and SPRITES, small movable objects which make

writing games simple. And if this weren't enough, many of the graphics modes

can be mixed on the same screen. It is possible, for example, to define the top

half of the screen to be in high resolution mode, while the bottom half is in text

mode. And SPRITES will combine with anything! More on sprites later. First the

other graphics modes.

The VIC-II chip has the following graphics display modes:

A. CHARACTER DISPLAY MODES

1. Standard Character Mode

 a. ROM characters

 b. RAM programmable characters

2. Multicolor Character Mode

 a. ROM characters

 b. RAM programmable characters

3. Extended Background Color Mode

 a. ROM characters

 b. RAM programmable characters

B. BITMAP MODES

1. Standard Bitmap Mode

2. Multicolor Bitmap Mode

C. SPRITES

1. Standard Sprites

2. Multicolor Sprites

PROGRAMMING GRAPHICS 101

GRAPHICS LOCATIONS

Some general information first. There are 1000 possible locations on the

Commodore 64 screen. Normally, the screen starts at location 1024 ($0400 in

HEXadecimal notation) and goes to location 2023. Each of these locations is 8

bits wide. This means that it can hold any integer number from 0 to 255.

Connected with screen memory is a group of 1000 locations called COLOR

MEMORY or COLOR RAM. These start at location 55296 ($D800 in HEX) and

go up to 56295. Each of the color RAM locations is 4 bits wide, which means that

it can hold any integer number from 0 to 15. Since there are 16 possible colors

that the Commodore 64 can use, this works out well.

In addition, there are 256 different characters that can be displayed at any
time. For normal screen display, each of the 1000 locations in screen memory
contains a code number which tells the VIC-II chip which character to display at
that screen location.

The various graphics modes are selected by the 47 CONTROL registers in the
VIC-II chip. Many of the graphics functions can be controlled by POKEing the
correct value into one of the registers. The VIC-II chip is located starting at 53248
($D000 in HEX) through 53294 ($D02E in HEX).

VIDEO BANK SELECTION

The VIC-II chip can access ("see") 16K of memory at a time. Since there is 64K

of memory in the Commodore 64, you want to be able to have the VIC-II chip

see all of it. There is a way. There are 4 possible BANKS (or sections) of 16K of

memory. All that is needed is some means of controlling which 16K bank the VIC-

II chip looks at. In that way, the chip can "see" the entire 64K of memory. The

BANK SELECT bits that allow you access to all the different sections of memory

are located in the 6526 COMPLEX INTERFACE ADAPTER CHIP #2 (CIA#2).The

POKE and PEEK BASIC statements (or their machine language versions) are used

to select a bank by controlling bits 0 and 1 of PORT A of CIA#2 (location 56576

(or $DD00 HEX). These 2 bits must be set to outputs by setting bits 0 and 1 of

location 56578 ($DD02 HEX) to change banks. The following example shows

this:

POKE 56578, PEEK(56578) OR 3 :REM MAKE SURE BITS 0 AND 1

ARE SET TO OUTPUTS

POKE 56576, (PEEK(56576) AND 252) OR A: REM CHANGE BANKS

"A" should have one of the following values:

102 PROGRAMMING GRAPHICS

VALUE

OF A
BITS BANK

STARTING

LOCATION
VIC-II CHIP RANGE

0 00 3 49152 ($C000 – $FFFF)*

1 01 2 32768 ($8000 – $BFFF)

2 10 1 16384 ($4000 – $7FFF)*

3 11 0 0 ($0000 – $3FFF) (DEFAULT VALUE)

This 16K bank concept is part of everything that the VIC-II chip does. You should

always be aware of which bank the VIC-II chip is pointing at, since this will affect

where character data patterns come from, where the screen is, where sprites

come from, etc. When you turn on the power of your Commodore 64, bits 0 and

1 of location 56576 are automatically set to BANK 0 ($0000 to $3FFF) for all

display information.

*NOTE: The Commodore 64 character set is not available to the VIC-II chip in BANKS 1 and 3.

(See character memory section.)

SCREEN MEMORY

The location of screen memory can be changed easily by a POKE to control

register 53272 ($D018 HEX). However, this register is also used to control which

character set is used, so be careful to avoid disturbing that part of the control

register. The UPPER 4 bits control the location of screen memory. To move the

screen, the following statement should be used:

POKE 53272, (PEEK(53272) AND 15) OR A

PROGRAMMING GRAPHICS 103

Where "A" has one of the following values:

A BITS
LOCATION*

DECIMAL HEX

0 0000XXXX 0 $0000
16 0001XXXX 1024 $0400 (DEFAULT)
32 0010XXXX 2048 $0800
48 0011XXXX 3072 $0C00
64 0100XXXX 4096 $1000
80 0101XXXX 5120 $1400
96 0110XXXX 6144 $1800

112 0111XXXX 7168 $1C00
128 1000XXXX 8192 $2000
144 1001XXXX 9216 $2400
160 1010XXXX 10240 $2800
176 1011XXXX 11264 $2C00
192 1100XXXX 12288 $3000
208 1101XXXX 13312 $3400
224 1110XXXX 14336 $3800
240 1111XXXX 15360 $3C00

*Remember that the BANK ADDRESS of the VIC-II chip must be added in. You must also tell the

KERNAL'S screen editor where the screen is as follows: POKE 648, page (where page =

address/256, e.g., 1024/256= 4, so POKE 648, 4).

COLOR MEMORY

Color memory can NOT move. It is always located at locations 55296 ($D800)

through 56295 ($DBE7). Screen memory (the 1000 locations starting at 1024)

and color memory are used differently in the different graphics modes. A picture

created in one mode will often look completely different when displayed in

another graphics mode.

CHARACTER MEMORY

Exactly where the VIC-II gets it character information is important to graphic

programming. Normally, the chip gets the shapes of the characters you want to

be displayed from the CHARACTER GENERATOR ROM. In this chip are stored

the patterns which makeup the various letters, numbers, punctuation symbols, and

the other things that you see on the keyboard. One of the features of the

Commodore 64 is the ability to use patterns located in RAM memory. These RAM

104 PROGRAMMING GRAPHICS

patterns are created by you, and that means that you can have an almost infinite

set of symbols for games, business applications, etc.

A normal character set contains 256 characters in which each character is

defined by 8 bytes of data. Since each character takes up 8 bytes this means

that a full character set is 256*8=2K bytes of memory.

Since the VIC-II chip looks at 16K of memory at a time, there are 8 possible

locations for a complete character set. Naturally, you are free to use less than a

full character set. However, it must still start at one of the 8 possible starting

locations.

The location of character memory is controlled by 3 bits of the VIC-II control

register located at 53272 ($D018 in HEX notation). Bits 3, 2, and 1 control where

the characters' set is located in 2K blocks. Bit 0 is ignored. Remember that this is

the same register that determines where screen memory is located so avoid

disturbing the screen memory bits. To change the location of character memory,

the following BASIC statement can be used:

POKE 53272, (PEEK(53272) AND 240) OR A

Where A is one of the following values:

A BITS
LOCATION*

DECIMAL HEX

0 XXXX000X 0 $0000–$07FF

2 XXXX001X 2048 $0800–$0FFF

4 XXXX010X 4096 $1000–$17FF ROM IMAGE in BANK

0 & 2 (default)

6 XXXX011X 6144 $1800–$1FFF ROM IMAGE in BANK

0 & 2

8 XXXX100X 8192 $2000–$27FF

10 XXXX101X 10240 $2800–$2FFF

12 XXXX110X 12288 $3000–$37FF

14 XXXX111X 14336 $3800–$3FFF

*Remember to add in the BANK address.

PROGRAMMING GRAPHICS 105

The ROM IMAGE in the above table refers to the character generator ROM. It

appears in place of RAM at the above locations in bank 0. It also appears in the

corresponding RAM at locations 36864 to 40959 ($9000 to $9FFF) in bank 2.

Since the VIC-II chip can only access 16K of memory at a time, the ROM character

patterns appear in the 16K block of memory the VIC-II chip looks at. Therefore,

the system was designed to make the VIC-II chip think that the ROM characters

are at 4096 to 8191 ($1000 to $1FFF) when your data is in bank 0, and 36864

to 40959 ($9000 to $9FFF) when your data is in bank 2, even though the

character ROM is actually at location 53248 to 57343 ($D000 to $DFFF). This

imaging only applies to character data as seen by the VIC-II chip. It can be used

for programs, other data, etc., just like any other RAM memory.

NOTE: If these ROM images get in the way of your own graphics, then set the BANK SELECT

BITS to one of the BANKS without the images (BANKS 1 or 3). The ROM patterns won't be there.

The location and contents of the character set in ROM are as follows:

BLOCK
ADDRESS VIC-II

IMAGE
CONTENTS

DECIMAL HEX

0 53248 D000–D1FF 1000–11FF Upper case characters

 53760 D200–D3FF 1200–13FF Graphics characters

 54272 D400–D5FF 1400–15FF Reversed upper case

characters

 54784 D600–D7FF 1600–17FF Reversed graphics

characters

1 55296 D800–D9FF 1800–19FF Lower case characters

 55808 DA00–DBFF 1A00–1BFF Upper case &

graphics characters

 56320 DC00–DDFF 1C00–1DFF Reversed lower case

characters

 56832 DE00–DFFF 1E00–1FFF Reversed upper case

& graphics characters

Sharp-eyed readers will have just noticed something. The locations occupied by

the character ROM are the same as the ones occupied by the VIC-II chip control

registers. This is possible because they don't occupy the same locations at the

same time. When the VIC-II chip needs to access character data the ROM is

switched in. It becomes an image in the16K bank of memory that the VIC-II chip

106 PROGRAMMING GRAPHICS

is looking at. Otherwise, the area is occupied by the I/O control registers, and

the character ROM is only available to the VIC-II chip.

However, you may need to get to the character ROM if you are going to use

programmable characters and want to copy some of the character ROM for

some of your character definitions. In this case you must switch out the I/O

register, switch in the character ROM, and do your copying. When you're

finished, you must switch the I/O registers back in again. During the copying

process (when I/O is switched out) no interrupts can be allowed to take place.

This is because the I/O registers are needed to service the interrupts. If you

forget and perform an interrupt, really strange things happen. The keyboard

should not be read during the copying process. To turn off the keyboard and

other normal interrupts that occur with your Commodore 64, the following POKE

should be used:

POKE 56334, PEEK(56334) AND 254 (TURNS INTERRUPTS OFF)

After you are finished getting characters from the character ROM, and are

ready to continue with your program, you must turn the keyboard scan back on

by the following POKE:

POKE 56334, PEEK(56334) OR 1 (TURNS INTERRUPTS ON)

The following POKE will switch out I/O and switch the CHARACTER ROM in:

POKE 1, PEEK(1) AND 251

The character ROM is now in the locations from 53248 to 57343 ($D000 to

$DFFF).

To switch I/O back into $D000 for normal operation use the following POKE:

POKE 1, PEEK(1) OR 4

PROGRAMMING GRAPHICS 107

STANDARD CHARACTER MODE

Standard character mode is the mode the Commodore 64 is in when you first

turn it on. It is the mode you will generally program in.

Characters can be taken from ROM or from RAM, but normally they are taken

from ROM. When you want special graphics characters for a program, all you

have to do is define the new character shapes in RAM, and tell the VIC-II chip to

get its character information from there instead of the character ROM. This is

covered in more detail in the next section.

In order to display characters on the screen in color, the VIC-II chip accesses the

screen memory to determine the character code for that location on the screen.

At the same time, it accesses the color memory to determine what color you want

for the character displayed. The character code is translated by the VIC-II into

the starting address of the 8-byte block holding your character pattern. The 8-

byte block is located in character memory.

The translation isn't too complicated, but a number of items are combined to

generate the desired address. First the character code you use to POKE screen

memory is multiplied by 8. Next add the start of character memory (see

CHARACTER MEMORY section). Then the Bank Select Bits are taken into account

by adding in the base address (see VIDEO BANK SELECTION section). Below is

a simple formula to illustrate what happens:

CHARACTER ADDRESS = SCREEN CODE * 8 + (CHARACTER SET* 2048) +

(BANK * 16384)

CHARACTER DEFINITIONS

Each character is formed in an 8 by 8 grid of dots, where each dot maybe either

on or off. The Commodore 64 character images are stored in the Character

Generator ROM chip. The characters are stored as a set of 8 bytes for each

character, with each byte representing the dot pattern of a row in the character,

and each bit representing a dot. A zero bit means that dot is off, and a one bit

means the dot is on.

The character memory in ROM begins at location 53248 (when the I/O is

switched off). The first 8 bytes from location 53248 ($D000) to 53255 ($D007)

contain the pattern for the @ sign, which has a character code value of zero in

108 PROGRAMMING GRAPHICS

the screen memory. The next 8 bytes, from location 53256 ($D008) to 53263

($D00F), contain the information for forming the letter A.

IMAGE BINARY PEEK

** 00011000 24

**** 00111100 60

** ** 01100110 102

****** 01111110 126

** ** 01100110 102

** ** 01100110 102

** ** 01100110 102

 00000000 0

Each complete character set takes up 2K (2048 bits) of memory, 8 bytes per

character and 256 characters. Since there are two character sets, one for upper

case and graphics and the other with upper and lower case, the character

generator ROM takes up a total of 4K locations.

PROGRAMMABLE CHARACTERS

Since the characters are stored in ROM, it would seem that there is no way to

change them for customizing characters. However, the memory location that tells

the VIC-II chip where to find the characters is a programmable register which

can be changed to point to many sections of memory. By changing the character

memory pointer to point to RAM, the character set may be programmed for any

need.

If you want your character set to be located in RAM, there are a few VERY

IMPORTANT things to take into account when you decide to actually program

your own character sets. In addition, there are two other important points you

must know to create your own special characters:

1. It is an all or nothing process. Generally, if you use your own character set by

telling the VIC-II chip to get the character information from the area you have

prepared in RAM, the standard Commodore 64 characters are unavailable to

you. To solve this, you must copy any letters, numbers, or standard Commodore

64 graphics you intend to use into your own character memory in RAM. You can

pick and choose, take only the ones you want, and don't even have to keep them

in order!

PROGRAMMING GRAPHICS 109

2. Your character set takes memory space away from your BASIC program. Of

course, with 38K available for a BASIC program, most applications won't have

problems.

WARNING: You must be careful to protect the character set from being overwritten by your

BASIC program, which also uses the RAM.

There are two locations in the Commodore 64 to start your character set that

should NOT be used with BASIC: location 0 and location 2048. The first should

not be used because the system stores important data on page 0. The second

can't be used because that is where your BASIC program starts! However, there

are 6 other starting positions for your custom character set.

The best place to put your character set for use with BASIC while experimenting

is beginning at 12288 ($3000 in HEX). This is done by POKEing the low 4 bits

of location 53272 with 12. Try the POKE now, like this:

POKE 53272,(PEEK(53272)AND240)+12

Immediately, all the letters on the screen turn to garbage. This is because there

are no characters set up at location 12288 right now… only random bytes. Set

the Commodore 64 back to normal by hitting the RUN/STOP key and then

the RESTORE key.

Now let's begin creating graphics characters. To protect your character set from

BASIC, you should reduce the amount of memory BASIC thinks it has. The amount

of memory in your computer stays the same… it's just that you've told BASIC not

to use some of it. Type:

PRINT FRE(0)-(SGN(FRE(0))<0)*65535

The number displayed is the amount of memory space left unused. Now type the

following:

POKE 52,48: POKE56,48: CLR

Now type:

PRINT FRE(0)-(SGN(FRE(0))<0)*65535

110 PROGRAMMING GRAPHICS

See the change? BASIC now thinks it has less memory to work with. The memory

you just claimed from BASIC is where you are going to put your character set,

safe from actions of BASIC.

The next step is to put your characters into RAM. When you begin, there is

random data beginning at 12288 ($3000 HEX). You must put character patterns

in RAM (in the same style as the ones in ROM) for the VIC-II chip to use.

The following program moves 64 characters from ROM to your character set

RAM:

5 PRINT CHR$(142): REM SWITCH TO UPPER CASE
10 POKE 52, 48: POKE 56, 48: CLR: REM RESERVE MEMORY FOR
CHARACTERS
20 POKE 56334, PEEK (56334) AND 254: REM TURN OFF KEYSCAN
INTERRUPT TIMER
30 POKE 1, PEEK(1) AND 251: REM SWITCH IN CHARACTER
40 FOR I = 0 TO 511: POKE I + 12288, PEEK (I + 53248) :
NEXT
50 POKE1, PEEK(1) OR 4 :REM SWITCH IN I/O
60 POKE 56334, PEEK(56334) OR 1: REM RESTART KEYSCAN
INTERRUPT TIMER
70 END

Now POKE location 53272 with (PEEK(53272) AND 240) + 12. Nothing
happens, right? Well, almost nothing. The Commodore 64 is now getting its
character information from your RAM, instead of from ROM. But since we copied
the characters from ROM exactly, no difference can be seen… yet.

You can easily change the characters now. Clear the screen and type an @ sign.
Move the cursor down a couple of lines, then type:

FOR I = 12288 TO 12288 +7: POKE I, 255 - PEEK(I): NEXT

You just created a reversed @ sign!

TIP: Reversed characters are just characters with their bit patterns in character memory reversed.

Now move the cursor up to the program again and hit RETURN again to re-

reverse the character (bring it back to normal). By looking at the table of screen

display codes, you can figure out where in RAM each character is. Just remember

that each character takes eight memory locations to store. Here's a few examples

just to get you started:

PROGRAMMING GRAPHICS 111

CHARACTER DISPLAY CODE CURRENT STARTING LOCATION IN RAM

@ 0 12288

A 1 12296

! 33 12552

> 62 12784

Remember that we only took the first 64 characters. Something else will have to

be done if you want one of the other characters.

What if you wanted character number 154, a reversed Z? Well, you could make

it yourself, by reversing a Z, or you could copy the set of reversed characters

from the ROM, or just take the one character you want from ROM and replace

one of the characters you have in RAM that you don't need.

Suppose you decide that you won't need the > sign. Let's replace the > sign with

the reversed Z. Type this:

FOR I=0 TO 7: POKE 12784 + I, 255 - PEEK(I+12496): NEXT

Now type a > sign. It comes up as a reversed Z. No matter how many times you

type the >, it comes out as a reversed Z. (This change is really an illusion. Though

the > sign looks like a reversed Z, it still acts like a > in a program. Try something

that needs a > sign. It will still work fine, only it will look strange.)

A quick review: You can now copy characters from ROM into RAM. You can

even pick and choose only the ones you want. There's only one step left in

programmable characters (the best step!)… making your own characters.

Remember how characters are stored in ROM? Each character is stored as a

group of eight bytes. The bit patterns of the bytes directly control the character.

If you arrange 8 bytes, one on top of another, and write out each byte as eight

binary digits, it forms an eight by eight matrix, looking like the characters. When

a bit is a one, there is a dot at that location. When a bit is a zero, there is a

space at that location.

When creating your own characters, you set up the same kind of table in

memory. Type NEW and then type this program:

10 FOR I = 12448 TO 12455: READ A: POKE I, A: NEXT
20 DATA 60, 66, 165, 129, 165, 153, 66, 60

112 PROGRAMMING GRAPHICS

Now type RUN. The program will replace the letter T with a smiley face
character. Type a few T's to see the face. Each of the numbers in the DATA
statement in line 20 is a row in the smiley face character. The matrix for the face
looks like this:

 7 6 5 4 3 2 1 0 BINARY DECIMAL

ROW 0 **** **** **** **** 00111100 60

 1 **** **** 01000010 66

 2 **** **** **** **** 10100101 165

 3 **** **** 10000001 129

 4 **** **** **** **** 10100101 165

 5 **** **** **** **** 10011001 153

 6 **** **** 01000010 66

ROW 7 **** **** **** **** 00111100 60

7 6 5 4 3 2 1 0

0

1

2

3

4

5

6

7

 FIGURE 3-1. PROGRAMMABLE CHARACTER WORKSHEET.

PROGRAMMING GRAPHICS 113

The Programmable Character Worksheet (Figure 3-1) will help you design your

own characters. There is an 8 by 8 matrix on the sheet, with row numbers, and

numbers at the top of each column. (If you view each row as a binary word, the

numbers are the value of that bit position. Each is a power of 2. The left most bit

is equal to 128 or 2 to the 7th power, the next is equal to 64 or 2 to the 6th,

and so on, until you reach the right most bit (bit 0) which is equal to 1 or 2 to the

0 power.)

Place an X on the matrix at every location where you want a dot to be in your

character. When your character is ready you can create the DATA statement for

your character.

Begin with the first row. Wherever you placed an X, take the number at the top

of the column (the power-of-2 number, as explained above) and write it down.

When you have the numbers for every column of the first row, add them together.

Write this number down, next to the row. This is the number that you will put into

the DATA statement to draw this row.

Do the same thing with all of the other rows (1 to 7). When you are finished you

should have 8 numbers between 0 and 255. If any of your numbers are not

within range, recheck your addition. The numbers must be in this range to be

correct! If you have less than 8 numbers, you missed a row. It's OK if some are

0. The 0 rows are just as important as the other numbers.

Replace the numbers in the DATA statement in line 20 with the numbers you just

calculated, and RUN the program. Then type a T. Every time you type it, you'll

see your own character!

If you don't like the way the character turned out, just change the numbers in the

DATA statement and re-RUN the program until you are happy with your

character.

That's all there is to it!

HINT: For best results, always make any vertical lines in your characters at least 2 dots (bits)
wide. This helps prevent CHROMA noise (color distortion) on your characters when they are
displayed on a TV screen.

114 PROGRAMMING GRAPHICS

Here is an example of a program using standard programmable characters:

10 REM * EXAMPLE 1 *

20 REM CREATING PROGRAMMABLE CHARACTERS

31 POKE56334,PEEK(56334)AND254:POKE1,PEEK(1)AND251

35 FORI=0TO63

36 FORJ=0TO7

37 POKE12288+I*8+J,PEEK(53248+I*8+J)

38 NEXTJ, NEXTI

39 POKE1, PEEK(1)OR4:POKE56334,PEEK(56334)OR1

40 POKE53272, (PEEK(53272)AND240)+12

60 FORCHAR=60TO63

80 FORBYTE=0TO7

100 READNUMBER

120 POKE12288+(8*CHAR)+BYTE,NUMBER

140 NEXTBYTE:NEXTCHAR

150 PRINTCHR$(147)TAB(255)CHR$(60);

155 PRINTCHR$(61)TAB(55)CHR$(62)CHR$(63)

170 GETA$

180 IFA$="" THEN 170

190 POKE53272,21

200 DATA 4,6,7,5,7,7,3,3

210 DATA 32,96,224,160,224,224,192,192

220 DATA 7,7,7,31,31,95,143,127

230 DATA 224,224,224,248,248,248,240,224

240 END

PROGRAMMING GRAPHICS 115

MULTICOLOR MODE GRAPHICS

Standard high-resolution graphics give you control of very small dots on the

screen. Each dot in character memory can have 2 possible values, 1 for on and

0 for off. When a dot is off, the color of the screen is used in the space reserved

for that dot. If the dot is on, the dot is colored with the character color you have

chosen for that screen position. When you're using standard high-resolution

graphics, all the dots within each 8x8 character can either have background

color or foreground color. In some ways this limits the color resolution within that

space. For example, problems may occur when two different colored lines cross.

Multicolor mode gives you a solution to this problem. Each dot in multicolor mode

can be one of 4 colors: screen color (background color register #0), the color in

background register #1, the color in background color register#2, or character

color. The only sacrifice is in the horizontal resolution, because each multicolor

mode dot is twice as wide as a high-resolution dot. This minimal loss of resolution

is more than compensated for by the extra abilities of multicolor mode.

MULTICOLOR MODE BIT

To turn on multicolor character mode, set bit 4 of the VIC-II control register at

53270 ($D016) to a 1 by using the following POKE:

POKE 53270, PEEK(53270) OR 16

To turn off multicolor character mode, set bit 4 of location 53270 to a 0 by the

following POKE:

POKE 53270, PEEK(53270) AND 239

Multicolor mode is set on or off for each space on the screen, so that multicolor

graphics can be mixed with high-resolution (hi-res) graphics. This is controlled by

bit 3 in color memory. Color memory begins at location 55296 ($D800 in HEX).

If the number in color memory is less than 8 (0 to 7) the corresponding space on

the video screen will be standard hi-res, in the color (0 to 7) you've chosen. If the

number located in color memory is greater or equal to 8 (from 8 to 15), then

that space will be displayed in multicolor mode.

116 PROGRAMMING GRAPHICS

By POKEing a number into color memory, you can change the color of the

character in that position on the screen. POKEing a number from 0 to 7 gives the

normal character colors. POKEing a number between 8 and 15 puts the space

into multicolor mode. In other words, turning BIT 3 ON in color memory, sets

MULTICOLOR MODE. Turning BIT 3 OFF in color memory, sets the normal, HIGH-

RESOLUTION mode.

Once multicolor mode is set in a space, the bits in the character determine which

colors are displayed for the dots. For example, here is a picture of the letter A,

and its bit pattern:

IMAGE BIT PATTERN

** 00011000

**** 00111100

** ** 01100110

****** 01111110

** ** 01100110

** ** 01100110

** ** 01100110

 00000000

In normal or high-resolution mode, the screen color is displayed everywhere there

is a 0 bit, and the character color is displayed where the bit is a 1. Multicolor

mode uses the bits in pairs, like so:

IMAGE BIT PATTERN

AABB 00 01 10 00

CCCC 00 11 11 00

AABBAABB 01 10 01 10

AACCCCBB 01 11 11 10

AABBAABB 01 10 01 10

AABBAABB 01 10 01 10

AABBAABB 01 10 01 10

 00 00 00 00

In the image area above, the spaces marked AA are drawn in the background

#1color, the spaces marked BB use the background #2 color, and the spaces

marked CC use the character color. The bit pairs determine this, according to the

following chart:

PROGRAMMING GRAPHICS 117

BIT PAIR COLOR REGISTER LOCATION

00 Background #0 color (screen color) 53281 ($D021)

01 Background #1 color 53282 ($D022)

10 Background #2 color 53283 ($D023)

11 Color specified by the lower 3 bits

in color memory

Color RAM

NOTE: The sprite foreground color is a 10. The character foreground color is an 11.

Type NEW and then type this demonstration program:

100 POKE53281,1

110 POKE53282,3

120 POKE53283,8

130 POKE53270,PEEK(53270)OR16

140 C=13*4096+8*256

150 PRINTCHR$(147)"AAAAAAAAAA"

160 FORL=0TO9

170 POKEC+L,8

180 NEXT

The screen color is white, the character color is black, one color register is cyan

(greenish blue), the other is orange.

You're not really putting color codes in the space for character color, you're

actually using references to the registers associated with those colors. This

conserves memory, since 2 bits can be used to pick 16 colors (background) or 8

colors (character). This also makes some neat tricks possible. Simply changing one

118 PROGRAMMING GRAPHICS

of the indirect registers will change every dot drawn in that color. Therefore

everything drawn in the screen and background colors can be changed on the

whole screen instantly. Here is an example of changing background color

register #1:

100 POKE53270,PEEK(53270)OR16

110 PRINTCHR$(147)CHR$(18);

120 PRINT""; REM C= & 1
130 FORL=1TO22:PRINTCHR$(65);:NEXT

135 FORT=1TO500:NEXT

140 PRINT""; REM CTRL & 7
145 FORT=1TO500:NEXT

150 PRINT"HIT A KEY" REM CTRL & 1
160 GETA$:IFA$=""THEN160

170 X=INT(RND(1)*16)

180 POKE53282,X

190 GOTO160

By using the  key and the COLOR keys the characters can be changed to any

color, including multicolor characters. For example, type this command:

POKE 53270, PEEK(53270) OR 16: PRINT"";:REM LT.

RED/MULTICOLOR RED

The word READY and anything else you type will be displayed in multicolor

mode. Another color control can set you back to regular text.

  1

 CTRL 7

 CTRL 1

 CTRL 3

PROGRAMMING GRAPHICS 119

Here is an example of a program using multicolor programmable characters:

10 REM * EXAMPLE 2 *

20 REM CREATING MULTI COLOR PROGRAMMABLE CHARACTERS

31 POKE56334,PEEK(56334)AND254:POKE1,PEEK(1)AND251

35 FORI=0TO63

36 FORJ=0TO7

37 POKE12288+I*8+J,PEEK(53248+I*8+J)

38 NEXTJ,I

39 POKE1,PEEK(1)OR4:POKE56334,PEEK(56334)OR1

40 POKE53272,(PEEK(53272)AND240)+12

50 POKE53270,PEEK(53270)OR16

51 POKE53281,0

52 POKE53282,2

53 POKE53283,7

60 FORCHAR=60TO63

80 FORBYTE=0TO7

100 READNUMBER

120 POKE12288+(8*CHAR)+BYTE,NUMBER

140 NEXTBYTE,CHAR

150 PRINT""TAB(255)CHR$(60)CHR$(61)TAB(55)CHR$(62)
CHR$(63)

170 GETA$

180 IFA$="" THEN 170

190 POKE53272,21:POKE53270,PEEK(53270)AND239

200 DATA 129,37,21,29,93,85,85,85

210 DATA 66,72,84,116,117,85,85,85

220 DATA 87,87,85,21,8,8,40,0

230 DATA 213,213,85,84,32,32,40,0

240 END

 SHIFT CLR/HOME

120 PROGRAMMING GRAPHICS

EXTENDED BACKGROUND COLOR MODE

Extended background color mode gives you control over the background color

of each individual character, as well as over the foreground color. For example,

in this mode you could display a blue character with a yellow background on a

white screen.

There are 4 registers available for extended background color mode. Each of

the registers can be set to any of the16 colors.

Color memory is used to hold the foreground color in extended background

mode. It is used the same as in standard character mode.

Extended character mode places a limit on the number of different characters

you can display, however. When extended color mode is on, only the first 64

characters in the character ROM (or the first 64 characters in your

programmable character set) can be used. This is because two of the bits of the

character code are used to select the background color. It might work something

like this:

The character code (the number you would POKE to the screen) of the letter "A"

is a 1. When extended color mode is on, if you POKEd a 1 to the screen, an "A"

would appear. If you POKEd a 65 to the screen normally, you would expect the

character with character code (CHR$) 129 to appear, which is a reversed "A."

This does NOT happen in extended color mode. Instead you get the same

unreversed "A" as before, but on a different background color. The following

chart gives the codes:

CHARACTER CODE BACKGROUND COLOR REGISTER

RANGE BIT 7 BIT 6 NUMBER ADDRESS

0–63 0 0 0 53281–($D021)

64–127 0 1 1 53282–($D022)

128–191 1 0 2 53283–($D023)

192–255 1 1 3 53284–($D024)

Extended color mode is turned ON by setting bit 6 of the VIC-II register to a 1

at location 53265 ($D011 in HEX). The following POKE does it:

POKE 53265, PEEK(53265) OR 64

PROGRAMMING GRAPHICS 121

Extended color mode is turned OFF by setting bit 6 of the VIC-II register to a 0
at location 53265 ($D011). The following statement will do this:

POKE 53265, PEEK(53265) AND 191

BITMAPPED GRAPHICS

When writing games, plotting charts for business applications, or other types of

programs, sooner or later you get to the point where you want high-resolution

displays.

The Commodore 64 has been designed to do just that: high resolution is available

through bitmapping of the screen. Bitmapping is the method in which each

possible dot (pixel) of resolution on the screen is assigned its own bit (location)

in memory. If that memory bit is a one, the dot it is assigned to is on. If the bit is

set to zero, the dot is off.

High-resolution graphic design has a couple of drawbacks, which is why it is not

used all the time. First of all, it takes lots of memory to bitmap the entire screen.

This is because every pixel must have a memory bit to control it. You are going

to need one bit of memory for each pixel (or one byte for 8 pixels). Since each

character is 8 by 8, and there are 40 lines with 25 characters in each line, the

resolution is 320 pixels (dots) by 200 pixels for the whole screen. That gives you

64000 separate dots, each of which requires a bit in memory. In other words,

8000 bytes of memory are needed to map the whole screen.

Generally, high-resolution operations are made of many short, simple, repetitive

routines. Unfortunately, this kind of thing is usually rather slow if you are trying

to write high-resolution routines in BASIC. However, short, simple, repetitive

routines are exactly what machine language does best. The solution is to either

write your programs entirely in machine language, or call machine language,

high-resolution sub-routines from your BASIC program using the SYS command

from BASIC. That way you get both the ease of writing in BASIC, and the speed

of machine language for graphics. The VSP cartridge is also available to add

high-resolution commands to COMMODORE 64 BASIC.

All of the examples given in this section will be in BASIC to make them clear.

Now to the technical details.

BITMAPPING is one of the most popular graphics techniques in the computer

world. It is used to create highly detailed pictures. Basically, when the

Commodore 64 goes into bitmap mode, it directly displays an 8K section of

122 PROGRAMMING GRAPHICS

memory on the TV screen. When in bitmap mode, you can directly control whether

an individual dot on the screen is on or off.

There are two types of bitmapping available on the Commodore 64. They are:

1. Standard (high-resolution) bitmapped mode (320-dot by 200-dot resolution)

2. Multicolor bitmapped mode (160-dot by 200-dot resolution)

Each is very similar to the character type it is named for: standard has greater

resolution, but fewer color selections. On the other hand, multicolor bitmapping

trades horizontal resolution for a greater number of colors in an 8-dot by 8-dot

square.

STANDARD HIGH-RESOLUTION BITMAP MODE

Standard bitmap mode gives you a 320 horizontal dot by 200 vertical dot

resolution, with a choice of 2 colors in each 8-dot by 8-dot section. Bitmap mode

is selected (turned ON) by setting bit 5 of the VIC-II control register to a 1 at

location 53265 ($D011 in HEX). The following POKE will do this:

POKE 53265, PEEK(53265) OR 32

Bitmap mode is turned OFF by setting bit 5 of the VIC-II control register to 0 at

location 53265 ($D011), like this:

POKE 53265, PEEK(53265) AND 223

Before we get into the details of the bitmap mode, there is one more issue to

tackle, and that is where to locate the bitmap area.

HOW IT WORKS

If you remember the PROGRAMMABLE CHARACTERS section you will recall that

you were able to set the bit pattern of a character stored in RAM to almost

anything you wanted. If at the same time you change the character that is

displayed on the screen, you would be able to change a single dot, and watch

it happen. This is the basis of bit-mapping. The entire screen is filled with

PROGRAMMING GRAPHICS 123

programmable characters, and you make your changes directly into the memory

that the programmable characters get their patterns from.

Each of the locations in screen memory that were used to control what character

was displayed, are now used for color information. For example, instead of

POKEing a 1 in location 1024 to make an "A" appear in the top left hand corner

of the screen, location 1024 now controls the colors of the bits in that top left

space.

Colors of squares in bitmap mode do not come from color memory, as they do

in the character modes. Instead, colors are taken from screen memory. The upper

4 bits of screen memory become the color of any bit that is set to 1 in the 8 by

8 area controlled by that screen memory location. The lower 4 bits become the

color of any bit that is set to a 0.

EXAMPLE: Type the following:

5 BASE=2*4096: POKE53272, PEEK(53272) OR 8: REM PUT

BITMAP AT 8192

10 POKE53265, PEEK(53265) OR 32: REM ENTER BITMAP MODE

Now RUN the program.

Garbage appears on the screen, right? Just like the normal screen mode, you

have to clear the HIGH-RESOLUTION (HI-RES) screen before you use it.

Unfortunately, printing a CLR won't work in this case. Instead you have to clear

out the section of memory that you're using for your programmable characters.

Hit the RUN/STOP and RESTORE keys, then add the following lines to your

program to clear the HI-RES screen:

20 FOR I = BASE TO BASE + 7999: POKE I, 0: NEXT: REM

CLEAR BITMAP

30 FOR I = 1024 TO 2023: POKE I, 3: NEXT: REM SET COLOR

TO CYAN AND BLACK

Now RUN the program again. You should see the screen clearing, then the

greenish blue color, cyan, should cover the whole screen. What we want to do

now is to turn the dots on and off on the HI-RES screen.

124 PROGRAMMING GRAPHICS

To SET a dot (turn a dot ON) or UNSET a dot (turn a dot OFF) you must know

how to find the correct bit in the character memory that you have to set to a 1.

In other words, you have to find the character you need to change, the row of

the character, and which bit of the row that you have to change. You need a

formula to calculate this.

We will use X and Y to stand for the horizontal and vertical positions of a dot.

The dot where X=0 and Y=0 is at the upper left of the display. Dots to the right

have higher X values, and the dots toward the bottom have higher Y values. The

best way to use bitmapping is to arrange the bitmap display something like this:

0--X---319

.

.

.

.

.

.

Y

.

.

.

.

.

.

.

199--

Each dot will have an X and a Y coordinate. With this format it is easy to control

any dot on the screen.

PROGRAMMING GRAPHICS 125

However, what you actually have is something like this:

T
O
P
 L
IN
E

R
O
W
 0

------ BYTE 0 BYTE 8 BYTE 16 BYTE 24 …… BYTE 312

 BYTE 1 BYTE 9 . . BYTE 313

 BYTE 2 BYTE 10 . . BYTE 314

 BYTE 3 BYTE 11 . . BYTE 315

 BYTE 4 BYTE 12 . . BYTE 316

 BYTE 5 BYTE 13 . . BYTE 317

 BYTE 6 BYTE 14 . . BYTE 318

------ BYTE 7 BYTE 15 . . BYTE 319

S
E
C
O
N
D
 L
IN
E

R
O
W
 1

------ BYTE 320 BYTE 328 BYTE 336 BYTE 344 …… BYTE 632

 BYTE 321 BYTE 329 . . BYTE 633

 BYTE 322 BYTE 330 . . BYTE 634

 BYTE 323 BYTE 331 . . BYTE 635

 BYTE 324 BYTE 332 . . BYTE 636

 BYTE 325 BYTE 333 . . BYTE 637

 BYTE 326 BYTE 334 . . BYTE 638

------ BYTE 327 BYTE 335 . . BYTE 639

The programmable characters which make up the bitmap are arranged in 25

rows of 40 columns each. While this is a good method of organization for text,

it makes bitmapping somewhat difficult. (There is a good reason for this method.

See the section on MIXED MODES.)

The following formula will make it easier to control a dot on the bitmap screen:

The start of the display memory area is known as the BASE. The row number

(from 0 to 24) of your dot is:

ROW = INT(Y/8) (There are 320 bytes per line.)

The character position on that line (from 0 to 39) is:

CHAR = INT(X/8) (There are 8 bytes per character.)

The line of that character position (from 0 to 7) is:

LINE = Y AND 7

126 PROGRAMMING GRAPHICS

The bit of that byte is:

BIT=7–(X AND 7)

Now we put these formulas together. The byte in which character memory dot

(X,Y) is located is calculated by:

BYTE= BASE + ROW * 320 + CHAR * 8 + LINE

To turn on any bit on the grid with coordinates (X,Y), use this line:

POKE BYTE, PEEK(BYTE) OR 2 ↑ BIT

Let's add these calculations to the program. In the following example, the

COMMODORE 64 will plot a sine curve:

5 BASE=2*4096:POKE53272,PEEK(53272)OR8

10 POKE 53265,PEEK(53265)OR32

20 FORI=BASETOBASE+7999:POKEI,0:NEXT

30 FORI=1024TO2023:POKEI,3:NEXT

50 FORX=0TO319STEP.5

60 Y=INT(90+80*SIN(X/10))

70 CH=INT(X/8)

80 RO=INT(Y/8)

85 LN=YAND7

90 BY=BASE+RO*320+8*CH+LN

100 BI=7-(XAND7)

110 POKEBY,PEEK(BY)OR(2↑BI)

120 NEXTX

125 POKE1024,16

130 GOTO130

The calculation in line 60 will change the values for the sine function from a range

of +1 to –1 to a range of 10 to 170. Lines 70 to 100 calculate the character,

row, byte, and bit being affected, using the formulae as shown above. Line 125

signals the program is finished by changing the color of the top left corner of the

screen. Line 130 freezes the program by putting it into an infinite loop. When

you have finished looking at the display, just hold down RUN/STOP and

hit RESTORE .

PROGRAMMING GRAPHICS 127

As a further example, you can modify the sine curve program to display a

semicircle. Here are the lines to type to make the changes:

50 FORX=0TO160

55 Y1=100+SQR(160*X-X*X)

56 Y2=100-SQR(160*X-X*X)

60 FORY=Y1TOY2STEPY1-Y2

70 CH=INT(X/8)

80 RO=INT(Y/8)

85 LN=YAND7

90 BY=BASE+RO*320+8*CH+LN

100 BI=7-(XAND7)

110 POKEBY,PEEK(BY)OR(2↑BI)

114 NEXT

This will create a semicircle in the HI-RES area of the screen.

WARNING: BASIC variables can overlay your high-resolution screen. If you need more memory

space you must move the bottom of BASIC above the high-resolution screen area. Or, you must

move your high-resolution screen area. This problem will NOT occur in machine language. It ONLY

happens when you're writing programs in BASIC.

MULTICOLOR BITMAP MODE

Like multicolor mode characters, multicolor bitmap mode allows you to display

up to four different colors in each 8 by 8 section of bitmap. And as in multi-

character mode, there is a sacrifice of horizontal resolution (from 320 dots to

160 dots).

Multicolor bitmap mode uses an 8K section of memory for the bitmap. You select

your colors for multicolor bitmap mode from (1) the background color register 0,

(the screen background color), (2) the video matrix (the upper 4 bits give one

possible color, the lower 4 bits another), and (3) color memory.

Multicolor bitmapped mode is turned ON by setting bit 5 of 53265 ($D011)

and bit 4 at location 53270 ($D016) to a 1. The following POKE does this:

POKE53265,PEEK(53265)OR 32:POKE53270,PEEK(53270)OR16

128 PROGRAMMING GRAPHICS

Multicolor bitmapped mode is turned OFF by setting bit 5 of 53265 ($D011)

and bit 4 at location 53270 ($D016) to a 0. The following POKE does this:

POKE53265,PEEK(53265)AND223:POKE53270,PEEK(53270)AND239

As in standard (HI-RES) bitmapped mode, there is a one-to-one correspondence

between the 8K section of memory being used for the display, and what is shown

on the screen. However, the horizontal dots are two bits wide. Each 2 bits in the

display memory area form a dot, which can have one of 4 colors.

BITS COLOR INFORMATION COMES FROM

00 Background color #0 (screen color)

01 Upper 4 bits of screen memory

10 Lower 4 bits of screen memory

11 Color nybble (nybble = ½ byte = 4 bits)

SMOOTH SCROLLING

The VIC-II chip supports smooth scrolling in both the horizontal and vertical

directions. Smooth scrolling is a one pixel movement of the entire screen in one

direction. It can move either up, or down, or left, or right. It is used to move new

information smoothly onto the screen, while smoothly removing characters from

the other side.

While the VIC-II chip does much of the task for you, the actual scrolling must be

done by a machine language program. The VIC-II chip features the ability to

place the video screen in any of 8 horizontal positions, and 8 vertical positions.

Positioning is controlled by the VIC-II scrolling registers. The VIC-II chip also has

a 38 column mode, and a 24 row mode. The smaller screen sizes are used to

give you a place for your new data to scroll on from.

The following are the steps for SMOOTH SCROLLING:

PROGRAMMING GRAPHICS 129

1. Shrink the screen (the border will expand).

2. Set the scrolling register to maximum (or minimum value depending upon the

direction of your scroll).

3. Place the new data on the proper (covered) portion of the screen.

4. Increment (or decrement) the scrolling register until it reaches the maximum (or

minimum) value.

5. At this point, use your machine language routine to shift the entire screen one

entire character in the direction of the scroll.

6. Go back to step 2.

To go into 38 column mode, bit 3 of location 53270 ($D016) must be set to a 0.

The following POKE does this:

POKE 53270, PEEK(53270) AND 247

To return to 40 column mode, set bit 3 of location 53270 ($D016) to a 1. The

following POKE does this:

POKE 53270, PEEK(53270) OR 8

To go into 24 row mode, bit 3 of location 53265 ($D011) must be set to a 0.

The following POKE will do this:

POKE 53265, PEEK(53265) AND 247

To return to 25 row mode, set bit 3 of location 53265 ($D011) to a 1. The

following POKE does this:

POKE 53265, PEEK(53265) OR 8

When scrolling in the X direction, it is necessary to place the VIC-II chip into 38

column mode. This gives new data a place to scroll from. When scrolling LEFT,

the new data should be placed on the right. When scrolling RIGHT the new data

should be placed on the left. Please note that there are still 40 columns to screen

memory, but only 38 are visible.

When scrolling in the Y direction, it is necessary to place the VIC-II chip into 24

row mode. When scrolling UP, place the new data in the LAST row. When

scrolling DOWN, place the new data on the FIRST row. Unlike X scrolling, where

there are covered areas on each side of the screen, there is only one covered

area in Y scrolling. When the Y scrolling register is set to 0, the first line is

covered, ready for new data.

130 PROGRAMMING GRAPHICS

When the Y scrolling register is set to 7 the last row is covered.

For scrolling in the X direction, the scroll register is located in bits 2 to 0 of the

VIC-II control register at location 53270 ($D016 in HEX). As always, it is

important to affect only those bits. The following POKE does this:

POKE 53270, (PEEK(53270) AND 248)+X

where X is the X position of the screen from 0 to 7.

For scrolling in the Y direction, the scroll register is located in bits 2 to 0 of the

VIC-II control register at location 53265 ($D011 in HEX). As always, it is

important to affect only those bits. The following POKE does this:

POKE 53265, (PEEK(53265) AND 248) + Y

where Y is the Y position of the screen from 0 to 7.

To scroll text onto the screen from the bottom, you would step the low-order 3

bits of location 53265 from 0 to 7, put more data on the covered line at the

bottom of the screen, and then repeat the process.

To scroll characters onto the screen from left to right, you would step the low-

order 3 bits of location 53270 from 0 to 7, print or POKE another column of new

data into column 0 of the screen, then repeat the process.

If you step the scroll bits by –1, your text will move in the opposite direction.

EXAMPLE: Text scrolling onto the bottom of the screen:

10 POKE53265,PEEK(53265)AND247

20 PRINTCHR$(147)

30 FORX=1TO24:PRINTCHR$(17);:NEXT

40 POKE53265,(PEEK(53265)AND248)+7:PRINT

50 PRINT" HELLO";

60 FORY=6TO0STEP-1

70 POKE53265,(PEEK(53265)AND248)+Y

80 FORX=1TO50:NEXT

90 GOTO40

PROGRAMMING GRAPHICS 131

SPRITES

A SPRITE is a special type of user definable character which can be displayed

anywhere on the screen. Sprites are maintained directly by the VIC-II chip. And

all you have to do is tell a sprite "what to look like," "what color to be," and

"where to appear." The VIC-II chip will do the rest! Sprites can be any of the 16

colors available.

Sprites can be used with ANY of the other graphics modes: bitmapped,

character, multicolor, etc., and they'll keep their shape in all of them. The sprite

carries its own color definition, its own mode (HI-RES or multicolored), and its own

shape.

Up to 8 sprites at a time can be maintained by the VIC-II chip automatically.

More sprites can be displayed using RASTER INTERRUPT techniques.

The features of SPRITES include:

1. 24 horizontal dot by 21 vertical dot size.

2. Individual color control for each sprite.

3. Sprite multicolor mode.

4. Magnification (2X) in horizontal, vertical, or both directions.

5. Selectable sprite to background priority.

6. Fixed sprite to sprite priorities.

7. Sprite to sprite collision detection.

8. Sprite to background collision detection.

These special sprite abilities make it simple to program many arcade style

games. Because the sprites are maintained by hardware, it is even possible to

write a good quality game in BASIC!

There are 8 sprites supported directly by the VIC-II chip. They are numbered

from 0 to 7. Each of the sprites has its own definition location, position registers

and color register, and has its own bits for enable and collision detection.

DEFINING A SPRITE

Sprites are defined like programmable characters are defined. However, since

the size of the sprite is larger, more bytes are needed. A sprite is 24 by 21 dots,

or 504 dots. This works out to 63 bytes (504/8 bits) needed to define a sprite.

132 PROGRAMMING GRAPHICS

FIGURE 3-2. SPRITE DEFINITION BLOCK.

PROGRAMMING GRAPHICS 133

The 63 bytes are arranged in 21 rows of 3 bytes each. A sprite definition looks
like this:

BYTE 0 BYTE 1 BYTE 2

BYTE 3 BYTE 4 BYTE 5

BYTE 6 BYTE 7 BYTE 8

..

..

..
BYTE 60 BYTE 61 BYTE 62

Another way to view how a sprite is created is to take a look at the sprite
definition block on the bit level. It would look something like Figure 3-2.

In a standard (HI-RES) sprite, each bit set to 1 is displayed in that sprite's

foreground color. Each bit set to 0 is transparent and will display whatever data

is behind it. This is similar to a standard character.

Multicolor sprites are similar to multicolor characters. Horizontal resolution is

traded for extra color resolution. The resolution of the sprite becomes 12

horizontal dots by 21 vertical dots. Each dot in the sprite becomes twice as wide,

but the number of colors displayable in the sprite is increased to 4.

SPRITE POINTERS

Even though each sprite takes only 63 bytes to define, one more byte is needed

as a place holder at the end of each sprite. Each sprite, then, takes up 64 bytes.

This makes it easy to calculate where in memory your sprite definition is, since

64 bytes is an even number and in binary it's an even power.

Each of the 8 sprites has a byte associated with it called the SPRITE POINTER.

The sprite pointers control where each sprite definition is located in memory.

These 8 bytes are always located as the last 8 bytes of the1K chunk of screen

memory. Normally, on the Commodore 64, this means they begin at location

2040 ($07F8 in HEX). However, if you move the screen, the location of your

sprite pointers will also move.

Each sprite pointer can hold a number from 0 to 255. This number points to the

definition for that sprite. Since each sprite definition takes 64 bytes, that means

that the pointer can "see" anywhere in the 16K block of memory that the VIC-II

chip can access (since 256*64=16K).

134 PROGRAMMING GRAPHICS

If sprite pointer #0, at location 2040, contains the number 14, for example, this

means that sprite 0 will be displayed using the 64 bytes beginning at location

14*64=896 which is in the cassette buffer. The following formula makes this

clear:

LOCATION = (BANK * 16384) + (SPRITE POINTER VALUE * 64)

Where BANK is the 16K segment of memory that the VIC-II chip is looking at

and is from 0 to 3.

The above formula gives the start of the 64 bytes of the sprite definition block.

When the VIC-II chip is looking at BANK 0 or BANK 2, there is a ROM IMAGE of

the character set present in certain locations, as mentioned before. Sprite

definitions can NOT be placed there. If for some reason you need more than

128 different sprite definitions, you should use one of the banks without the ROM

IMAGE, 1 or 3.

TURNING SPRITES ON

The VIC-II control register at location 53269 ($D015 in HEX) is known as the

SPRITE ENABLE register. Each of the sprites has a bit in this register which

controls whether that sprite is ON or OFF. The register looks like this:

$D015 7 6 5 4 3 2 1 0

To turn on Sprite 1, for example, it is necessary to turn that bit to a 1. The

following POKE does this:

POKE 53269, PEEK(53269) OR 2

A more general statement would be the following:

POKE 53269, PEEK(53269) OR (2↑SN)

where SN is the Sprite Number, from 0 to 7.

NOTE: A sprite must be turned ON before it can be seen.

PROGRAMMING GRAPHICS 135

TURNING SPRITES OFF

A sprite is turned off by setting its bit in the VIC-lI control register at 53269

($D015 in HEX) to a 0. The following POKE will do this:

POKE 53269, PEEK(53269) AND (255-2↑SN)

where SN is the Sprite Number from 0 to 7.

COLORS

A sprite can be any of the 16 colors generated by the VIC-II chip. Each of the

sprites has its own sprite color register. These are the memory locations of the

color registers:

ADDRESS DESCRIPTION

53287 ($D027) SPRITE 0 COLOR REGISTER

53288 ($D028) SPRITE 1 COLOR REGISTER

53289 ($D029) SPRITE 2 COLOR REGISTER

53290 ($D02A) SPRITE 3 COLOR REGISTER

53291 ($D02B) SPRITE 4 COLOR REGISTER

53292 ($D02C) SPRITE 5 COLOR REGISTER

53293 ($D02D) SPRITE 6 COLOR REGISTER

53294 ($D02E) SPRITE 7 COLOR REGISTER

All dots in the sprite will be displayed in the color contained in the sprite color

register. The rest of the sprite will be transparent, and will show whatever is

behind the sprite.

MULTICOLOR MODE

Multicolor mode allows you to have up to 4 different colors in each sprite.

However, just like other multicolor modes, horizontal resolution is cut in half. In

other words, when you're working with sprite multicolor mode (like in multicolor

character mode), instead of 24 dots across the sprite, there are 12 pairs of dots.

Each pair of dots is called a BIT PAIR. Think of each bit pair (pair of dots) as a

single dot in your overall sprite when it comes to choosing colors for the dots in

136 PROGRAMMING GRAPHICS

your sprites. The table below gives you the bit pair values needed to turn ON

each of the four colors you've chosen for your sprite:

BIT PAIR DESCRIPTION

00 TRANSPARENT, SCREEN COLOR

01 SPRITE MULTICOLOR REGISTER #0 (53285) ($D025)

10 SPRITE COLOR REGISTER

11 SPRITE MULTICOLOR REGISTER #1 (53286) ($D026)

NOTE: The sprite foreground color is a 10. The character foreground is an 11.

SETTlNG A SPRITE TO MULTICOLOR MODE

To switch a sprite into multicolor mode you must turn ON the VIC-II control register
at location 53276 ($D01C). The following POKE does this:

POKE 53276, PEEK(53276) OR (2↑SN)

where SN is the Sprite Number (0 to 7).

To switch a sprite out of multicolor mode you must turn OFF the VIC-II control
register at location 53276 ($D01C). The following POKE does this:

POKE 53276, PEEK(53276) AND (255-2↑SN)

where SN is the Sprite Number (0 to 7).

EXPANDED SPRITES

The VIC-II chip has the ability to expand a sprite in the vertical direction, the
horizontal direction, or both at once. When expanded, each dot in the sprite is
twice as wide or twice as tall. Resolution doesn't actually increase… the sprite
just gets bigger.

To expand a sprite in the horizontal direction, the corresponding bit in the VIC-
II control register at location 53277 ($D01D in HEX) must be turned ON (set to
a 1). The following POKE expands a sprite in the X direction:

POKE 53277, PEEK(53277) OR (2↑SN)

where SN is the Sprite Number from 0 to 7.

PROGRAMMING GRAPHICS 137

To unexpand a sprite in the horizontal direction, the corresponding bit in the VIC-

II control register at location 53277 ($D01D in HEX) must be turned OFF (set to

a 0). The following POKE "unexpands" a sprite in the X direction:

POKE 53277, PEEK(53277) AND(255-2↑SN)

where SN is the Sprite Number from 0 to 7.

To expand a sprite in the vertical direction, the corresponding bit in the VIC-II

control register at location 53271 ($D017 in HEX) must be turned ON (set to a

1). The following POKE expands a sprite in the Y direction:

POKE 53271, PEEK(53271) OR (2↑SN)

where SN is the Sprite Number from 0 to 7.

To unexpand a sprite in the vertical direction, the corresponding bit in the VIC-II

control register at location 53271($D017 in HEX) must be turned OFF (set to a

0). The following POKE "unexpands" a sprite in the Y direction:

POKE 53271, PEEK(53271) AND (255-2↑SN)

where SN is the Sprite Number from 0 to 7.

SPRITE POSITIONING

Once you've made a sprite you want to be able to move it around the screen.

To do this, your Commodore 64 uses three positioning registers:

1. SPRITE X POSITION REGISTER

2. SPRITE Y POSITION REGISTER

3. MOST SIGNIFICANT BIT X POSITION REGISTER

Each sprite has an X position register, a Y position register, and a bit in the X

most significant bit register. This lets you position your sprites very accurately.

You can place your sprite in 512 possible X positions and 256 possible Y

positions.

The X and Y position registers work together, in pairs, as a team. The locations

of the X and Y registers appear in the memory map as follows: first is the X

register for sprite 0, then the Y register for sprite 0. Next comes the X register

138 PROGRAMMING GRAPHICS

for sprite 1, the Y register for sprite 1, and so on. After all 16 X and Y registers

comes the most significant bit in the X position (X MSB) located in its own register.

The chart below lists the locations of each sprite position register. You use the
locations at their appropriate time through POKE statements:

LOCATION
DESCRIPTION

DECIMAL HEX

53248 ($D000) SPRITE 0 X POSITION REGISTER

53249 ($D001) SPRITE 0 Y POSITION REGISTER

53250 ($D002) SPRITE 1 X POSITION REGISTER

53251 ($D003) SPRITE 1 Y POSITION REGISTER

53252 ($D004) SPRITE 2 X POSITION REGISTER

53253 ($D005) SPRITE 2 Y POSITION REGISTER

53254 ($D006) SPRITE 3 X POSITION REGISTER

53255 ($D007) SPRITE 3 Y POSITION REGISTER

53256 ($D008) SPRITE 4 X POSITION REGISTER

53257 ($D009) SPRITE 4 Y POSITION REGISTER

53258 ($D00A) SPRITE 5 X POSITION REGISTER

53259 ($D00B) SPRITE 5 Y POSITION REGISTER

53260 ($D00C) SPRITE 6 X POSITION REGISTER

53261 ($D00D) SPRITE 6 Y POSITION REGISTER

53262 ($D00E) SPRITE 7 X POSITION REGISTER

53263 ($D00F) SPRITE 7 Y POSITION REGISTER

53264 ($D010) SPRITE X MSB REGISTER

The position of a sprite is calculated from the TOP LEFT corner of the 24 dot by
21 dot area that your sprite can be designed in. It does NOT matter how many
or how few dots you use to make up a sprite. Even if only one dot is used as a
sprite, and you happen to want it in the middle of the screen, you must still
calculate the exact positioning by starting at the top left corner location.

VERTICAL POSITIONING

Setting up positions in the horizontal direction is a little more difficult than vertical
positioning, so we'll discuss vertical (Y) positioning first.

There are 200 different dot positions that can be individually programmed onto

your TV screen in the Y direction. The sprite Y position registers can handle

numbers up to 255. This means that you have more than enough register locations

PROGRAMMING GRAPHICS 139

to handle moving a sprite up and down. You also want to be able to smoothly

move a sprite on and off the screen. More than 200 values are needed for this.

The first on-screen value from the top of the screen, and in the Y direction for an

unexpanded sprite is 30. For a sprite expanded in the Y direction it would be 9.

(Since each dot is twice as tall, this makes a certain amount of sense, as the initial

position is STILL calculated from the top left corner of the sprite.)

The first Y value in which a sprite (expanded or not) is fully on the screen (all 21

possible lines displayed) is 50.

The last Y value in which an unexpanded sprite is fully on the screen is 229. The

last Y value in which an expanded sprite is fully on the screen is 208.

The first Y value in which a sprite is fully off the screen is 250.

EXAMPLE:

10 PRINT"": REM SHIFT CLR/HOME
20 POKE 2040,13

30 FOR I = 0 TO 62: POKE832+I,129: NEXT

40 V = 53248

50 POKE V + 21,1

60 POKE V + 39,1

70 POKE V + 1, 100

80 POKE V + 16,0: POKE V,100

HORIZONTAL POSITIONING

Positioning in the horizontal direction is more complicated because there are

more than 256 positions. This means that an extra bit, or 9th bit is used to control

the X position. By adding the extra bit when necessary a sprite now has 512

possible positions in the left/right, X, direction. This makes more possible

combinations than can be seen on the visible part of the screen. Each sprite can

have a position from 0 to 511. However, only those values between 24 and 343

are visible on the screen. If the X position of a sprite is greater than 255 (on the

right side of the screen), the bit in the X MOST SIGNIFICANT BIT (MSB) POSITION

register must be set to a 1 (turned ON). If the X position of a sprite is less than

 SHIFT CLR/HOME

140 PROGRAMMING GRAPHICS

FIGURE 3-3 SPRITE

PROGRAMMING GRAPHICS 141

POSITIONING CHARTS.

142 PROGRAMMING GRAPHICS

256 (on the left side of the screen), then the X MSB of that sprite must be 0

(turned OFF). Bits 0 to 7 of the X MSB register correspond to sprites 0 to 7,

respectively.

The following program moves a sprite across the screen:

EXAMPLE:

10 PRINT""
20 POKE 2040,13
30 FOR I = 0 TO 62: POKE832+I,129: NEXT
40 V = 53248
50 POKE V + 21,1
60 POKE V + 39,1
70 POKE V + 1, 100
80 FOR J = 0 TO 347
90 HX = INT(J/256): LX = J – 256 * HX
100 POKE V,LX: POKE V + 16,HX: NEXT

When moving expanded sprites onto the left side of the screen in the X direction,
you have to start the sprite OFF SCREEN on the RIGHT SIDE. This is because an
expanded sprite is larger than the amount of space available on the left side of
the screen.

EXAMPLE:

10 PRINT"": REM SHIFT CLR/HOME
20 POKE 2040,13

30 FOR I = 0 TO 62: POKE832+I,129: NEXT

40 V = 53248

50 POKE V + 21,1

60 POKE V + 39,1: POKE V + 23,1: POKE V + 29,1

70 POKE V + 1, 100

80 J = 488

90 HX = INT(J/256): LX = J – 256 * HX

100 POKE V, LX: POKE V + 16,HX

110 J = J + 1: IF J > 511 THEN J = 0

120 IF J > 488 OR J < 348 GOTO 90

The charts in Figure 3-3 explain sprite positioning.

By using these values, you can position each sprite anywhere. By moving the

sprite a single dot position at a time, very smooth movement is easy to achieve.

 SHIFT CLR/HOME

 SHIFT CLR/HOME

PROGRAMMING GRAPHICS 143

SPRITE POSITIONING SUMMARY

Unexpanded sprites are at least partially visible in the 40 column, by 25 row

mode within the following parameters:

1 < = X < = 343

30 < = Y < = 249

In the 38 column mode, the X parameters change to the following:

8 < = X < = 334

In the 24 row mode, the Y parameters change to the following:

34 < = Y < = 245

Expanded sprites are at least partially visible in the 40 column, by 25 row mode

within the following parameters:

489 > = X < = 343

9 > = Y < = 249

In the 38 column mode, the X parameters change to the following:

496 > = X < = 334

In the 24 row mode, the Y parameters change to the following:

13 < = Y < = 245

144 PROGRAMMING GRAPHICS

SPRITE DISPLAY PRIORITIES

Sprites have the ability to cross each other's paths, as well as cross in front of, or

behind other objects on the screen. This can give you a truly three dimensional

effect for games.

Sprite to sprite priority is fixed. That means that sprite 0 has the highest priority,

sprite 1 has the next priority, and so on, until we get to sprite 7, which has the

lowest priority. In other words, if sprite 1 and sprite 6 are positioned so that they

cross each other, sprite 1 will be in front of sprite 6.

So when you're planning which sprites will appear to be in the foreground of the

picture, they must be assigned lower sprite numbers than those sprites you want

to put towards the back of the scene. Those sprites will be given higher sprite

numbers.

NOTE: A "window" effect is possible. If a sprite with higher priority has "holes" in it (areas where

the dots are not set to 1 and thus turned ON), the sprite with the lower priority will show through.

This also happens with sprite and background data.

Sprite to background priority is controllable by the SPRITE-BACKGROUND

priority register located at 53275 ($D01B). Each sprite has a bit in this register.

If that bit is 0, that sprite has a higher priority than the background on the screen.

In other words, the sprite appears in front of background data. If that bit is a

1, that sprite has a lower priority than the background. Then the sprite appears

behind the background data.

COLLISION DETECTS

One of the more interesting aspects of the VIC-II chip is its collision detection

abilities. Collisions can be detected between sprites, or between sprites and

background data. A collision occurs when a non-zero part of a sprite overlaps a

non-zero portion of another sprite or characters on the screen.

PROGRAMMING GRAPHICS 145

SPRITE TO SPRITE COLLISIONS

Sprite to sprite collisions are recognized by the computer, or flagged, in the

sprite to sprite collision register at location 53278 ($D01E in HEX) in the VIC-II

chip control register. Each sprite has a bit in this register. If that bit is a 1, then

that sprite is involved in a collision. The bits in this register will remain set until

read (PEEKed). Once read, the register is automatically cleared, so it is a good

idea to save the value in a variable until you are finished with it.

NOTE: Collisions can take place even when the sprites are off screen.

SPRITE TO DATA COLLISIONS

Sprite to data collisions are detected in the sprite to data collision register at

location 53279 ($D01F in HEX) of the VIC-II chip control register.

Each sprite has a bit in this register. If that bit is a 1, then that sprite is involved

in a collision. The bits in this register remain set until read (PEEKed). Once read,

the register is automatically cleared, so it is a good idea to save the value in a

variable until you are finished with it.

NOTE: MULTICOLOR data 01 is considered transparent for collisions, even though it shows up on

the screen. When setting up a background screen, it is a good idea to make everything that

should not cause a collision 01 in multicolor mode.

146 PROGRAMMING GRAPHICS

10 REM * SPRITE EXAMPLE 1 *

20 REM THE HOT AIR BALLOON

30 VIC=13*4096

35 POKEVIC+21,1

36 POKEVIC+33,14

37 POKEVIC+23,1

38 POKEVIC+29,1

40 POKE2040,192

180 POKEVIC,100

190 POKEVIC+1,100

220 POKEVIC+39,1

250 FORY=0TO63

300 READA

310 POKE192*64+Y,A

320 NEXTY

330 DX=1:DY=1

340 X=PEEK(VIC)

350 Y=PEEK(VIC+1)

360 IFY=50ORY=208THENDY=-DY

380 IFX=24AND(PEEK(VIC+16)AND1)=0THENDX=-DX

400 IFX=40AND(PEEK(VIC+16)AND1)=1THENDX=-DX

420 IFX=255ANDDX=1THENX=-1:SIDE=1

440 IFX=0ANDDX=-1THENX=256:SIDE=0

460 X=X+DX

470 X=XAND255

480 Y=Y+DY

485 POKEVIC+16,SIDE

490 POKEVIC,X

510 POKEVIC+1,Y

530 GOTO340

600 REM ***** SPRITE DATA *****

610 DATA 0,127,0,1,255,192,3,255,224,3,231,224

620 DATA 7,217,240,7,223,240,7,217,240,3,231,224

630 DATA 3,255,224,3,255,224,2,255,160,1,127,64

640 DATA 1,62,64,0,156,128,0,156,128,0,73,0,0,73,0

650 DATA 0,62,0,0,62,0,0,62,0,0,28,0,0

PROGRAMMING GRAPHICS 147

10 REM * SPRITE EXAMPLE 2 *

20 REM THE HOT AIR BALLOON AGAIN

30 VIC=13*4096

35 POKEVIC+21,63

36 POKEVIC+33,14

37 POKEVIC+23,3

38 POKEVIC+29,3

40 POKE2040,192

50 POKE2041,193

60 POKE2042,192

70 POKE2043,193

80 POKE2044,192

90 POKE2045,193

100 POKEVIC+4,30

110 POKEVIC+5,58

120 POKEVIC+6,65

130 POKEVIC+7,58

140 POKEVIC+8,100

150 POKEVIC+9,58

160 POKEVIC+10,100

170 POKEVIC+11,58

175 PRINT""TAB(15)"THIS IS TWO HIRES SPRITES"

176 PRINTTAB(55)"ON TOP OF EACH OTHER"

180 POKEVIC,100

190 POKEVIC+1,100

200 POKEVIC+2,100

210 POKEVIC+3,100

220 POKEVIC+39,1

230 POKEVIC+41,1

240 POKEVIC+43,1

250 POKEVIC+40,6

260 POKEVIC+42,6

270 POKEVIC+44,6

280 FORX=192TO193

290 FORY=0TO63

300 READA

310 POKEX*64+Y,A

320 NEXTY,X

330 DX=1:DY=1

340 X=PEEK(VIC)

350 Y=PEEK(VIC+1)

360 IFY=50ORY=208THENDY=-DY

 CTRL 2

 SHIFT CLR/HOME

148 PROGRAMMING GRAPHICS

380 IFX=24AND(PEEK(VIC+16)AND1)=0THENDX=-DX

400 IFX=40AND(PEEK(VIC+16)AND1)=1THENDX=-DX

420 IFX=255ANDDX=1THENX=-1:SIDE=3

440 IFX=0ANDDX=-1THENX=256:SIDE=0

460 X=X+DX

470 X=XAND255

480 Y=Y+DY

485 POKEVIC+16,SIDE

490 POKEVIC,X

500 POKEVIC+2,X

510 POKEVIC+1,Y

520 POKEVIC+3,Y

530 GOTO340

600 REM ***** SPRITE DATA *****

610 DATA 0, 255, 0, 3, 153, 192, 7, 24, 224, 7, 56,

224, 14, 126, 112, 14, 126, 112, 14, 126, 112

620 DATA 6, 126, 96, 7, 56, 224, 7, 56, 224, 7, 56,

224, 1, 56, 128, 0, 153, 0, 0, 90, 0, 0, 56, 0

630 DATA 0, 56, 0, 0, 0, 0, 0, 0, 0, 0, 126, 0, 0, 42,

0, 0, 84, 0, 0, 40, 0, 0

640 DATA 0, 0, 0, 0, 102, 0, 0, 231, 0, 0, 195, 0, 1,

129, 128, 1, 129, 128, 1, 129, 128

650 DATA 1, 129, 128, 0, 195, 0, 0, 195, 0, 4, 195, 32,

2, 102, 64, 2, 36, 64, 1, 0, 128

660 DATA 1, 0, 128, 0, 153, 0, 0, 153, 0, 0, 0, 0, 0,

84, 0, 0, 42, 0, 0, 20, 0, 0

PROGRAMMING GRAPHICS 149

10 REM * SPRITE EXAMPLE 3 *

20 REM THE HOT AIR GORF

30 VIC=53248

35 POKEVIC+21,1

36 POKEVIC+33,14

37 POKEVIC+23,1

38 POKEVIC+29,1

40 POKE2040,192

50 POKEVIC+28,1

60 POKEVIC+37,7

70 POKEVIC+38,4

180 POKEVIC+0,100

190 POKEVIC+1,100

220 POKEVIC+39,2

290 FORY=0TO63

300 READA

310 POKE12288+Y,A

320 NEXTY

330 DX=1:DY=1

340 X=PEEK(VIC)

350 Y=PEEK(VIC+1)

360 IFY=50ORY=208THENDY=-DY

380 IFX=24AND(PEEK(VIC+16)AND1)=0THENDX=-DX

400 IFX=40AND(PEEK(VIC+16)AND1)=1THENDX=-DX

420 IFX=255ANDDX=1THENX=-1:SIDE=1

440 IFX=0ANDDX=-1THENX=256:SIDE=0

460 X=X+DX

470 X=XAND255

480 Y=Y+DY

485 POKEVIC+16,SIDE

490 POKEVIC,X

510 POKEVIC+1,Y

520 GETA$

521 IFA$="M"THENPOKEVIC+28,1

522 IFA$="H"THENPOKEVIC+28,0

530 GOTO340

600 REM ***** SPRITE DATA *****

610 DATA 64, 0, 1, 16, 170, 4, 6, 170, 144, 10, 170, 160,

42, 170, 168, 41, 105, 104, 169, 235, 106

620 DATA 169, 235, 106, 169, 235, 106, 170, 170, 170,

170, 170, 170, 170, 170, 170, 170, 170, 170

630 DATA 166, 170, 154, 169, 85, 106, 170, 85, 170, 42,

170, 168, 10, 170, 160, 1, 0, 64, 1, 0, 64

640 DATA 5, 0, 80, 0

150 PROGRAMMING GRAPHICS

OTHER GRAPHICS FEATURES

SCREEN BLANKING

Bit 4 of the VIC-II control register controls the screen blanking function. It is found

in the control register at location 53265 ($D011). When it is turned ON (in other

words, set to a 1) the screen is normal. When bit 4 is set to 0 (turned OFF), the

entire screen changes to border color.

The following POKE blanks the screen. No data is lost, it just isn't displayed:

POKE 53265, PEEK(53265) AND 239

To bring back the screen, use the POKE shown below:

POKE 53265, PEEK(53265) OR 16

NOTE: Turning off the screen will speed up the processor slightly. This means that program

RUNning is also sped up.

RASTER REGISTER

The raster register is found in the VIC-II chip at location 53266 ($D012). The

raster register is a dual purpose register. When you read this register it returns

the lower 8 bits of the current raster position. The raster position of the most

significant bit is in register location 53265 ($D011). You use the raster register

to set up timing changes in your display so that you can get rid of screen flicker.

The changes on your screen should be made when the raster is not in the visible

display area, which is when your dot positions fall between 51 and 251.

When the raster register is written to (including the MSB) the number written to

is saved for use with the raster compare function. When the actual raster value

becomes the same as the number written to the raster register, a bit in the VIC-

II chip interrupt register 53273 ($D019) is turned ON by setting it to 1.

NOTE: If the proper interrupt bit is enabled (turned on), an interrupt (IRQ) will occur.

PROGRAMMING GRAPHICS 151

INTERRUPT STATUS REGISTER

The interrupt status register shows the current status of any interrupt source. The

current status of bit 2 of the interrupt register will be a 1 when two sprites hit

each other. The same is true, in a corresponding 1 to 1 relationship, for bits 0 to

3 listed in the chart below. Bit 7 is also set with a 1, whenever an interrupt occurs.

The interrupt status register is located at 53273 ($D019) and is as follows:

LATCH BIT # DESCRIPTION

IRST 0 Set when the current raster count = stored raster count

IMDC 1 Set by SRITE-DATA collision (1st one only, until reset)

IMMC 2 Set by SPRITE-SPRITE collision (1st one only, until reset)

ILP 3 Set by negative transition of light pen (1 per frame)

IRQ 7 Set by latch set and enabled

Once an interrupt bit has been set, it's "latched" in and must be cleared by

writing a 1 to that bit in the interrupt register when you're ready to handle it.

This allows selective interrupt handling, without having to store the other interrupt

bits.

The INTERRUPT ENABLE REGISTER is located at 53274 ($D01A). It has the

same format as the interrupt status register. Unless the corresponding bit in the

interrupt enable register is set to a 1, no interrupt from that source will take

place. The interrupt status register can still be polled for information, but no

interrupts will be generated.

To enable an interrupt request the corresponding interrupt enable bit (as shown

in the chart above) must be set to a 1.

This powerful interrupt structure lets you use split screen modes. For instance you

can have half of the screen bitmapped, half text, more than 8 sprites at a time,

etc. The secret is to use interrupts properly. For example, if you want the top half

of the screen to be bitmapped and the bottom to be text, just set the raster

compare register (as explained previously) for halfway down the screen. When

the interrupt occurs, tell the VIC-II chip to get characters from ROM, then set the

raster compare register to interrupt at the top of the screen. When the interrupt

occurs at the top of the screen, tell the VIC-II chip to get characters from RAM

(bitmap mode).

152 PROGRAMMING GRAPHICS

You can also display more than 8 sprites in the same way. Unfortunately BASIC

isn't fast enough to do this very well. So if you want to start using display

interrupts, you should work in machine language.

SUGGESTED SCREEN AND CHARACTER COLOR COMBINATIONS

Color TV sets are limited in their ability to place certain colors next to each other

on the same line. Certain combinations of screen and character colors produce

blurred images. This chart shows which color combinations to avoid, and which

work especially well together:

PROGRAMMING GRAPHICS 153

PROGRAMMING SPRITES – ANOTHER LOOK

For those of you having trouble with graphics, this section has been designed as

a more elementary tutorial approach to sprites.

MAKING SPRITES IN BASIC – A SHORT PROGRAM

There are at least three different BASIC programming techniques which let you

create graphic images and cartoon animations on the Commodore 64. You can

use the computer's built-in graphics character set (see Page 376). You can

program your own characters (see Page 108) or… best of all… you can use the

computer's built-in "sprite graphics." To illustrate how easy it is, here's one of the

shortest sprite making programs you can write in BASIC:

10 PRINT"": REM SHIFT CLR/HOME
20 POKE2040, 13

30 FORS=832TO832+62:POKES,255:NEXT

40 V=53248

50 POKEV+21,1

60 POKEV+39,1

70 POKEV,24

80 POKEV+1,100

This program includes the key "ingredients" you need to create any sprite. The

POKE numbers come from the SPRITE MAKING CHART on Page 176. This

program defines the first sprite… sprite 0… as a solid white square on the

screen. Here's a line-by-line explanation of the program:

LINE 10 clears the screen.

LINE 20 sets the "sprite pointer" to where the Commodore 64 will read its sprite

data from. Sprite 0 is set at 2040, sprite 1 at 2041, sprite 2 at 2042, and so

on up to sprite 7 at 2047. You can set all 8 sprite pointers to 13 by using this

line in place of line 20:

20 FOR SP=2040T02047:POKE SP,13:NEXT SP

LINE 30 puts the first sprite (sprite 0) into 63 bytes of the Commodore 64's RAM

memory starting at location 832 (each sprite requires 63 bytes of memory). The

first sprite (sprite 0) is "addressed" at memory locations 832 to 894.

 SHIFT CLR/HOME

154 PROGRAMMING GRAPHICS

LINE 40 sets the variable "V" equal to 53248, the starting address of the VIDEO

CHIP. This entry lets us use the form (V + number) for sprite settings. We're using

the form (V + number) when POKEing sprite settings because this format

conserves memory and lets us work with smaller numbers. For example, in line

50 we typed POKEV+21.This is the same as typing POKE 53248+21 or POKE

53269… but V+21 requires less space than 53269, and is easier to remember.

LINE 50 enables or "turns on" sprite 0. There are 8 sprites, numbered from 0 to

7. To turn on an individual sprite, or a combination of sprites, all you have to do

is POKEV+21 followed by a number from 0 (turn all sprites off) to 255 (turn all

8 sprites on). You can turn on one or more sprites by POKEing the following

numbers:

ALL ON SPRITE0 SPRITE1 SPRITE2 SPRITE3 SPRITE4 SPRITE5 SPRITE6 SPRITE7 ALL OFF

V+21,255 V+21,1 V+21,2 V+21,4 V+21,8 V+21,16 V+21,32 V+21,64 V+21,128 V+21,0

POKE V+21, 1 turns on sprite 0. POKE V+21, 128 turns on sprite 7. You can

also turn on combinations of sprites. For example, POKE V+21, 129 turns on both

sprite 0 and sprite 7 by adding the two "turn on" numbers (1+128) together.

(See SPRITE MAKING CHART, Page 176.)

LINE 60 sets the COLOR of sprite 0. There are 16 possible sprite colors,

numbered from 0 (black) to 15 (grey). Each sprite requires a different POKE to

set its color, from V+39 to V+46. POKE V+39, 1 colors sprite 0 white. POKE V

+46, 15 colors sprite 7 grey. (See the SPRITE MAKING CHART for more

information.)

When you create a sprite, as you just did, the sprite will STAY IN MEMORY until

you POKE it off, redefine it, or turn off your computer. This lets you change the

color, position and even shape of the sprite in DIRECT or IMMEDIATE mode, which

is useful for editing purposes. As an example, RUN the program above, then

type this line in DIRECT mode (without a line number) and hit the RETURN key:

POKE V+39, 8

The sprite on the screen is now ORANGE. Try POKEing some other numbers from

0 to 15 to see the other sprite colors. Because you did this in DIRECT mode, if

you RUN your program the sprite will return to its original color (white).

PROGRAMMING GRAPHICS 155

LINE 70 determines the HORIZONTAL or "X" POSITION of the sprite on the

screen. This number represents the location of the UPPER LEFT CORNER of the

sprite. The farthest left horizontal (X) position which you can see on your television

screen is position number 24, although you can move the sprite OFF THE SCREEN

to position number 0.

LINE 80 determines the VERTICAL or "Y" POSITION of the sprite. In this program,

we placed the sprite at X (horizontal) position 24, and Y (vertical) position 100.

To try another location, type this POKE in DIRECT mode and hit RETURN :

POKE V, 24: POKE V+1, 50

This places the sprite at the upper left corner of the screen. To move the sprite

to the lower left corner, type this:

POKE V, 24: POKE V+1, 229

Each number from 832 to 895 in our sprite 0 address represents one block of 8

pixels, with three 8-pixel blocks in each horizontal row of the sprite. The loop in

line 80 tells the computer to POKE 832, 255 which makes the first 8 pixels solid…

then POKE 833, 255 to make the second 8 pixels solid, and so on to location

894 which is the last group of 8 pixels in the bottom right corner of the sprite.

To better see how this works, try typing the following in DIRECT mode, and notice

that the second group of 8 pixels is erased:

POKE 833,0 (to put it back type POKE 833, 255 or RUN your program)

The following line, which you can add to your program, erases the blocks in the

MIDDLE of the sprite you created:

90 FOR A = 836 TO 891 STEP 3: POKE A, 0: NEXTA

Remember, the pixels that make up the sprite are grouped in blocks of eight.

This line erases the 5th group of eight pixels (block 836) and every third block

up to block 890. Try POKEing any of the other numbers from 832 to 894 with

either a 255 to make them solid or 0 to make them blank.

156 PROGRAMMING GRAPHICS

CRUNCHING YOUR SPRITE PROGRAMS

Here's a helpful "crunching" tip: The program described above is already short, but it

can be made even shorter by "crunching" it smaller. In our example we list the key

sprite settings on separate program lines so you can see what's happening in the

program. In actual practice, a good programmer would probably write this program

as a TWO LINE PROGRAM… by "crunching" it as follows:

10 PRINT CHR$(147): V=53248: POKEV+21, 1: POKE2040, 13:

POKEV+39, 1

20 FOR S = 832 TO 894: POKE S, 255: NEXT: POKE V, 24: POKE

V + 1, 100

For more tips on how to crunch your programs so they fit in less memory and run more

efficiently, see the "crunching guide" on Page 24.

FIGURE 3-4. THE DISPLAY SCREEN IS DIVIDED
INTO A GRID OF X AND Y COORDINATES

PROGRAMMING GRAPHICS 157

POSITIONING SPRITES ON THE SCREEN

The entire display screen is divided into a grid of X and Y coordinates, like a
graph. The X COORDINATE is the HORIZONTAL position across the screen and
the Y COORDINATE is the VERTICAL position up and down (see Figure 3-4).

To position any sprite on the screen, you must POKE TWO SETTINGS… the X
position and the Y position… these tell the computer where to display the UPPER
LEFT-HAND CORNER of the sprite. Remember that a sprite consists of 504
individual pixels, 24 across by 21 down… so if you POKE a sprite onto the
upper left corner of your screen, the sprite will be displayed as a graphic image
24 pixels ACROSS and 21 pixels DOWN starting at the X-Y position you
defined. The sprite will be displayed based on the upper left corner of the entire
sprite, even if you define the sprite using only a small part of the 24x21 pixel
sprite area.

To understand how X-Y positioning works, study the following diagram (Figure
3-5), which shows the X and Y numbers in relation to your display screen. Note
that the GREY AREA in the diagram shows your television viewing area… the
white area represents positions which are OFF your viewing screen…

FIGURE 3-5. DETERMINING X-Y SPRITE POSITIONS

158 PROGRAMMING GRAPHICS

To display a sprite in a given location, you must POKE the X and Y settings for

each SPRITE… remembering that every sprite has its own unique X POKE and Y

POKE. The X and Y settings for all 8 sprites are shown here:

POKE THESE VALUES TO SET X-Y SPRITE POSITIONS

SPRITE 0 SPRITE 1 SPRITE 2 SPRITE 3 SPRITE 4 SPRITE 5 SPRITE 6 SPRITE 7

SET X V,X V+2,X V+4,X V+6,X V+8,X V+10,X V+12,X V+14,X

SET Y V+1,Y V+3,Y V+5,Y V+7,Y V+9,Y V+11,Y V+13,Y V+15,Y

RIGHTX V+16,1 V+16,2 V+16,4 V+16,8 V+16,16 V+16,32 V+16,64 V+16,128

POKEING AN X POSITION: The possible values of X are 0 to 255, counting

from left to right. Values 0 to 23 place all or part of the sprite OUT OF THE

VIEWING AREA off the left side of the screen… values 24 to 255 place the

sprite IN THE VIEWING AREA up to the 255th position (see next paragraph for

settings beyond the 255th X position). To place the sprite at one of these

positions, just type the X-POSITION POKE for the sprite you're using. For

example, to POKE sprite 1 at the farthest left X position IN THE VIEWING AREA,

type: POKE V+2, 24.

X VALUES BEYOND THE 255TH POSITION: To get beyond the 255th position

across the screen, you need to make a SECOND POKE using the numbers in the

"RIGHT X" row of the chart (Figure 3-5). Normally, the horizontal (X) numbering

would continue past the 255th position to 256, 257, etc., but because registers

only contain 8 bits we must use a "second register" to access the RIGHT SIDE of

the screen and start our X numbering over again at 0. So to get beyond X

position 255, you must POKE V+ 16 and a number (depending on the sprite).

This gives you 65 additional X positions (renumbered from 0 to 65) in the viewing

area on the RIGHT side of the viewing screen. (You can actually POKE the right

side X value as high as 255, which takes you off the right edge of the viewing

screen.)

POKEING A Y POSITION: The possible values of Y are 0 to 255, counting from

top to bottom. Values 0 to 49 place all or part of the sprite OUT OF THE

VIEWING AREA off the TOP of the screen. Values 50 to 229 place the sprite IN

THE VIEWING AREA. Values 230 to 255 place all or part of the sprite OUT OF

THE VIEWING AREA off the BOTTOM of the screen.

PROGRAMMING GRAPHICS 159

Let's see how this X-Y positioning works, using sprite 1. Type this program:

10 PRINT"":V=53248:POKEV+21,2:POKE2041,13:
FORS=832TO895:POKES,255:NEXT

20 POKEV+40,7

30 POKEV+2,24

40 POKEV+3,50

This simple program establishes sprite 1 as a solid box and positions it at the

upper left corner of the screen. Now change line 40 to read:

40 POKE V+3, 229

This moves the sprite to the bottom left corner of the screen. Now let's test the

RIGHT X LIMIT of the sprite. Change line 30 as shown:

30 POKE V+2, 255

This moves the sprite to the RIGHT but reaches the RIGHT X LIMIT, which is 255.

At this point, the "most significant bit" in register 16 must be SET. In other words,

you must type POKE V+16 and the number shown in the "RIGHT X" column in the

X-Y POKE CHART above to RESTART the X position counter at the 256th

pixel/position on the screen. Change line 30 as follows:

30 POKE V+16, PEEK(V+16) OR 2: POKE V+2, 0

POKE V+16, 2 sets the most significant bit of the X position for sprite 1 and

restarts it at the 256th pixel/position on the screen. POKE V+2, 0 displays the

sprite at the NEW POSITION ZERO, which is now reset to the 256th pixel.

To get back to the left side of the screen, you must reset the most significant bit of

the X position counter to 0 by typing (for sprite 1):

POKE V+16, PEEK(V+16) AND 253

TO SUMMARIZE how the X positioning works… POKE the X POSITION for any

sprite with a number from 0 to 255. To access a position beyond the 255th

position/pixel across the screen, you must use an additional POKE (V+16) which

sets the most significant bit of the X position and start counting from 0 again at

the 256th pixel across the screen.

 SHIFT CLR/HOME

160 PROGRAMMING GRAPHICS

This POKE starts the X numbering over again from 0 at the 256th position

(Example: POKE V+16, PEEK(V+16) OR 1 and POKE V,1 must be included to

place sprite 0 at the 257th pixel across the screen.) To get back to the left side

X positions you have to TURN OFF the control setting by typing POKE V+16,

PEEK(V+16) AND 254.

POSITIONING MULTIPLE SPRITES ON THE SCREEN

Here's a program which defines THREE DIFFERENT SPRITES (0, 1, and 2) in

different colors and places them in different positions on the screen:

10 PRINT"":V=53248:FORS=832TO895:POKES,255:NEXT
20 FORM=2040TO2042:POKEM,13:NEXT

30 POKEV+21,7

40 POKEV+39,1:POKEV+40,7:POKEV+41,8

50 POKEV,24:POKEV+1,50

60 POKEV+2,12:POKEV+3,229

70 POKEV+4,255:POKEV+5,50

For convenience, all 3 sprites have been defined as solid squares, getting their

data from the same place. The important lesson here is how the 3 sprites are

positioned. The white sprite 0 is at the top left-hand corner. The yellow sprite 1

is at the bottom left-hand corner but HALF the sprite is OFF THE SCREEN

(remember, 24 is the leftmost X position in the viewing area… an X position less

than 24 puts all or part of the sprite off the screen and we used an X position

12 here which put the sprite halfway off the screen). Finally, the orange sprite 2

is at the RIGHT X LIMIT (position 255)… but what if you want to display a sprite

in the area to the RIGHT of X position 255?

DISPLAYING A SPRITE BEYOND THE 255TH X-POSITION

Displaying a sprite beyond the 255th X position requires a special POKE which

SETS the most significant bit of the X position and starts over at the 256th pixel

position across the screen. Here's how it works…

First, you POKE V+16 with the number for the sprite you're using (check the

"RIGHT X" row in the X-Y chart… we'll use sprite 0). Now we assign an X position,

keeping in mind that the X counter starts over from 0 at the 256th position on

the screen. Change line 50 to read as follows:

50 POKE V+16,1: POKE V, 24: POKE V+1, 75

 SHIFT CLR/HOME

PROGRAMMING GRAPHICS 161

This line POKEs V+16 with the number required to "open up" the right side of

the screen… the new X position 24 for sprite 0 now begins 24 pixels to the

RIGHT of position 255. To check the right edge of the screen, change line 60 to:

60 POKE V+16, 1: POKE V, 65: POKE V+1, 75

Some experimentation with the settings in the sprite chart will give you the

settings you need to position and move sprites on the left and right sides of the

screen. The section on "moving sprites" will also increase your understanding of

how sprite positioning works.

SPRITE PRIORITIES

You can actually make different sprites seem to move IN FRONT OF or BEHIND
each other on the screen. This incredible three dimensional illusion is achieved by
the built-in SPRITE PRIORITIES which determine which sprites have priority over
the others when 2 or more sprites OVERLAP on the screen.

The rule is "first come, first served" which means lower-numbered sprites
AUTOMATICALLY have priority over higher-numbered sprites. For example, if
you display sprite 0 and sprite1 so they overlap on the screen, sprite 0 will
appear to be IN FRONT OF sprite 1. Actually, sprite 0 always supersedes all
the other sprites because it's the lowest numbered sprite. In comparison, sprite 1
has priority over sprites 2 to 7; sprite 2 has priority over sprites 3 to 7, etc.
Sprite 7 (the last sprite) has LESS PRIORITY than any of the other sprites, and
will always appear to be displayed "BEHIND" any other sprites which overlap
its position.

To illustrate how priorities work, change lines 50, 60, and 70 in the program
above to the following:

10 PRINT"":V=53248:FORS=832TO895:POKES,255:NEXT
20 FORM=2040TO2042:POKEM,13:NEXT

30 POKEV+21,7

40 POKEV+39,1:POKEV+40,7:POKEV+41,8

50 POKEV,24:POKEV+1,50:POKEV+16,0

60 POKEV+2,34:POKEV+3,60

70 POKEV+4,44:POKEV+5,70

You should see a white sprite on top of a yellow sprite on top of an orange

sprite. Of course, now that you see how priorities work, you can also MOVE

SPRITES and take advantage of these priorities in your animation.

 SHIFT CLR/HOME

162 PROGRAMMING GRAPHICS

DRAWING A SPRITE

Drawing a Commodore sprite is like coloring the empty spaces in a coloring

book. Every sprite consists of tiny dots called pixels. To draw a sprite, all you

have to do is "color in" some of the pixels.

Look at the spritemaking grid in Figure 3-6. This is what a blank sprite looks like:

1
2
8

6
4

3
2

1
6 8 4 2 1

1
2
8

6
4

3
2

1
6 8 4 2 1

1
2
8

6
4

3
2

1
6 8 4 2 1

FIGURE 3-6. SPRITEMAKING GRID

Each little "square" represents one pixel in the sprite. There are 24 pixels across

and 21 pixels up and down, or 504 pixels in the entire sprite. To make the sprite

look like something, you have to color in these pixels using a special

PROGRAM… but how can you control over 500 individual pixels? That's where

computer programming can help you. Instead of typing 504 separate numbers,

you only have to type 63 numbers for each sprite. Here's how it works…

PROGRAMMING GRAPHICS 163

CREATING A SPRITE… STEP BY STEP

To make this as easy as possible for you, we've put together this simple step by
step guide to help you draw your own sprites.

STEP 1:

Write the sprite making program shown here ON A PIECE OF PAPER… note that
line 100 starts a special DATA section of your program which will contain the 63
numbers you need to create your sprite.

STEP 2:

Color in the pixels on the spritemaking grid on Page 162 (or use a piece of
graph paper… remember, a sprite has 24 squares across and 21 squares
down). We suggest you use a pencil and draw lightly so you can reuse this grid.
You can create any image you like, but for our example we'll draw a simple
box.

STEP 3:

Look at the first EIGHT pixels. Each column of pixels has a number (128, 64, 32,
16, 8, 4, 2, 1). The special type of addition we are going to show you is a type
of BINARY ARITHMETIC which is used by most computers as a special way of

128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

200

DATA 128,0,1

10 PRINT"":POKE53280,5:POKE53281,6

20 V=53248:POKEV+34,3

30 POKE53269,4:POKE2042,13

40 FORN=0TO62:READQ:POKE832+N,Q:NEXT

DATA 255,255,255

DATA 144,0,1

DATA 128,0,1

DATA 128,0,1

DATA 144,0,1

DATA 144,0,1

DATA 144,0,1

DATA 144,0,1

DATA 144,0,1

DATA 144,0,1

DATA 144,0,1

DATA 144,0,1

DATA 144,0,1

DATA 255,255,255

X=200:Y=100:POKE53252,X:POKE53253,Y

DATA 128,0,1

DATA 128,0,1

DATA 128,0,1

DATA 128,0,1

DATA 128,0,1

DATA 128,0,1

 SHIFT CLR/HOME

164 PROGRAMMING GRAPHICS

counting. Here's a close-up view of the first eight pixels in the top left-hand
corner of the sprite:

128 64 32 16 8 4 2 1

STEP 4:

Add up the numbers of the SOLID pixels. This first group of eight pixels is
completely solid, so the total number is 255.

STEP 5:

Enter that number as the FIRST DATA STATEMENT in line 100 of the Spritemaking
Program below. Enter 255 for the second and third groups of eight.

STEP 6:

Look at the FIRST EIGHT PIXELS IN THE SECOND ROW of the sprite. Add up the
values of the solid pixels. Since only one of these pixels is solid, the total value
is 128. Enter this as the first DATA number in line 101.

128 64 32 16 8 4 2 1

STEP 7:

Add up the values of the next group of eight pixels (which is 0 because they're
all BLANK) and enter in line 101. Now move to the next group of pixels and
repeat the process for each GROUP OF EIGHT PIXELS (there are 3 groups across
each row, and 21 rows). This will give you a total of 63 numbers. Each number
represents ONE group of 8 pixels, and 63 groups of eight equals 504 total
individual pixels. Perhaps a better way of looking at the program is like this…
each line in the program represents ONE ROW in the sprite. Each of the 3
numbers in each row represents ONE GROUP OF EIGHT PIXELS. And each
number tells the computer which pixels to make SOLID and which pixels to leave
blank.

PROGRAMMING GRAPHICS 165

STEP 8:

CRUNCH YOUR PROGRAM INTO A SMALLER SPACE BY RUNNING TOGETHER
ALL THE DATA STATEMENTS, AS SHOWN IN THE SAMPLE PROGRAM BELOW.
Note that we asked you to write your sprite program on a piece of paper. We
did this for a good reason. The DATA STATEMENT LINES 100 to 120 in the
program in STEP 1 are only there to help you see which numbers relate to which
groups of pixels in your sprite. Your final program should be "crunched" like this:

10 PRINT"":POKE53280,5:POKE53281,6
20 V=53248:POKEV+34,3

30 POKE53269,4:POKE2042,13

40 FORN=0TO62:READQ:POKE832+N,Q:NEXT

100 DATA 255,255,255,128,0,1,128,0,1,128,0,1,144,

0,1,144,0,1,144,0,1,144,01

101 DATA 144,0,1,144,0,1,144,0,1,144,0,1,144,0,1,

144,0,1,128,0,1,128,0,1

102 DATA 128,0,1,128,0,1,128,0,1,128,0,1,255,255,255

200 X=200:Y=100:POKE53252,X:POKE53253,Y

MOVING YOUR SPRITE ON THE SCREEN

Now that you've created your sprite, let's do some interesting things with it. To
move your sprite smoothly across the screen, add these two lines to your
program:

50 POKEV+5,100:FORX=24TO255:POKEV+4,X:NEXT:POKE V+16,4

55 FORX=0TO65:POKEV+4,X:NEXTX:POKEV+16,0:GOTO50

LINE 50 POKEs the Y POSITION at 100 (try 50 or 229 instead for variety). Then
it sets up a FOR… NEXT loop which POKEs the sprite into X position 0, to X
position 255, in order. When it reaches the 255th position, it POKEs the RIGHT
X POSITION (POKE V+16, 4) which is required to cross to the right side of the
screen.

LINE 55 has a FOR… NEXT loop which continues to POKE the sprite in the last
65 positions on the screen. Note that the X value was reset to zero but because
you used the RIGHT X setting (POKE V + 16, 2) X starts over on the right side of
the screen.

This line keeps going back to itself (GOTO 50). If you just want the sprite to

move ONCE across the screen and disappear then take out GOTO 50.

 SHIFT CLR/HOME

166 PROGRAMMING GRAPHICS

Here's a line which moves the sprite BACK AND FORTH:

50 POKEV+5,100: FORX=24TO255:POKEV+4,X:NEXT:POKEV+16,4:

FORX=0TO65:POKEV+4,X:NEXTX

55 FORX=65TO0STEP-1:POKEV+4,X:NEXT:POKEV+16,0:

FORX=255TO24STEP-1:POKEV+4,X:NEXT

60 GOTO50

Do you see how these programs work? This program is the same as the previous

one, except when it reaches the end of the right side of the screen, it REVERSES

ITSELF and goes back in the other direction. That is what the STEP –1

accomplishes… it tells the program to POKE the sprite into X values from 65 to

0 on the right side of the screen, then from 255 to 0 on the left side of the screen,

STEPping backwards minus –1 position at a time.

VERTICAL SCROLLING

This type of sprite movement is called "scrolling." To scroll your sprite up or down

in the Y position, you only have to use ONE LINE. ERASE LINES 50 and 55 by

typing the line numbers by themselves and hitting RETURN like this:

50 (RETURN)

55 (RETURN)

Now enter LINE 50 again as follows:

50 POKE V+4, 24: FOR Y =0 TO 255: POKE V+5,Y: NEXT

THE DANCING MOUSE – A SPRITE PROGRAM EXAMPLE

Sometimes the techniques described in a programmer's reference manual are

difficult to understand, so we've put together a fun sprite program called

"Michael's Dancing Mouse." This program uses three different sprites in a cute

animation with sound effects – and to help you understand how it works we've

included an explanation of EACH COMMAND so you can see exactly how the

program is constructed:

PROGRAMMING GRAPHICS 167

5 S=54272:POKES+24,15:POKES,220:POKES+1,68:

POKES+5,15:POKES+6,215

10 POKES+7,120:POKES+8,100:POKES+12,15:POKES+13,215

15 PRINT"":V=53248:POKEV+21,1
20 FORS1=12288TO12350:READQ1:POKES1,Q1:NEXT

25 FORS2=12352TO12414:READQ2:POKES2,Q2:NEXT

30 FORS3=12416TO12478:READQ3:POKES3,Q3:NEXT

35 POKEV+39,15:POKEV+1,68

40 PRINTTAB(160)"I AM THE DANCING MOUSE!"
45 P=192

50 FORX=0TO347STEP3

55 RX=INT(X/256):LX=X-RX*256

60 POKEV,LX:POKEV+16,RX

70 IFP=192THENGOSUB200

75 IFP=193THENGOSUB300

80 POKE2040,P:FORT=1TO60:NEXT

85 P=P+1:IFP>194THENP=192

90 NEXT

95 END

100 DATA 30,0,120,63,0,252,127,129,254,127,129,

254,127,189,254,127,255,254

101 DATA 63,255,252,31,187,248,3,187,192,1,255,

128,3,189,192,1,231,128,1,255,0

102 DATA 31,255,0,0,124,0,0,254,0,1,199,32,3,131,

224,7,1,192,1,192,0,3,192,0

103 DATA 30,0,120,63,0,252,127,129,254,127,129,

254,127,189,254,127,255,254

104 DATA 63,255,252,31,221,248,3,221,192,1,255,128,

3,255,192,1,195,128,1,231,3

105 DATA 31,255,255,0,124,0,0,254,0,1,199,0,7,1,128,

7,0,204,1,128,124,7,128,56

106 DATA 30,0,120,63,0,252,127,129,254,127,129,254,

127,189,254,127,255,254

107 DATA 63,255,252,31,221,248,3,221,192,1,255,134,

3,189,204,1,199,152,1,255,48

108 DATA 1,255,224,1,252,0,3,254,0

109 DATA 7,14,0,204,14,0,248,56,0,112,112,0,0,60,0,-1

200 POKES+4,129:POKES+4,128:RETURN

300 POKES+11,129:POKES+11,128:RETURN

 SHIFT CLR/HOME

 CTRL 2  7

168 PROGRAMMING GRAPHICS

LINE 5:

S=54272 Sets the variable S equal to 54272, which is the
beginning memory location of the SOUND CHIP.
From now on, instead of poking a direct memory
location, we will POKE S plus a value.

POKES+24,15 Same, as POKE 54296, 15 which sets VOLUME
to highest level.

POKES,220 Same as POKE 54272, 220 which sets Low
Frequency in Voice 1 for a note which
approximates high C in Octave 6.

POKES+1,68 Same as POKE 54273, 68 which sets High
Frequency in Voice 1 for a note which
approximates high C in Octave 6.

POKES+5,15 Same as POKE 54277,15 which sets
Attack/Decay for Voice 1 and in this case
consists of the maximum DECAY level with no
attack, which produces the "echo" effect.

POKES+6,215 Same as POKE 54278, 215 which sets
Sustain/Release for Voice 1 (215 represents a
combination of sustain and release values).

LINE 10:

POKES+7,120 Same as POKE 54279, 120 which sets the Low
Frequency for Voice 2.

POKES+8,100 Same as POKE 54280, 100 which sets the High
Frequency for Voice 2.

POKES+12,15 Same as POKE 54284, 15 which sets
Attack/Decay for Voice 2 to same level as Voice
1 above.

POKES+13,215 Same as POKE 54285, 215, which sets
Sustain/Release for Voice 2 to same level as
Voice 1 above.

LINE 15:

PRINT" SHIFT
 CLR/HOME "
V=53248

Clears the screen when the program begins.

Defines the variable "V" as the starting location
of the VIC chip which controls sprites. From now
on we will define sprite locations as V plus a
value.

POKEV+21,1 Turns on (enables) sprite number 1

PROGRAMMING GRAPHICS 169

LINE 20:

FORS1=12288
TO 12350

We are going to use ONE SPRITE (sprite 0) in this

animation, but we are going to use THREE sets of

sprite data to define three separate shapes. To

get our animation, we will switch the POINTERS

for sprite 0 to the three places in memory where

we have stored the data which defines our three

different shapes. The same sprite will be

redefined rapidly over and over again as 3

different shapes to produce the dancing mouse

animation. You can define dozens of sprite

shapes in DATA STATEMENTS, and rotate those

shapes through one or more sprites. So you see,

you don't have to limit one sprite to one shape or

vice-versa. One sprite can have many different

shapes, simply by changing the POINTER

SETTING FOR THAT SPRITE to different places in

memory where the sprite data for different

shapes is stored. This line means we have put the

DATA for "sprite shape 1" at memory locations

12288 to 12350.

READQ1 Reads 63 numbers in order from the DATA

statements which begin at line 100. Q1 is an

arbitrary variable name. It could just as easily

be A, Z1 or another numeric variable.

POKES1,Q1 Pokes the first number from the DATA statements

(the first "Q1" is 30) into the first memory

location (the first memory location is 12288). This

is the same as POKE 12288, 30.

NEXT This tells the computer to look BETWEEN the FOR

and NEXT parts of the loop and perform those in

between commands (READ Q1 and POKES1, Q1

using the NEXT numbers in order). In other words,

the NEXT statement makes the computer READ

the NEXT Q1 from the DATA STATEMENTS, which

is 0, and also increments S1 by 1 to the next

value, which is 12289. The result is POKE

12289,0… the NEXT command makes the loop

keep going back until the last values in the series,

which are POKE 12350, 0.

170 PROGRAMMING GRAPHICS

LINE 25:

FORS2=12352
TO 12414

The second shape of sprite 0 is defined by the

DATA which is located at locations 12352 to

12414. NOTE that location 12351 is SKIPPED…

this is the 64th location which is used in the

definition of the first sprite group but does not

contain any of the sprite data numbers. Just

remember when defining sprites in consecutive

locations that you will use 64 locations, but only

POKE sprite data into the first 63 locations.

READQ2 Reads the 63 numbers which follow the numbers

we used for the first sprite shape. This READ

simply looks for the very next number in the

DATA area and starts reading 63 numbers, one

at a time.

POKES2,Q2 Pokes the data (Q2) into the memory locations

(S2) for our second sprite shape, which begins at

location 12352.

NEXT Same use as line 20 above.

LINE 30:

FORS3=12416
TO 12478

The third shape of sprite zero is defined by the

DATA to be located at locations 12416 to

12478.

READQ3 Reads last 63 numbers in order as Q3.

POKES3,Q3 Pokes those numbers into locations 12416 to

12478.

NEXT Same as lines 20 and 25.

LINE 35:

POKEV+39,15 Sets color for sprite 0 to light grey.

POKEV+1,68 Sets the upper right hand corner of the sprite

square to vertical (Y) position 68. For the sake of

comparison, position 50 is the top left-hand

corner Y position on the viewing screen.

PROGRAMMING GRAPHICS 171

LINE 40:

PRINTTAB(160) Tabs 160 spaces from the top left-hand

CHARACTER SPACE on the screen, which is the

same as 4 rows beneath the clear command…

this starts your PRINT message on the 6th line

down on the screen.

 CTRL WHT Hold down the CTRL key and press the key

marked WHT at the same time. If you do this

inside quotation marks, a "reversed E" will

appear. This sets the color to everything PRINTed

from then on to WHITE.

"I AM THE
DANCING
MOUSE!

This is a simple PRINT statement.

 7 " This sets the color back to light blue when the

PRINT statement ends. Holding down 

and 7 at the same time inside quotation marks

causes a "reversed diamond symbol" to appear.

LINE 45:

P=192 Sets the variable P equal to 192. This number

192 is the pointer you must use, in this case to

"point" sprite 0 to the memory locations that

begin at location 12288. Changing this pointer

to the locations of the other two sprite shapes is

the secret of using one sprite to create an

animation that is actually three different shapes.

LINE 50:

FORX=0TO347
STEP3

Steps the movement of your sprite 3 X positions

at a time (to provide fast movement) from

position 0 to position 347.

172 PROGRAMMING GRAPHICS

LINE 55:

RX=INT(X/256) RX is the integer of X/256 which means that RX

is rounded off to 0 when X is less than 256, and

RX becomes 1 when X reaches position 256. We

will use RX in a moment to POKE V+16 with a 0

or 1 to turn on the "RIGHT SIDE" of the screen.

LX=X–RX*256 When the sprite is at X position 0, the formula

looks like this: LX=0–(0 times 256) OR 0. When

the sprite is at X position 1 the formula looks like

this: LX=1–(0 times 256) OR 1. When the sprite

is at X position 256 the formula looks like this: LX

=256–(1 times 256) OR 0 which resets X back

to 0 which must be done when you start over on

the RIGHT SIDE of the screen (POKEV+16, 1).

LINE 60:

POKEV,LX You POKE V by itself with a value to set the

Horizontal (X) Position of sprite 0 on the screen.

(See SPRITE MAKING CHART on Page 176). As

shown above, the value of LX, which is the

horizontal position of the sprite, changes from 0

to 255 and when it reaches 255 it automatically

resets back to zero because of the LX equation

set up in line 55.

POKEV+16,RX POKE V+16 always turns on the "right side" of

the screen beyond position 256, and resets the

horizontal positioning coordinates to zero. RX is

either a 0 or a 1 based on the position of the

sprite as determined by the RX formula in line

55.

LINE 70:

IFP=192THEN
GOSUB200

If the sprite pointer is set to 192 (the first sprite

shape) the waveform control for the first sound

effect is set to 129 and 128 per line 200.

PROGRAMMING GRAPHICS 173

LINE 75:

IFP=193THEN
GOSUB300

If the sprite pointer is set to 193 (the second

sprite shape) the waveform control for the

second sound effect (Voice 2) is set to 129 and

128 per line 300.

LINE 80:

POKE2040,P Sets the SPRITE POINTER to location 192

(remember P=192 in line 45? Here's where we

use the P).

FORT=1TO60:
NEXT

A simple time delay loop which sets the speed at

which the mouse dances. (Try a faster or slower

speed by increasing/decreasing the number 60.)

LINE 85:

P=P+1 Now we increase the value, of the pointer by

adding 1 to the original value of P.

IFP>194THEN
P=192

We only want to point the sprite to 3 memory

locations. 192 points to locations 12288 to

12350, 193 points to locations 12352 to 12414,

and 194 points to locations 12416 to 12478.

This line tells the computer to reset P back to 192

as soon as P becomes 195 so P never really

becomes 195. P is 192, 193, 194 and then resets

back to 192 and the pointer winds up pointing

consecutively to the three sprite shapes in the

three 64-byte groups of memory locations

containing the DATA.

174 PROGRAMMING GRAPHICS

LINE 90:

NEXTX After the sprite has become one of the 3

different shapes defined by the DATA, only then

is it allowed to move across the screen. It will

jump 3 X positions at a time (instead of scrolling

smoothly one position at a time, which is also

possible). STEPping 3 positions at a time makes

the mouse "dance" faster across the screen. NEXT

X matches the FOR… X position loop in line 50.

LINE 95:

END ENDs the program, which occurs when the sprite

moves off the screen.

LINES 100–109:

DATA The sprite shapes are read from the data

numbers, in order. First the 63 numbers which

comprise sprite shape1 are read, then the 63

numbers for sprite shape 2, and then sprite

shape 3. This data is permanently read into the

3 memory locations and after it is read into these

locations, all the program has to do is point sprite

0 at the 3 memory locations and the sprite

automatically takes the shape of the data in

those locations. We are pointing the sprite at 3

locations one at a time which produces the

"animation" effect. If you want to see how these

numbers affect each sprite, try changing the first

3 numbers in LINE 100 to 255, 255, 255. See

the section on defining sprite shapes for more

information.

PROGRAMMING GRAPHICS 175

LINE 200:

POKES+4,129 Waveform control set to 129 turns on the sound

effect.

POKES+4,128 Waveform control set to 128 turns off the sound

effect.

RETURN Sends program back to end of line 70 after

waveform control settings are changed, to

resume program.

LINE 300:

POKES+11,129 Waveform control set to 129 turns on the sound

effect.

POKES+11,128 Waveform control set to 128 turns off the sound

effect.

RETURN Sends program back to end of line 75 to resume.

176 PROGRAMMING GRAPHICS

EASY SPRITEMAKING CHART

 SPRITE

0
SPRITE

1
SPRITE

2
SPRITE

3
SPRITE

4
SPRITE

5
SPRITE

6
SPRITE

7

Turn on Sprite V+21,1 V+21,2 V+21,4 V+21,8 V+21,16 V+21,32 V+21,64 V+21,128

Put in Memory
(Set Pointers)

2040,
192

2041,
193

2042,
194

2043,
195

2044,
196

2045,
197

2046,
198

2047,
199

Locations for
Sprite Pixel
(12288–12798)

12288
to
12350

12352
to
12414

12416
to
12478

12480
to
12542

12544
to
12606

12608
to
12670

12672
to
12734

12736
to
12798

Sprite Color V+39,C V+40,C V+41,C V+42,C V+43,C V+44,C V+45,C V+46,C

Set LEFT X
Position (0–255)

V+0,X V+2,X V+4,X V+6,X V+8,X V+10,X V+12,X V+14,X

Set RIGHT X
Position (0–255)

V+16,1

V+0,X

V+16,2

V+2,X

V+16,4

V+4,X

V+16,8

V+6,X

V+16,16

V+8,X

V+16,32

V+10,X

V+16,64

V+12,X

V+16,128

V+14,X

Set Y Position V+1,Y V+3,Y V+5,Y V+7,Y V+9,Y V+11,Y V+13,Y V+15,Y

Expand Sprite
Horizontally/X

V+29,1 V+29,2 V+29,4 V+29,8 V+29,16 V+29,32 V+29,64 V+29,128

Expand Sprite
Vertically/Y

V+23,1 V+23,2 V+23,4 V+23,8 V+23,16 V+23,32 V+23,64 V+23,128

Turn On (Set)
Multicolor Mode

V+28,1 V+28,2 V+28,4 V+28,8 V+28,16 V+28,32 V+28,64 V+28,128

Multicolor 1
(First Color)

V+37,C V+37,C V+37,C V+37,C V+37,C V+37,C V+37,C V+37,C

Multicolor 2
(Second Color)

V+38,C V+38,C V+38,C V+38,C V+38,C V+38,C V+38,C V+38,C

Set Priority
of Sprites

The rule is that lower numbered sprites always have display priority over

higher numbered sprites. For example, sprite 0 has priority over ALL other

sprites, sprite 7 has last priority. This means lower numbered sprites always

appear to move IN FRONT OF or ON TOP OF higher numbered sprites.

Collision (Sprite
to Sprite)

V+30 IF PEEK(V+30) AND X = X THEN [action]

Collision (Sprite
to Background)

V+31 IF PEEK(V+31) AND X = X THEN [action]

PROGRAMMING GRAPHICS 177

SPRITE MAKING NOTES

Alternative Sprite Memory Pointers and Memory Locations
Using Cassette Buffer

Put in Memory

(Set Pointers)

SPRITE 0

2040, 13

SPRITE 1

2041, 14

SPRITE 3

2042, 15

If you're using 1 to 3 sprites you can

use these memory locations in the

cassette buffer (832 to 1023) but for

more than 3 sprites we suggest using

locations from 12288 to 12798 (see

chart)

Sprite Pixel

Locations for

Blocks 13–15

832

to 894

896

to 958

960

to 1022

TURNING ON SPRITES:

You can turn on any individual sprite by using POKE V+21 and the number from

the chart… BUT… turning on just ONE sprite will turn OFF any others. To turn on

TWO OR MORE sprites, ADD TOGETHER the numbers of the sprites you want to

turn on (Example: POKE V+21, 6 turns on sprites 1 and 2). Here is a method you

can use to turn one sprite off and on without affecting any of the others (useful

for animation).

EXAMPLE:

To turn off just sprite 0 type: POKE V+21, PEEK V+21 AND (255–1). Change

the number 1 in (255–1) to 1, 2, 4, 8, 16, 32, 64, or 128 (for sprites 0 to 7). To

re-enable the sprite and not affect the other sprites currently turned on, POKE V

+ 21, PEEK (V+21) OR 1 and change the OR 1 to OR 2 (sprite 2), OR 4 (sprite

3), etc.

X POSITION VALUES BEYOND 255:

X positions run from 0 to 255… and then START OVER from 0 to 255. To put a

sprite beyond X position 255 on the far right side of the screen, you must first

POKE V+16 as shown, THEN POKE a new X value from 0 to 63, which will place

the sprite in one of the X positions at the right side of the screen. To get back to

positions 0–255, POKE V+16, 0 and POKE in an X value from 0 to 255.

Y POSITION VALUES:

Y positions run from 0 to 255, including 0 to 49 off the TOP of the viewing area,

50 to 229 IN the viewing area, and 230 to 255 off the BOTTOM of the viewing

area.

178 PROGRAMMING GRAPHICS

SPRITE COLORS:

To make sprite 0 WHITE, type: POKE V+39, 1 (use COLOR POKE SETTING
shown in chart, and INDIVIDUAL COLOR CODES shown below):

0 – BLACK 4 – PURPLE 8 – ORANGE 12 – MED. GREY

1 – WHITE 5 – GREEN 9 – BROWN 13 – LT. GREEN

2 – RED 6 – BLUE 10 – LT. RED 14 – LT. BLUE

3 – CYAN 7 – YELLOW 11 – DARK GREY 15 – LT. GREY

MEMORY LOCATION:

You must "reserve" a separate 64-BYTE BLOCK of numbers in the computer's
memory for each sprite of which 63 BYTES will be used for sprite data. The
memory settings shown below are recommended for the "sprite pointer" settings
in the chart above. Each sprite will be unique and you'll have to define it as you
wish. To make all sprites exactly the same, point the sprites you want to look the
same to the same register for sprites.

DIFFERENT SPRITE POINTER SETTINGS:

These sprite pointer settings are RECOMMENDATIONS ONLY.

Caution: you can set your sprite pointers anywhere in RAM memory but if you
set them too "low" in memory a long BASIC program may overwrite your sprite
data, or vice versa. To protect an especially LONG BASIC PROGRAM from
overwriting sprite data, you may want to set the sprites at a higher area of
memory (for example, 2040,192 for sprite 0 at locations 12288 to 12350…
2041, 193 at locations 12352 to 12414 for sprite 1 and so on… by adjusting
the memory locations from which sprites get their "data," you can define as many
as 64 different sprites plus a sizable BASIC program. To do this, define several
sprite "shapes" in your DATA statements and then redefine a particular sprite by
changing the "pointer" so the sprite you are using is "pointed" at different areas
of memory containing different sprite picture data. See the "Dancing Mouse" to
see how this works. If you want two or more sprites to have THE SAME SHAPE
(you can still change position and color of each sprite), use the same sprite pointer
and memory location for the sprites you want to match (for example, you can
point sprites 0 and 1 to the same location by using POKE 2040, 192 and POKE
2041, 192).

PROGRAMMING GRAPHICS 179

PRIORITY:

Priority means one sprite will appear to move "in front of" or "behind" another

sprite on the display screen. Sprites with more priority always appear to move

"in front of" or "on top of" sprites with less priority. The rule is that lower

numbered sprites have priority over higher numbered sprites. Sprite 0 has

priority over all other sprites. Sprite 7 has no priority in relation to the other

sprites. Sprite 1 has priority over sprites 2 to 7, etc. If you put two sprites in the

same position, the sprite with the higher priority will appear IN FRONT OF the

sprite with the lower priority. The sprite with lower priority will either be

obscured, or will "show through" (from "behind") the sprite with higher priority.

USING MULTICOLOR:

You can create multicolored sprites although using multicolor mode requires that

you use PAIRS of pixels instead of individual pixels in your sprite picture (in other

words each colored "dot" or "block" in the sprite will consist of two pixels side

by side). You have 4 colors to choose from: Sprite Color (chart above), Multicolor

1, Multicolor 2 and "Background Color" (background is achieved by using zero

settings which let the background color "show through"). Consider one horizontal

8-pixel block in a sprite picture. The color of each PAIR of pixels is determined

according to whether the left, right, or both pixels are solid, like this:

BACKGROUND (Making BOTH PIXELS BLANK (zero) lets the INNER
SCREEN COLOR (background) show through.)

MULTICOLOR 1 (Making the RIGHT PIXEL SOLID in a pair of pixels
sets BOTH PIXELS to Multicolor 1.)

SPRITE COLOR (Making the LEFT PIXEL SOLID in a pair of pixels
sets BOTH PIXELS to Sprite Color.)

MULTICOLOR 2 (Making BOTH PIXELS SOLID in a pair of pixels sets
BOTH PIXELS to Multicolor 2.)

180 PROGRAMMING GRAPHICS

Look at the horizontal 8-pixel row shown below. This block sets the first two pixels

to background color, the second two pixels to Multicolor 1, the third two pixels

to Sprite Color and the fourth two pixels to Multicolor 2. The color of each PAIR

of pixels depends on which bits in each pair are solid and which are blank,

according to the illustration above. After you determine which colors you want in

each pair of pixels, the next step is to add the values of the solid pixels in the

8-pixel block, and POKE that number into the proper memory location. For

example, if the 8-pixel row shown below is the first block in a sprite which begins

at memory location 832, the value of the solid pixels is 16+8+2+1 = 27, so

you would POKE 832, 27.

COLLISION:

You can detect whether a sprite has collided with another sprite by using this

line:

IF PEEK (V+30) AND X = X THEN [insert action here].

This line checks to see if a particular sprite has collided with ANY OTHER SPRITE,

where X equals 1 for sprite 0, 2 for sprite 1, 4 for sprite 2, 8 for sprite 3, 16

for sprite 4, 32 for sprite 5, 64 for sprite 6, and 128 for sprite 7. To check to

see if the sprite has collided with a "BACKGROUND CHARACTER" use this line:

IF PEEK (V+31) AND X = X THEN [insert action here].

PROGRAMMING GRAPHICS 181

USING GRAPHIC CHARACTERS IN DATA STATEMENTS

The following program allows you to create a sprite using blanks and solid circles
(SHIFT Q) in DATA statements. The sprite and the numbers POKEd into the sprite
data registers are displayed:

10 PRINT"":FORI=0TO63:POKE832+I,0:NEXT
20 GOSUB60000

999 END

60000 DATA" ••••••• "

60001 DATA" ••••••••••• "

60002 DATA" ••••••••••••• "

60003 DATA" ••••• ••••• "

60004 DATA" ••••• ••• ••••• "

60005 DATA" ••••• ••• ••••• "

60006 DATA" ••••• ••• ••••• "

60007 DATA" ••••• ••••• "

60008 DATA" ••••••••••••• "

60009 DATA" ••••••••••••• "

60010 DATA" • ••••••••• • "

60011 DATA" • ••••••• • "

60012 DATA" • ••••• • "

60013 DATA" • ••• • "

60014 DATA" • ••• • "

60015 DATA" • • • "

60016 DATA" • • • "

60017 DATA" ••••• "

60018 DATA" ••••• "

60019 DATA" ••••• "

60020 DATA" ••• "

60100 V=53248:POKEV,200:POKEV+1,100:POKEV+21,1:

POKEV+39,14:POKE2040,13

60105 POKEV+23,1:POKEV+29,1

60110 FORI=0TO20:READA$:FORK=0TO2:T=0:FORJ=0TO7:B=0

60140 IFMID$(A$,J+K*8+1,1)="•"THENB=1

60150 T=T+B*2↑(7-J):NEXT:PRINT T;: POKE832 + I*3+K,T:

NEXT:PRINT:NEXT

60200 RETURN

 SHIFT CLR/HOME

182 PROGRAMMING GRAPHICS

CHAPTER 4

PROGRAMMING
SOUND AND

MUSIC ON YOUR
COMMODORE 64

 Introduction

 Volume Control

 Frequencies of Sound Waves

 Using Multiple Voices

 Changing Waveforms

 The Envelope Generator

 Filtering

 Advanced Techniques

 Synchronisation and Ring Modulation

184 PROGRAMMING SOUND AND MUSIC

INTRODUCTION

Your Commodore computer is equipped with one of the most sophisticated

electronic music synthesizers available on any computer. It comes complete with

three voices, totally addressable, ATTACK/DECAY/SUSTAIN/RELEASE (ADSR),

filtering, modulation, and "white noise." All of these capabilities are directly

available for you through a few easy-to-use BASIC and/or assembly language

statements and functions. This means that you can make very complex sounds and

songs using programs that are relatively simple to design.

This section of your Programmer's Reference Guide has been created to help

you explore all the capabilities of the 6581 "SID" chip, the sound and music

synthesizer inside your Commodore computer. We'll explain both the theory

behind musical ideas and the practical aspects of turning those ideas into real

finished songs on your Commodore computer.

You need not be an experienced programmer nor a music expert to achieve

exciting results from the music synthesizer. This section is full of programming

examples with complete explanations to get you started.

You get to the sound generator by POKEing into specified memory locations. A

full list of the locations used is provided in Appendix O. We will go through each

concept, step by step. By the end you should be able to create an almost infinite

variety of sounds, and be ready to perform experiments with sound on your own.

Each section of this chapter begins by giving you an example and a full line-by-

line description of each program, which will show you how to use the

characteristic being discussed. The technical explanation is for you to read

whenever you are curious about what is actually going on.

The workhorse of your sound programs is the POKE statement. POKE sets the

indicated memory location (MEM) equal to a specified value (NUM).

POKE MEM,NUM

The memory locations (MEM) used for music synthesis start at 54272 ($D400) in

the Commodore 64. The memory locations 54272 to 54296 inclusive are the

POKE locations you need to remember when you're using the 6581 (SID) chip

register map. Another way to use the locations above is to remember only

location 54272 and then add a number from 0 through 24 to it. By doing this

you can POKE all the locations from 54272 to 54296 that you need from the

PROGRAMMING SOUND AND MUSIC 185

SID chip. The numbers (NUM) that you use in your POKE statement must be

between 0 and 255, inclusive.

When you've had a little more practice with making music, then you can get a

little more involved by using the PEEK function. PEEK is a function that is equal to

the value currently in the indicated memory location.

X=PEEK(MEM)

The value of the variable X is set equal to the current contents of memory location

MEM.

Of course, your programs include other BASIC commands, but for a full

explanation of them, refer to the BASIC Statements section of this manual.

Let's jump right in and try a simple program using only one of the three voices.

Computer ready? Type NEW, then type in this program, and save it on your

Commodore Datassette ™ or disk. Then, RUN it.

EXAMPLE PROGRAM 1:

5 S=54272
10 FORL=STOS+24:POKEL,0:NEXT:REM CLEAR SOUND CHIP
20 POKES+5,9:POKES+6, 0
30 POKES+24,15 :REM SET VOLUME TO MAXIMUM
40 READHF,LF,DR
50 IFHF<0THENEND
60 POKES+1,HF:POKES,LF
70 POKES+4,33
80 FORT=1TODR:NEXT
90 POKES+4,32:FORT=1TO50:NEXT
100 GOTO40
110 DATA 25,177,250,28,214,250
120 DATA 25,177,250,25,177,250
130 DATA 25,177,125,28,214,125
140 DATA 32,94,750,25,177,250
150 DATA 28,214,250,19,63,250
160 DATA 19,63,250,19,63,250
170 DATA 21,154,63,24,63,63
180 DATA 25,177,250,24,63,125
190 DATA 19,63,250,-1,-1,-1

Here's a line-by-line description of the program you've just typed in. Refer to it

whenever you feel the need to investigate parts of the program that you don't

understand completely.

186 PROGRAMMING SOUND AND MUSIC

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 1:

Lines(s) Description

5 Set S to start of sound chip

10 Clear all sound chip registers.

20
Set Attack/Decay for voice 1 (A=0,D=9).
Set Sustain/Release for voice 1 (S=0,R=0).

30 Set volume at maximum.

40 Read high frequency, low frequency, duration of note.

50 When high frequency less than zero, song is over.

60 Poke high and low frequency of voice 1.

70 Gate sawtooth waveform for voice 1.

80 Timing loop for duration of note.

90 Release sawtooth waveform for voice 1.

100 Return for next note.

110–180 Data for song: high frequency, low frequency, duration (number
of counts) for each note.

190 Last note of song and negative 1s signaling end of song.

VOLUME CONTROL

Chip register 24 contains the overall volume control. The volume can be set

anywhere between 0 and 15. The other four bits are used for purposes we'll get

into later. For now it is enough to know volume is 0 to 15. Look at line 30 to see

how it's set in Example Program 1.

FREQUENCIES OF SOUND WAVES

Sound is created by the movement of air in waves. Think of throwing a stone into

a pool and seeing the waves radiate outward. When similar waves are created

in air, we hear it. If we measure the time between one peak of a wave and the

next, we find the number of seconds for one cycle of the wave (n=number of

seconds). The reciprocal of this number (1/n) gives you the cycles per second.

Cycles per second are more commonly known as the frequency. The highness or

lowness of a sound (pitch) is determined by the frequency of the sound waves

produced.

The sound generator in your Commodore computer uses two locations to

determine the frequency. Appendix E gives you the frequency values you need

to reproduce a full eight octaves of musical notes. To create a frequency other

than the ones listed in the note table use "Fout" (frequency output) and the

PROGRAMMING SOUND AND MUSIC 187

following formula to represent the frequency (Fn) of the sound you want to

create. Remember that each note requires both a high and a low frequency

number.

Fn=Fout/.06097

Once you've figured out what Fn is for your "new" note the next step is to create
the high and low frequency values for that note. To do this you must first round

off Fn so that any numbers to the right of the decimal point are left off. You are

now left with an integer value. Now you can set the high frequency location (Fhi)

by using the formula Fhi=INT(Fn/256) and the low frequency location (Flo) should

be Flo=Fn–(256*Fhi).

At this point you have already played with one voice of your computer. If you
wanted to stop here you could find a copy of your favorite tune and become
the maestro conducting your own computer orchestra in your "at home" concert
hall.

USING MULTIPLE VOICES

Your Commodore computer has three independently controlled voices
(oscillators). Our first example program used only one of them. Later on, you'll
learn how to change the quality of the sound made by the voices. But right now,
let's get all three voices singing.

This example program shows you one way to translate sheet music for your
computer orchestra. Try typing it in and then SAVE it on your Datassette ™ or
disk. Don't forget to type NEW before typing in this program.

EXAMPLE PROGRAM 2:

10 S=54272:FORL=STOS+24: POKEL,0:NEXT
20 DIMH(2,200),L(2,200),C(2,200)
30 DIMFQ(11)
40 V(0)=17:V(1)=65:V(2)=33
50 POKES+10,8:POKES+22,128:POKES+23,244
60 FORI=0TO11:READFQ(I):NEXT
100 FORK=0TO2
110 I=0
120 READNM
130 IFNM=0THEN250
140 WA=V(K):WB=WA-1:IFNM<0THENNM=-NM:WA=0:WB=0
150 DR%=NM/128:OC%=(NM-128*DR%)/16
160 NT=NM-128*DR%-16*OC%
170 FR=FQ(NT)

188 PROGRAMMING SOUND AND MUSIC

180 IFOC%=7THEN200

190 FORJ=6TOOC%STEP-1:FR=FR/2:NEXT

200 HF%=FR/256:LF%=FR-256*HF%

210 IFDR%=1THENH(K,I)=HF%:L(K,I)=LF%:C(K,I)=WA:

I=I+1:GOTO120

220 FORJ=1TODR%-1:H(K,I)=HF%:L(K,I)=LF%:

C(K,I)=WA:I=I+1:NEXT

230 H(K,I)=HF%:L(K,I)=LF%:C(K,I)=WB

240 I=I+1:GOTO120

250 IFI>IMTHENIM=I

260 NEXT

500 POKES+5,0:POKES+6,240

510 POKES+12,85:POKES+13,133

520 POKES+19,10:POKES+20,197

530 POKES+24,31

540 FORI=0TOIM

550 POKES,L(0,I):POKES+7,L(1,I):POKES+14,L(2,I)

560 POKES+1,H(0,I):POKES+8,H(1,I):POKES+15,H(2,I)

570 POKES+4,C(0,I):POKES+11,C(1,I):POKES+18,C(2,I)

580 FORT=1TO80:NEXT:NEXT

590 FORT=1TO200:NEXT:POKES+24,0

600 DATA 34334,36376,38539,40830

610 DATA 43258,45830,48556,51443

620 DATA 54502,57743,61176,64814

1000 DATA 594,594,594,596,596,1618,587,592,587,585,

331,336

1010 DATA 1097,583,585,585,585,587,587,1609,585,331,

337,594,594,593

1020 DATA 1618,594,596,594,592,587,1616,587,585,

331,336,841,327

1999 DATA 1607,0

2000 DATA 583,585,583,583,327,329,1611,583,585,578,

578,578

2010 DATA 196,198,583,326,578,326,327,329,327,329,326,

578,583

2020 DATA 1606,582,322,324,582,587,329,327,1606,583,

327,329,587,331,329

2999 DATA 329,328,1609,578,834,324,322,327,585,1602,0

3000 DATA 567,566,567,304,306,308,310,1591,567,311,

310,567

3010 DATA 306,304,299,308,304,171,176,306,291,551,

306,308

3020 DATA 310,308,310,306,295,297,299,304,1586,562,

567,310,315,311

3030 DATA 308,313,297,1586,567,560,311,309,308,309,

306,308

3999 DATA 1577,299,295,306,310,311,304,562,546,1575,0

PROGRAMMING SOUND AND MUSIC 189

Here is a line-by-line explanation of Example Program 2. For now, we are
interested in how the three voices are controlled.

LlNE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 2:

Line(s) Description

10 Set S equal to start of sound chip and clear all sound chip
registers.

20 Dimension arrays to contain activity of song, 1/l6th of a
measure per location.

30 Dimension array to contain base frequency for each note.

40 Store waveform control byte for each voice.

50 Set high pulse width for voice 2.
Set high frequency for filter cutoff.
Set resonance for filter and filter voice 3.

60 Read in base frequency for each note.

100 Begin decoding loop for each voice.

110 Initialize pointer to activity array.

120 Read coded note.

130 If coded note is zero, then next voice.

140 Set waveform controls to proper voice.
If silence, set waveform controls to 0.

150 Decode duration and octave.

160 Decode note.

170 Get base frequency for this note.

180 If highest octave, skip division loop.

190 Divide base frequency by 2 appropriate number of times.

200 Get high and low frequency bytes.

210 If sixteenth note, set activity array: high frequency, low
frequency, and waveform control (voice on).

220 For all but last beat of note, set activity array: high
frequency, low frequency, waveform control (voice on).

230 For last beat of note, set activity array: high frequency, low
frequency, waveform control (voice off).

240 Increment pointer to activity array. Get next note.

250 If longer than before, reset number of activities.

260 Go back for next voice.

500 Set Attack/Decay for voice 1 (A=0, D=0).
Set Sustain/Release for voice 1 (S=15, R=0).

190 PROGRAMMING SOUND AND MUSIC

Line(s) Description

510 Set Attack/Decay for voice 2 (A=5, D=5).
Set Sustain/Release for voice 2 (S=8, R=5).

520 Set Attack/Decay for voice 3 (A=0, D=10).
Set Sustain/Release for voice 3 (S=12, R=5).

530 Set volume 15, low-pass filtering.

540 Start loop for every 1/16th of a measure.

550 POKE low frequency from activity array for all voices.

560 POKE high frequency from activity array for all voices.

570 POKE waveform control from activity array for all voices.

580 Timing loop for 1/16th of a measure and back for next
1/16th measure.

590 Pause, then turn off volume.

600–620 Base frequency data.

1000–1999 Voice 1 data.

2000–2999 Voice 2 data.

3000–3999 Voice 2 data.

The values used in the data statements were found by using the note table in
Appendix E and the chart below:

NOTE TYPE DURATION
1/16 128
1/8 256

DOTTED 1/8 384
1/4 512

1/4 + 1/16 640
DOTTED 1/4 768

1/2 1024
1/2 + 1/16 1152
1/2 + 1/8 1280

DOTTED 1/2 1536
WHOLE 2048

PROGRAMMING SOUND AND MUSIC 191

The note number from the note table is added to the duration above. Then each

note can be entered using only one number which is decoded by your program.

This is only one method of coding note values. You may be able to come up with

one with which you are more comfortable.

The formula used here for encoding a note is as follows:

1) The duration (number of 1/16ths of a measure) is multiplied by 8.

2) The result of step 1 is added to the octave you've chosen (0 to 7).

3) The result of step 2 is then multiplied by 16.

4) Add your note choice (0 to 11) to the result of the operation in step 3.

In other words:

((((D*8)+O) *16)+N)

Where D = Duration, O = Octave, and N = Note.

A silence is obtained by using the negative of the duration number (number of

1/16ths of a measure * 128).

CONTROLLING MULTIPLE VOICES

Once you have gotten used to using more than one voice, you will find that the

timing of the three voices needs to be coordinated. This is accomplished in this

program by:

1) Dividing each musical measure into 16 parts.

2) Storing the events that occur in each 1/16th measure interval in three separate

arrays.

The high and low frequency bytes are calculated by dividing the frequencies of

the highest octave by two (lines 180 and 190). The waveform control byte is a

start signal for beginning a note or continuing a note that is already playing. It

is a stop signal to end a note. The waveform choice is made once for each voice

in line 40.

Again, this is only one way to control multiple voices. You may come up with your

own methods. However, you should now be able to take any piece of sheet music

and figure out the notes for all three voices.

192 PROGRAMMING SOUND AND MUSIC

CHANGING WAVEFORMS

The tonal quality of a sound is called the timbre. The timbre of a sound is

determined primarily by its "waveform." If you remember the example of

throwing a pebble into the water you know that the waves ripple evenly across

the pond. These waves almost look like the first sound wave we're going to talk

about, the sinusoidal wave, or sine wave for short (shown below):

To make what we're talking about a bit more practical, let's go back to the first

example program to investigate different waveforms. The reason for this is that

you can hear the changes more easily using only one voice. LOAD the first music

program that you typed in earlier, from your Datassette ™ or disk, and RUN it

again. That program is using the sawtooth waveform (shown here):

from the 6581 SID chip's sound generating device. Try changing the note start

number in line 70 from 33 to 17 and the note stop number in line 90 from 32 to

16. Your program should now look like this:

PROGRAMMING SOUND AND MUSIC 193

EXAMPLE PROGRAM 3 (EXAMPLE 1 MODIFIED):

5 S=54272
10 FORL=STOS+24:POKEL,0:NEXT
20 POKES+5,9:POKES+6,0
30 POKES+24,15
40 READHF,LF,DR
50 IFHF<0THENEND
60 POKES+1,HF:POKES,LF
70 POKES+4,17
80 FORT=1TODR:NEXT
90 POKES+4,16:FORT=1TO50:NEXT
100 GOTO40
110 DATA25,177,250,28,214,250
120 DATA25,177,250,25,177,250
130 DATA25,177,125,28,214,125
140 DATA32,94,750,25,177,250
150 DATA28,214,250,19,63,250
160 DATA19,63,250,19,63,250
170 DATA21,154,63,24,63,63
180 DATA25,177,250,24,63,125
190 DATA19,63,250,-1,-1,-1

Now RUN the program.

Notice how the sound quality is different, less twangy, more hollow. That's
because we changed the sawtooth waveform into a triangular waveform (shown
below):

The third musical waveform is called a variable pulse wave (shown below):

194 PROGRAMMING SOUND AND MUSIC

It is a rectangular wave and you determine the length of the pulse cycle by
defining the proportion of the wave which will be high. This is accomplished for
voice 1 by using registers 2 and 3. Register 2 is the low byte of the pulse width

(Lpw = 0 through 255). Register 3 is the high 4 bits (Hpw = 0 through 15).

Together these registers specify a 12-bit number for your pulse width, which you
can determine by using the following formula:

PWn = Hpw * 256 + Lpw

The pulse width is determined by the following equation:

PWout = (PWn / 40.95) %

When PWn has a value of 2048, it will give you a square wave. That means

that register 2 (Lpw) = 0 and register 3 (Hpw) = 8.

Now try adding this line to your program:

15 POKES+3,8:POKES+2,0

Then change the start number in line 70 to 65 and the stop number in line 90 to

64, and RUN the program. Now change the high pulse width (register 3 in line

15) from an 8 to a 1. Notice how dramatic the difference in sound quality is?

The last waveform available to you is white noise (shown here):

It is used mostly for sound effects and such. To hear how it sounds, try changing
the start number in line 70 to 129 and the stop number in line 90 to 128.

UNDERSTANDING WAVEFORMS

When a note is played, it consists of a sine wave oscillating at the fundamental
frequency and the harmonics of that wave.

PROGRAMMING SOUND AND MUSIC 195

The fundamental frequency defines the overall pitch of the note. Harmonics are
sine waves having frequencies which are integer multiples of the fundamental
frequency. A sound wave is the fundamental frequency and all of the harmonics
it takes to make up that sound.

In musical theory let's say that the fundamental frequency is harmonic number 1.

The second harmonic has a frequency twice the fundamental frequency, the third

harmonic is three times the fundamental frequency, and so on. The amounts of

each harmonic present in a note give it its timbre.

An acoustic instrument, like a guitar or a violin, has a very complicated harmonic

structure. In fact, the harmonic structure may vary as a single note is played. You

have already played with the waveforms available in your Commodore music

synthesizer. Now let's talk about how the harmonics work with the triangular,

sawtooth, and rectangular waves.

A triangular wave contains only odd harmonics. The amount of each harmonic

present is proportional to the reciprocal of the square of the harmonic number.

In other words harmonic number 3 is 1/9 quieter than harmonic number 1,

because the harmonic 3 squared is 9 (3 × 3) and the reciprocal of 9 is 1/9.

As you can see, there is a similarity in shape of a triangular wave to a sine wave
oscillating at the fundamental frequency.

Sawtooth waves contain all the harmonics. The amount of each harmonic present
is proportional to the reciprocal of the harmonic number. For example, harmonic
number 2 is 1/2 as loud as harmonic number 1.

The square wave contains odd harmonics in proportion to the reciprocal of the

harmonic number. Other rectangular waves have varying harmonic content. By

changing the pulse width, the timbre of the sound of a rectangular wave can be

varied tremendously.

196 PROGRAMMING SOUND AND MUSIC

By choosing carefully the waveform used, you can start with a harmonic structure

that looks somewhat like the sound you want. To refine the sound, you can add

another aspect of sound quality available on your Commodore 64 called

filtering, which we'll discuss later in this section.

THE ENVELOPE GENERATOR

The volume of a musical tone changes from the moment you first hear it, all the

way through until it dies out and you can't hear it anymore. When a note is first

struck, it rises from zero volume to its peak volume. The rate at which this happens

is called the ATTACK. Then, it falls from the peak to some middle-ranged

volume. The rate at which the fall of the note occurs is called the DECAY. The

mid-ranged volume itself is called the SUSTAIN level. And finally, when the note

stops playing, it falls from the SUSTAIN level to zero volume. The rate at which

it falls is called the RELEASE. Here is a sketch of the four phases of a note:

Each of the items mentioned above give certain qualities and restrictions to a

note. The bounds are called parameters.

The parameters ATTACK/DECAY/SUSTAIN/RELEASE and collectively called

ADSR, can be controlled by your use of another set of locations in the sound

generator chip. LOAD your first example program again. RUN it again and

remember how it sounds. Then, try changing line 20 so the program is like this:

PROGRAMMING SOUND AND MUSIC 197

EXAMPLE PROGRAM 4 (EXAMPLE 1 MODIFIED):

5 S=54272

10 FORL=STOS+24:POKEL,0:NEXT

20 POKES+5,88:POKES+6,195

30 POKES+24,15

40 READHF,LF,DR

50 IFHF<0THENEND

60 POKES+1,HF:POKES,LF

70 POKES+4,33

80 FORT=1TODR:NEXT

90 POKES+4,32:FORT=1TO50:NEXT

100 GOTO40

110 DATA25,177,250,28,214,250

120 DATA25,177,250,25,177,250

130 DATA25,177,125,28,214,125

140 DATA32,94,750,25,177,250

150 DATA28,214,250,19,63,250

160 DATA19,63,250,19,63,250

170 DATA21,154,63,24,63,63

180 DATA25,177,250,24,63,125

190 DATA19,63,250,-1,-1,-1

Registers 5 and 6 define the ADSR for voice 1. The ATTACK is the high nybble

of register 5. Nybble is half a byte, in other words the lower 4 or higher 4 on/off

locations (bits) in each register. DECAY is the low nybble. You can pick any

number 0 through 15 for ATTACK, multiply it by 16 and add to any number 0

through 15 for DECAY. The values that correspond to these numbers are listed

below.

SUSTAIN level is the high nybble of register 6. It can be 0 through 15. It defines

the proportion of the peak volume that the SUSTAIN level will be. RELEASE rate

is the low nybble of register 6.

198 PROGRAMMING SOUND AND MUSIC

Here are the meanings of the values for ATTACK, DECAY, and RELEASE:

VALUE ATTACK RATE (TIME/CYCLE) DECAY/RELEASE RATE (TIME/CYCLE)

0 2 ms 6 ms

1 8 ms 24 ms

2 16 ms 48 ms

3 24 ms 72 ms

4 38 ms 114 ms

5 56 ms 168 ms

6 68 ms 204 ms

7 80 ms 240 ms

8 100 ms 300 ms

9 250 ms 750 ms

10 500 ms 1.5 s

11 800 ms 2.4 s

12 1 s 3 s

13 3 s 9 s

14 5 s 15 s

15 8 s 24 s

Here are a few sample settings to try in your example program. Try these and

a few of your own. The variety of sounds you can produce is astounding! For a

violin type sound, try changing line 20 to read:

20 POKES+5,88:POKES+6,89:REM A=5;D=8;S=5;R=9

Change the waveform to triangle and get a xylophone type sound by using

these lines:

20 POKES+5,9:POKES+6,9:REM A=0;D=9;S=O;R=9

70 POKES+4,17

90 POKES+4,16:FORT=1TO50:NEXT

PROGRAMMING SOUND AND MUSIC 199

Change the waveform to square and try a piano type sound with these lines:

15 POKES+3,8:POKES+2,0

20 POKES+5,9:POKES+6,0: REM A=0;D=9;S=0;R=0

70 POKES+4,65

90 POKES+4,64:FORT=1TO50:NEXT

The most exciting sounds are those unique to the music synthesizer itself, ones that

do not attempt to mimic acoustic instruments. For example try:

20 POKES+5,144:POKES+6,243:REM A=9;D=0;S=15;R=3

FILTERING

The harmonic content of a waveform can be changed by using a filter. The SID

chip is equipped with three types of filtering. They can be used separately or in

combination with one another. Let's go back to the sample program you've been

using to play with a simple example that uses a filter. There are several filter

controls to set.

You add line 15 in the program to set the cutoff frequency of the filter. The cutoff

frequency is the reference point for the filter. You SET the high and low frequency

cutoff points in registers 21 and 22. To turn ON the filter for voice 1, POKE

register 23.

Next change line 30 to show that a high-pass filter will be used (see the SID

register map).

200 PROGRAMMING SOUND AND MUSIC

EXAMPLE PROGRAM 5 (EXAMPLE 1 MODIFIED):

5 S=54272
10 FORL=STOS+24:POKEL,0:NEXT
15 POKES+22,128:POKES+21,0:POKES+23,1
20 POKES+5,9:POKES+6,0
30 POKES+24,79
40 READHF,LF,DR
50 IFHF<0THENEND
60 POKES+1,HF:POKES,LF
70 POKES+4,33
80 FORT=1TODR:NEXT
90 POKES+4,32:FORT=1TO50:NEXT
100 GOTO40
110 DATA25,177,250,28,214,250
120 DATA25,177,250,25,177,250
130 DATA25,177,125,28,214,125
140 DATA32,94,750,25,177,250
150 DATA28,214,250,19,63,250
160 DATA19,63,250,19,63,250
170 DATA21,154,63,24,63,63
180 DATA25,177,250,24,63,125
190 DATA19,63,250,-1,-1,-1

Try RUNning the program now. Notice the lower tones have had their volume cut
down. It makes the overall quality of the note sound tinny. This is because you
are using a high-pass filter which attenuates (cuts down the level of) frequencies
below the specified cutoff frequency.

There are three types of filters in your Commodore computer's SID chip. We
have been using the high-pass filter. It will pass all the frequencies at or above
the cutoff, while attenuating the frequencies below the cutoff.

The SID chip also has a low-pass filter. As its name implies, this filter will pass the
frequencies below cutoff and attenuate those above.

PROGRAMMING SOUND AND MUSIC 201

Finally, the chip is equipped with a bandpass filter, which passes a narrow band
of frequencies around the cut off, and attenuates all others.

The high- and low-pass filters can be combined to form a notch reject filter which
passes frequencies away from the cutoff while attenuating at the cutoff
frequency.

202 PROGRAMMING SOUND AND MUSIC

Register 24 determines which type filter you want to use. This is in addition to

register 24's function as the overall volume control. Bit 6 controls the high-pass

filter (0 = off, 1 = on), bit 5 is the bandpass filter, and bit 4 is the low-pass

filter. The low 3 bits of the cutoff frequency are determined by register 21 (Lcf)

(Lcf = 0 through 7). While the 8 bits of the high cutoff frequency are determined

by register 22 (Hcf) (Hcf = 0 through 255).

Through careful use of filtering, you can change the harmonic structure of any

waveform to get just the sound you want. In addition, changing the filtering of a

sound as it goes through the ADSR phases of its life can produce interesting

effects.

ADVANCED TECHNIQUES

The SID chip's parameters can be changed dynamically during a note or sound

to create many interesting and fun effects. In order to make this easy to do,

digitized outputs from oscillator three and envelope generator three are available

for you in registers 27 and 28, respectively.

The output of oscillator 3 (register 27) is directly related to the waveform

selected. If you choose the sawtooth waveform of oscillator 3, this register will

present a series of numbers incremented (increased step by step) from 0 to 255

at a rate determined by the frequency of oscillator 3. If you choose the triangle

waveform, the output will increment from 0 up to 255, then decrement (decrease

step-by-step) back down to 0. If you choose the pulse wave, the output will jump

back-and-forth between 0 and 255. Finally, choosing the noise waveform will

give you a series of random numbers. When oscillator 3 is used for modulation,

you usually do NOT want to hear its output. Setting bit 7 of register 24 turns the

audio output of voice 3 off. Register 27 always reflects the changing output of

the oscillator and is not affected in any way by the envelope (ADSR) generator.

PROGRAMMING SOUND AND MUSIC 203

Register 25 gives you access to the output of the envelope generator of oscillator

3. It functions in much the same fashion that the output of oscillator 3 does. The

oscillator must be turned on to produce any output from this register.

Vibrato (a rapid variation in frequency) can be achieved by adding the output

of oscillator 3 to the frequency of another oscillator. Example Program 6

illustrates this idea.

EXAMPLE PROGRAM 6:

10 S=54272

20 FORL=0TO24:POKES+L,0:NEXT

30 POKES+3,8

40 POKES+5,41:POKES+6,89

50 POKES+14,117

60 POKES+18,16

70 POKES+24,143

80 READFR,DR

90 IFFR=0THENEND

100 POKES+4,65

110 FORT=1TODR*2

120 FQ=FR+PEEK(S+27)/2

130 HF=INT(FQ/256):LF=FQAND255

140 POKES+0,LF:POKES+1,HF

150 NEXT

160 POKES+4,64

170 GOTO80

500 DATA 4817,2,5103,2,5407,2

510 DATA 8583,4,5407,2,8583,4

520 DATA 5407,4,8583,12,9634,2

530 DATA 10207,2,10814,2,8583,2

540 DATA 9634,4,10814,2,8583,2

550 DATA 9634,4,8583,12

560 DATA 0,0

204 PROGRAMMING SOUND AND MUSIC

LlNE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 6:

Line(s) Description

10 Set S to beginning of sound chip.

20 Clear all sound chip locations.

30 Set high pulse width for voice 1.

40 Set Attack/Decay for voice 1 (A=2, D=9).
Set Sustain/Release for voice 1 (S=5, R=9).

50 Set low frequency for voice 3.

60 Set triangle waveform for voice 3.

70 Set volume 15, turn off audio output of voice 3.

80 Read frequency and duration of note.

90 If frequency equals zero, stop.

100 POKE start pulse waveform control voice 1.

110 Start timing loop for duration.

120 Get new frequency using oscillator 3 output.

130 Get high and low frequency.

140 POKE high and low frequency for voice 1.

150 End of timing loop.

160 POKE stop pulse waveform control voice 1.

170 Go back for next note.

500–550 Frequencies and durations for song.

560 Zeros signal end of song.

A wide variety of sound effects can also be achieved using dynamic effects. For

example, the following siren program dynamically changes the frequency output

of oscillator 1 when it's based on the output of oscillator 3's triangular wave:

PROGRAMMING SOUND AND MUSIC 205

EXAMPLE PROGRAM 7:

10 S=54272

20 FORL=0TO24:POKES+L,0:NEXT

30 POKES+14,5

40 POKES+18,16

50 POKES+3,1

60 POKES+24,143

70 POKES+6,240

80 POKES+4,65

90 FR=5389

100 FORT=1TO200

110 FQ=FR+PEEK(S+27)*3.5

120 HF=INT(FQ/256):LF=FQ-HF*256

130 POKES+0,LF:POKES+1,HF

140 NEXT

150 POKES+24,0

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 7:

Line(s) Description

10 Set S to start of sound chip.

20 Clear sound chip registers.

30 Set low frequency of voice 3.

40 Set triangular waveform voice 3.

50 Set high pulse width for voice 1.

60 Set volume 15, turn off audio output of voice 3.

70 Set Sustain/Release for voice 1 (S=15, R=0).

80 POKE start pulse waveform control voice 1.

90 Set lowest frequency for siren.

100 Begin timing loop.

110 Get new frequency using output of oscillator 3.

120 Get high and low frequencies.

130 POKE high and low frequencies for voice 1.

140 End timing loop.

150 Turn off volume.

206 PROGRAMMING SOUND AND MUSIC

The noise waveform can be used to provide a wide range of sound effects. This

example mimics a hand clap using a filtered noise waveform:

EXAMPLE PROGRAM 8:

10 S=54272

20 FORL=0TO24:POKES+L,0:NEXT

30 POKES+0,240:POKES+1,33

40 POKES+5,8

50 POKES+22,104

60 POKES+23,1

70 POKES+24,79

80 FORN=1TO15

90 POKES+4,129

100 FORT=1TO250:NEXT:POKES+4,128

110 FORT=1TO30:NEXT:NEXT

120 POKES+24,0

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 8:

Line(s) Description

10 Set S to start of sound chip.

20 Clear all sound chip registers.

30 Set high and low frequencies for voice 1.

40 Set Attack/Decay for voice 1 (A=0, D=8).

50 Set high cutoff frequency for filter.

60 Turn on filter for voice 1.

70 Set volume 15, high-pass filter.

80 Count 15 claps.

90 Set start noise waveform control.

100 Wait, then set stop noise waveform control.

110 Wait, then start next clap.

120 Turn off volume.

PROGRAMMING SOUND AND MUSIC 207

SYNCHRONIZATION AND RING MODULATION

The 6581 SID chip lets you create more complex harmonic structures through

synchronization or ring modulation of two voices.

The process of synchronization is basically a logical ANDing of two wave forms.

When either is zero, the output is zero. The following example uses this process

to create an imitation of a mosquito:

EXAMPLE PROGRAM 9:

10 S=54272

20 FORL=0TO24:POKES+L,0:NEXT

30 POKES+1,100

40 POKES+5,219

50 POKES+15,28

60 POKES+24,15

70 POKES+4,19

80 FORT=1TO5000:NEXT

90 POKES+4,18

100 FORT=1TO1000:NEXT:POKES+24,0

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 9:

Line(s) Description

10 Set S to start of sound chip.

20 Clear sound chip registers.

30 Set high frequency voice 1.

40 Set Attack/Decay for voice 1 (A=13, D=11).

50 Set high frequency voice 3.

60 Set volume 15.

70 Set start triangle, sync waveform control for voice 1.

80 Timing loop.

90 Set stop triangle, sync waveform control for voice 1.

100 Wait, then turn off volume.

The synchronization feature is enabled (turned on) in line 70, where bits 0, 1,
and 4 of register 4 are set. Bit 1 enables the syncing function between voice 1
and voice 3. Bits 0 and 4 have their usual functions of gating voice 1 and setting
the triangular waveform.

208 PROGRAMMING SOUND AND MUSIC

Ring modulation (accomplished for voice 1 by setting bit 3 of register 4 in line

70 of the program below) replaces the triangular output of oscillator 1 with a

"ring modulated" combination of oscillators 1 and 3. This produces non-harmonic

overtone structures for use in mimicking bell or gong sounds. This program

produces a clock chime imitation:

EXAMPLE PROGRAM 10:

 10 S=54272

 20 FORL=0TO24:POKES+L,0:NEXT

 30 POKES+1,130

 40 POKES+5,9

 50 POKES+15,30

 60 POKES+24,15

 70 FORL=1TO12:POKES+4,21

 80 FORT=1TO1000:NEXT:POKES+4,20

 90 FORT=1TO1000:NEXT:NEXT

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 10:

Line(s) Description

10 Set S to start of sound chip.

20 Clear sound chip registers.

30 Set high frequency voice 1.

40 Set Attack/Decay for voice 1 (A=0, D=9).

50 Set high frequency voice 3.

60 Set volume 15.

70 Count number of dings, set start triangle, ring mod
waveform control voice 1.

80 Timing loop, set stop triangle, ring mod.

90 Timing loop, next ding.

The effects available through the use of the parameters of your Commodore

64's SID chip are numerous and varied. Only through experimentation on your

own will you fully appreciate the capabilities of your machine. The examples in

this section of the Programmer's Reference Guide merely scratch the surface.

Watch for the book MAKING MUSIC ON YOUR COMMODORE COMPUTER

for everything from simple fun and games to professional-type musical

instruction.

CHAPTER 5

BASIC TO
MACHINE

LANGUAGE

 What Is Machine Language

 How Do You Write Machine

 Language Programs

 Hexadecimal Notation

 Addressing Modes

 Indexing

 Subroutines

 Useful Tips for the Beginner

 Approaching a Large Task

 MCS6510 Microprocessor Instruction Set

 Memory Management on the

Commodore 64

 The KERNAL

 KERNAL Power-Up Activities

 Using Machine Language From BASIC

 Commodore 64 Memory Map

210 BASIC TO MACHINE LANGUAGE

WHAT IS MACHINE LANGUAGE?

At the heart of every microcomputer, is a central microprocessor. It's a very

special microchip which is the "brain" of the computer. The Commodore 64 is no

exception. Every microprocessor understands its own language of instructions.

These instructions are called machine language instructions. To put it more

precisely, machine language is the ONLY programming language that your

Commodore 64 understands. It is the NATIVE language of the machine.

If machine language is the only language that the Commodore 64 understands,

then how does it understand the CBM BASIC programming language? CBM

BASIC is NOT the machine language of the Commodore 64. What, then, makes

the Commodore 64 understand CBM BASIC instructions like PRINT and GOTO?

To answer this question, you must first see what happens inside your Commodore

64. Apart from the microprocessor which is the brain of the Commodore 64, there

is a machine language program which is stored in a special type of memory so

that it can't be changed. And, more importantly, it does not disappear when the

Commodore 64 is turned off, unlike a program that you may have written. This

machine language program is called the OPERATING SYSTEM of the

Commodore 64. Your Commodore 64 knows what to do when it's turned on

because its OPERATING SYSTEM (program) is automatically "RUN."

BASIC TO MACHINE LANGUAGE 211

The OPERATING SYSTEM is in charge of "organizing" all the memory in your

machine for various tasks. It also looks at what characters you type on the

keyboard and puts them onto the screen, plus a whole number of other functions.

The OPERATING SYSTEM can be thought of as the "intelligence and personality"

of the Commodore 64 (or any computer for that matter). So when you turn on

your Commodore 64, the OPERATING SYSTEM takes control of your machine,

and after it has done its housework, it then says:

READY.

█

The OPERATING SYSTEM of the Commodore 64 then allows you to type on the

keyboard, and use the built-in SCREEN EDITOR on the Commodore 64. The

SCREEN EDITOR allows you to move the cursor, DELete, INSerT, etc., and is, in

fact, only one part of the operating system that is built in for your convenience.

All of the commands that are available in CBM BASIC are simply recognized by

another huge machine language program built into your Commodore 64. This

huge program "RUNs" the appropriate piece of machine language depending

on which CBM BASIC command is being executed. This program is called the

BASIC INTERPRETER, because it interprets each command, one by one, unless it

encounters a command it does not understand, and then the familiar message

appears:

?SYNTAX ERROR

READY.

█

WHAT DOES MACHINE CODE LOOK LIKE?

You should be familiar with the PEEK and POKE commands in the CBM BASIC

language for changing memory locations. You've probably used them for

graphics on the screen, and for sound effects. Each memory location has its own

number which identifies it. This number is known as the "address" of a memory

location. If you imagine the memory in the Commodore 64 as a street of

buildings, then the number on each door is, of course, the address. Now let's look

at which parts of the street are used for what purposes.

212 BASIC TO MACHINE LANGUAGE

SIMPLE MEMORY MAP OF THE COMMODORE 64

ADDRESS DESCRIPTION

0 & 1

— 6510 Registers.

2
up to:
1023

— Start of memory.
— Memory used by the operating system.

1024
up to:
2039

— Screen memory.

2040
up to:
2047

— SPRITE pointers.

2048
up to:
40959

— This is YOUR memory. This is where your BASIC or machine
 language programs, or both, are stored.

40960
up to:
49151

— 8K CBM BASIC interpreter.

49152
up to:
53247

— Special programs RAM area.

53248
up to:
53294

— VIC-II.

54272
up to:
55295

— SID Registers.

55296
up to:
56296

— Color RAM.

56320
up to:
57343

— I/O Registers. (6526's)

57344
up to:
65535

— 8K CBM KERNAL Operating system.

BASIC TO MACHINE LANGUAGE 213

If you don't understand what the description of each part of memory means right

now, this will become clear from other parts of this manual.

Machine language programs consist of instructions which may or may not have

operands (parameters) associated with them. Each instruction takes up one

memory location, and any operand is contained in one or two locations following

the instruction.

In your BASIC programs, words like PRINT and GOTO do, in fact, only take up

one memory location, rather than one for each character of the word. The

contents of the location that represents a particular BASIC keyword is called a

token. In machine language, there are different tokens for different instructions,

which also take up just one byte (memory location=byte).

Machine language instructions are very simple. Therefore, each individual

instruction cannot achieve a great deal. Machine language instructions either

change the contents of a memory location, or change one of the internal registers

(special storage locations) inside the microprocessor. The internal registers form

the very basis of machine language.

THE REGISTERS INSIDE THE 6510 MICROPROCESSOR

THE ACCUMULATOR

This is THE most important register in the microprocessor. Various machine

language instructions allow you to copy the contents of a memory location into

the accumulator, copy the contents of the accumulator into a memory location,

modify the contents of the accumulator or some other register directly, without

affecting any memory. And the accumulator is the only register that has

instructions for performing math.

THE X INDEX REGISTER

This is a very important register. There are instructions for nearly all of the

transformations you can make to the accumulator. But there are other instructions

for things that only the X register can do. Various machine language instructions

allow you to copy the contents of a memory location into the X register, copy the

contents of the X register into a memory location, and modify the contents of the

X, or some other register directly.

214 BASIC TO MACHINE LANGUAGE

THE Y INDEX REGISTER

This is a very important register. There are instructions for nearly all of the

transformations you can make to the accumulator, and the X register. But there

are other instructions for things that only the Y register can do. Various machine

language instructions allow you to copy the contents of a memory location into

the Y register, copy the contents of the Y register into a memory location, and

modify the contents of the Y, or some other register directly.

THE STATUS REGISTER

This register consists of eight "flags" (a flag = something that indicates whether

something has, or has not occurred).

THE PROGRAM COUNTER

This contains the address of the current machine language instruction being

executed. Since the operating system is always "RUN"ning in the Commodore 64

(or, for that matter, any computer), the program counter is always changing. It

could only be stopped by halting the microprocessor in some way.

THE STACK POINTER

This register contains the location of the first empty place on the stack. The stack

is used for temporary storage by machine language programs, and by the

computer.

THE INPUT/OUTPUT PORT

This register appears at memory locations 0 (for the DATA DIRECTION REGISTER)

and 1 (for the actual PORT). It is an 8-bit input/output port. On the Commodore

64 this register is used for memory management, to allow the chip to control

more than 64K of RAM and ROM memory.

The details of these registers are not given here. They are explained as the

principles needed to explain them are explained.

HOW DO YOU WRITE MACHINE LANGUAGE PROGRAMS?

Since machine language programs reside in memory, and there is no facility in

your Commodore 64 for writing and editing machine language programs, you

BASIC TO MACHINE LANGUAGE 215

must use either a program to do this, or write for yourself a BASIC program that

"allows" you to write machine language.

The most common methods used to write machine language programs are

assembler programs. These packages allow you to write machine language

instructions in a standardized mnemonic format, which makes the machine

language program a lot more readable than a stream of numbers! Let's review:

A program that allows you to write machine language programs in mnemonic

format is called an assembler. Incidentally, a program that displays a machine

language program in mnemonic format is called a disassembler. Available for

your Commodore 64 is a machine language monitor cartridge (with

assembler/disassembler, etc.) made by Commodore:

64MON

The 64MON cartridge available from your local dealer, is a program that

allows you to escape from the world of CBM BASIC, into the land of machine

language. It can display the contents of the internal registers in the 6510

microprocessor, and it allows you to display portions of memory, and change

them on the screen, using the screen editor. It also has a built-in assembler and

disassembler, as well as many other features that allow you to write and edit

machine language programs easily. You don't HAVE to use an assembler to write

machine language, but the task is considerably easier with it. If you wish to write

machine language programs, it is strongly suggested that you purchase an

assembler of some sort. Without an assembler you will probably have to "POKE"

the machine language program into memory, which is totally unadvisable. This

manual will give its examples in the format that 64MON uses, from now on.

Nearly all assembler formats are the same, therefore the machine language

examples shown will almost certainly be compatible with any assembler. But

before explaining any of the other features of 64MON, the hexadecimal

numbering system must be explained.

HEXADECIMAL NOTATION

Hexadecimal notation is used by most machine language programmers when

they talk about a number or address in a machine language program.

Some assemblers let you refer to addresses and numbers in decimal (base 10),

binary (base 2), or even octal (base 8) as well as hexadecimal (base 16) (or just

"hex" as most people say). These assemblers do the conversions for you.

216 BASIC TO MACHINE LANGUAGE

Hexadecimal probably seems a little hard to grasp at first, but like most things,

it won't take long to master with practice.

By looking at decimal (base 10) numbers, you can see that each digit falls

somewhere in the range between zero and a number equal to the base less one

(e.g., 9). THIS IS TRUE OF ALL NUMBER BASES. Binary (base 2) numbers have

digits ranging from zero to one (which is one less than the base). Similarly,

hexadecimal numbers should have digits ranging from zero to fifteen, but we do

not have any single digit figures for the numbers ten to fifteen, so the first six

letters of the alphabet are used instead:

DECIMAL HEXADECIMAL BINARY

0 0 00000000

1 1 00000001

2 2 00000010

3 3 00000011

4 4 00000100

5 5 00000101

6 6 00000110

7 7 00000111

8 8 00001000

9 9 00001001

10 A 00001010

11 B 00001011

12 C 00001100

13 D 00001101

14 E 00001110

15 F 00001111

16 10 00010000

BASIC TO MACHINE LANGUAGE 217

Let's look at it another way; here's an example of how a base 10 (decimal
number) is constructed:

Base raised by

increasing powers: 103 102 101 100

Equals: 1000 100 10 1

Consider 4569 (base 10) 4 5 6 9

=(4x1000)+(5x100)+(6x10)+9

Now look at an example of how a base 16 (hexadecimal number) is constructed:

Base raised by

increasing powers: 163 162 161 160

Equals: 4096 256 16 1

Consider 11D9 (base 16) 1 1 D 9

=(1x4096)+(1x256)+(13x16)+9

Therefore, 4569 (base 10) = 11D9 (base 16)

The range for addressable memory locations is 0 – 65535 (as was stated

earlier). This range is therefore 0 – FFFF in hexadecimal notation.

Usually hexadecimal numbers are prefixed with a dollar sign ($). This is to

distinguish them from decimal numbers. Let's look at some "hex" numbers, using

64MON, by displaying the contents of some memory by typing:

SYS 8*4096 (or SYS 12*4096)
B*

 PC SR AC XR YR SP
.; 0401 32 04 5E 00 F6 (these may be different)

Then if you type in:

.M 0000 0020 (and press RETURN).

you will see rows of 9 hex numbers. The first 4-digit number is the address of the

first byte of memory being shown in that row, and the other eight numbers are

the actual contents of the memory locations beginning at that start address.

218 BASIC TO MACHINE LANGUAGE

You should really try to learn to "think" in hexadecimal. It's not too difficult,
because you don't have to think about converting it back into decimal. For
example, if you said that a particular value is stored at $14ED instead of 5357,
it shouldn't make any difference.

YOUR FIRST MACHINE LANGUAGE INSTRUCTION

LDA – LOAD THE ACCUMULATOR

In 6510 assembly language, mnemonics are always three characters. LDA
represents "load accumulator with…," and what the accumulator should be
loaded with is decided by the parameter(s) associated with that instruction. The
assembler knows which token is represented by each mnemonic, and when it
"assembles" an instruction, it simply puts into memory (at whatever address has
been specified), the token, and what parameters, are given. Some assemblers
give error messages, or warnings when you try to assemble something that either
the assembler, or the 6510 microprocessor, cannot do.

If you put a "#" symbol in front of the parameter associated with the instruction,
this means that you want the register specified in the instruction to be loaded
with the "value" after the "#". For example:

LDA #$05 ($=HEX)

This instruction will put $05 (decimal 5) into the accumulator register. The
assembler will put into the specified address for this instruction, $A9 (which is the
token for this particular instruction, in this mode), and it will put $05 into the next
location after the location containing the instruction ($A9).

If the parameter to be used by an instruction has "#" before it; i.e., the
parameter is a "value," rather than the contents of a memory location, or another
register, the instruction is said to be in the "immediate" mode. To put this into
perspective, let's compare this with another mode:

If you want to put the contents of memory location $102E into the accumulator,
you're using the "absolute" mode of instruction:

LDA $102E

The assembler can distinguish between the two different modes because the
latter does not have a "#" before the parameter. The 6510 microprocessor can
distinguish between the immediate mode, and the absolute mode of the LDA
instruction, because they have slightly different tokens. LDA (immediate) has $A9
as its token, and LDA (absolute), has $AD as its token.

BASIC TO MACHINE LANGUAGE 219

The mnemonic representing an instruction usually implies what it does. For

instance, if we consider another instruction, LDX, what do you think this does?

If you said "load the X register with…," go to the top of the class. If you didn't,

then don't worry, learning machine language does take patience, and cannot be

learned in a day.

The various internal registers can be thought of as special memory locations,

because they too can hold one byte of information. It is not necessary for us to

explain the binary numbering system (base 2) since it follows the same rules as

outlined for hexadecimal and decimal outlined previously, but one "bit" is one

binary digit and eight bits make up one byte! This means that the maximum

number that can be contained in a byte is the largest number that an eight digit

binary number can be. This number is 11111111 (binary), which equals $FF

(hexadecimal), which equals 255 (decimal). You have probably wondered why

only numbers from zero to 255 could be put into a memory location. If you try

POKE 7680, 260 (which is a BASIC statement that "says": "Put the number two

hundred and sixty, into memory location seven thousand, six hundred and

eighty," the BASIC interpreter knows that only numbers 0 to 255 can be put in a

memory location, and your Commodore 64 will reply with:

?ILLEGAL QUANTITY ERROR

READY.

█

If the limit of one byte is $FF (hex), how is the address parameter in the absolute

instruction "LDA $102E" expressed in memory? It's expressed in two bytes (it

won't fit into one, of course). The lower (rightmost) two digits of the hexadecimal

address form the "low byte" of the address, and the upper (leftmost) two digits

form the "high byte."

The 6510 requires any address to be specified with its low byte first, and then

the high byte. This means that the instruction "LDA $102E" is represented in

memory by the three consecutive values:

$AD, $2E, $10

Now all you need to know is one more instruction and then you can write your

first program. That instruction is BRK. For a full explanation of this instruction,

refer to M.O.S. 6502 Programming Manual. But right now, you can think of it as

the END instruction in machine language.

220 BASIC TO MACHINE LANGUAGE

If we write a program with 64MON and put the BRK instruction at the end, then

when the program is executed, it will return to 64MON when it is finished. This

might not happen if there is a mistake in your program, or the BRK instruction is

never reached (just like an END statement in BASIC may never get executed).

This means that if the Commodore 64 didn't have a STOP key, you wouldn't be

able to abort your BASIC programs!

WRITING YOUR FIRST PROGRAM

If you've used the POKE statement in BASIC to put characters onto the screen,

you're aware that the character codes for POKEing are different from CBM

ASCII character values. For example, if you enter:

PRINT ASC("A") (and press RETURN)

the Commodore 64 will respond with:

 65

READY.

█

However, to put an "A" onto the screen by POKEing, the code is 1, enter:

 SHIFT CLR/HOME to clear the screen

POKE 1024,1:POKE 55296,14 (and RETURN) (1024 is the start of screen

memory)

The "P" in the POKE statement should now be an "A."

Now let's try this in machine language. Type the following in 64MON: (Your

cursor should be flashing alongside a "." right now.)

.A 1400 LDA#$01 (and press RETURN)

BASIC TO MACHINE LANGUAGE 221

The Commodore 64 will prompt you with:

.A 1400 A9 01 LDA #$01

.A 1402 █

Type:

.A 1402 STA $0400

(The STA instruction stores the contents of the accumulator in a specified memory

location.)

The Commodore 64 will prompt you with:

.A 1405 █

Now type in:

.A 1405 LDA #$0E

.A 1407 STA $D800

.A 140A BRK

Clear the screen, and type:

G 1400

The G should turn into an "A" if you've done everything correctly.

You have now written your first machine language program. Its purpose is to

store one character ("A") at the first location in the screen memory. Having

achieved this, we must now explore some of the other instructions, and principles.

ADDRESSING MODES

ZERO PAGE

As shown earlier, absolute addresses are expressed in terms of a high and a

low order byte. The high order byte is often referred to as the page of memory.

For example, the address $1637 is in page $16 (22), and $0277 is in page

$02 (2). There is, however, a special mode of addressing known as zero page

222 BASIC TO MACHINE LANGUAGE

addressing and is, as the name implies, associated with the addressing of

memory locations in page zero. These addresses, therefore, ALWAYS have a

high order byte of zero. The zero page mode of addressing only expects one

byte to describe the address, rather than two when using an absolute address.

The zero page addressing mode tells the microprocessor to assume that the high

order address is zero. Therefore zero page addressing can reference memory

locations whose addresses are between $0000 and $00FF. This may not seem

too important at the moment, but you'll need the principles of zero page

addressing soon.

THE STACK

The 6510 microprocessor has what is known as a stack. This is used by both the

programmer and the microprocessor to temporarily remember things, and to

remember, for example, an order of events. The GOSUB statement in BASIC,

which allows the programmer to call a subroutine, must remember where it is

being called from, so that when the RETURN statement is executed in the

subroutine, the BASIC interpreter "knows" where to go back to continue

executing. When a GOSUB statement is encountered in a program by the BASIC

interpreter, the BASIC interpreter "pushes" its current position onto the stack

before going to do the subroutine, and when a RETURN is executed, the

interpreter "pulls" off the stack the information that tells it where it was before

the subroutine call was made. The interpreter uses instructions like PHA, which

pushes the contents of the accumulator onto the stack, and PLA (the reverse)

which pulls a value off the stack and into the accumulator. The status register can

also be pushed and pulled with the PHP and PLP, respectively.

The stack is 256 bytes long, and is located in page one of memory. It is therefore

from $0100 to $01FF. It is organized backwards in memory. In other words, the

first position in the stack is at $01FF, and the last is at $0100. Another register

in the 6510 microprocessor is called the stack pointer, and it always points to the

next available location in the stack. When something is pushed onto the stack, it

is placed where the stack pointer points to, and the stack pointer is moved down

to the next position (decremented). When something is pulled off the stack, the

stack pointer is incremented, and the byte pointed to by the stack pointer is

placed into the specified register.

BASIC TO MACHINE LANGUAGE 223

Up to this point, we have covered immediate, zero page, and absolute mode

instructions. We have also covered, but have not really talked about, the

"implied" mode. The implied mode means that information is implied by an

instruction itself. In other words, what registers, flags, and memory the instruction

is referring to. The examples we have seen are PHA, PLA, PHP, and PLP, which

refer to stack processing and the accumulator and status registers, respectively.

NOTE: The X register will be referred to as X from now on, and similarly A (Accumulator), Y (Y

Index Register), S (Stack Pointer), and P (Processor Status).

INDEXING

Indexing plays an extremely important part in the running of the 6510

microprocessor. It can be defined as "creating an actual address from a base

address plus the contents of either the X or Y index registers."

For example, if X contains $05, and the microprocessor executes an LDA

instruction in the "absolute X indexed mode" with base address (e.g., $9000),

then the actual location that is loaded into the A register is $9000 + $05 =

$9005. The mnemonic format of an absolute indexed instruction is the same as

an absolute instruction except a ",X" or ",Y" denoting the index is added to the

address.

EXAMPLE:

LDA $9000,X

There are absolute indexed, zero page indexed, indirect indexed, and indexed

indirect modes of addressing available on the 6510 microprocessor.

INDIRECT INDEXED

This only allows usage of the Y register as the index. The actual address can only

be in zero page, and the mode of instruction is called indirect because the zero

page address specified in the instruction contains the low byte of the actual

address, and the next byte to it contains the high order byte.

224 BASIC TO MACHINE LANGUAGE

EXAMPLE:

Let us suppose that location $02 contains $45, and location $03 contains $1E. If

the instruction to load the accumulator in the indirect indexed mode is executed

and the specified zero page address is $02, then the actual address will be:

Low order = contents of $02

High order = contents of $03

Y register = $00

Thus the actual address = $1E45 + Y = $1E45.

The title of this mode does in fact imply an indirect principle, although this may

be difficult to grasp at first sight. Let's look at it another way:

"I am going to deliver this letter to the post office at address $02, MEMORY ST.,

and the address on the letter is $05 houses past $1600, MEMORY street." This

is equivalent to the code:

LDA #$00 — load low order actual base address

STA $02 — set the low byte of the indirect address

LDA #$16 — load high order indirect address

STA $03 — set the high byte of the indirect address

LDY #$05 — set the indirect index (Y)

LDA ($02),Y — load indirectly indexed by Y

INDEXED INDIRECT

Indexed indirect only allows usage of the X register as the index. This is the same

as indirect indexed, except it is the zero page address of the pointer that is

indexed, rather than the actual base address. Therefore, the actual base

address IS the actual address because the index has already been used for the

indirect. Index indirect would also be used if a table of indirect pointers were

located in zero page memory, and the X register could then specify which

indirect pointer to use.

BASIC TO MACHINE LANGUAGE 225

EXAMPLE:

Let us suppose that location $02 contains $45, and location $03 contains $10. If

the instruction to load the accumulator in the indexed indirect mode is executed

and the specified zero page address is $02, then the actual address will be:

Low order = contents of ($02+X)

High order = contents of ($03+X)

X register = $00

Thus the actual pointer is in = $02 + X = $02.

Therefore, the actual address is the indirect address contained in $02 which is

again $1045.

The title of this mode does in fact imply the principle, although it may be difficult

to grasp at first sight. Look at it this way:

"I am going to deliver this letter to the fourth post office at address $01,

MEMORY ST., and the address on the letter will then be delivered to $1600,

MEMORY Street." This is equivalent to the code:

LDA #$00 — load low order actual base address

STA $06 — set the low byte of the indirect address

LDA #$16 — load high order indirect address

STA $07 — set the high byte of the indirect address

LDX #$05 — set the indirect index (X)

LDA ($01,X) — load indirectly indexed by X

NOTE: Of the two indirect methods of addressing, the first (indirect indexed) is far more widely

used.

226 BASIC TO MACHINE LANGUAGE

BRANCHES AND TESTING

Another very important principle in machine language is the ability to test, and

detect certain conditions, in a similar fashion to the "IF… THEN, IF… GOTO"

structure in CBM BASIC.

The various flags in the status register are affected by different instructions in

different ways. For example, there is a flag that is set when an instruction has

caused a zero result, and is reset when a result is not zero. The instruction:

LDA #$00

will cause the zero result flag to be set, because the instruction has resulted in the

accumulator containing a zero.

There are a set of instructions that will, given a particular condition, branch to

another part of the program. An example of a branch instruction is BEQ, which

means Branch if result EQual to zero. The branch instructions branch if the condition

is true, and if not, the program continues onto the next instruction, as if nothing

had occurred. The branch instructions branch not by the result of the previous

instruction(s), but by internally examining the status register. As was just

mentioned, there is a zero result flag in the status register. The BEQ instruction

branches if the zero result flag (known as Z) is set. Every branch instruction has

an opposite branch instruction. The BEQ instruction has an opposite instruction

BNE, which means Branch on result Not Equal to zero (i.e., Z not set).

The index registers have a number of associated instructions which modify their

contents. For example, the INX instruction INcrements the X index register. If the

X register contained $FF before it was incremented (the maximum number the X

register can contain), it will "wrap around" back to zero. If you wanted a

program to continue to do something until you had performed the increment of

the X index that pushed it around to zero, you could use the BNE instruction to

continue "looping" around, until X became zero.

The reverse of INX, is DEX, which is DEcrement the X index register. If the X index

register is zero, DEX wraps around to $FF. Similarly, there are INY and DEY for

the Y index register.

BASIC TO MACHINE LANGUAGE 227

But what if a program didn't want to wait until X or Y had reached (or not

reached) zero? Well there are comparison instructions, CPX and CPY, which

allow the machine language programmer to test the index registers with specific

values, or even the contents of memory locations. If you wanted to see if the X

register contained $40, you would use the instruction:

CPX #$40 — compare X with the "value" $40.

BEQ — branch to somewhere else in the

(some other program, if this condition is "true."

part of the

program)

The compare, and branch instructions play a major part in any machine language

program.

The operand specified in a branch instruction when using 64MON is the address

of the part of the program that the branch goes to when the proper conditions

are met. However, the operand is only an offset, which gets you from where the

program currently is to the address specified. This offset is just one byte, and

therefore the range that a branch instruction can branch to is limited. It can

branch from 128 bytes backward, to 127 bytes forward.

NOTE: This is a total range of 255 bytes which is, of course, the maximum range of values one

byte can contain.

64MON will tell you if you "branch out of range" by refusing to "assemble" that

particular instruction. But don't worry about that now because it's unlikely that

you will have such branches for quite a while. The branch is a "quick" instruction

by machine language standards because of the "offset" principle as opposed to

an absolute address. 64MON allows you to type in an absolute address, and it

calculates the correct offset. This is just one of the "comforts" of using an

assembler.

NOTE: It is NOT possible to cover every single branch instruction. For further information, refer

to the Bibliography section in Appendix F.

228 BASIC TO MACHINE LANGUAGE

SUBROUTINES

In machine language (in the same way as using BASIC), you can call subroutines.

The instruction to call a subroutine is JSR (Jump to SubRoutine), followed by the

specified absolute address.

Incorporated in the operating system, there is a machine language subroutine

that will PRINT a character to the screen. The CBM ASCII code of the character

should be in the accumulator before calling the subroutine. The address of this

subroutine is $FFD2.

Therefore, to print "HI" to the screen, the following program should be entered:

.A 1400 LDA #$48 — load the CBM ASCII code of "H"

.A 1402 JSR $FFD2 — print it

.A 1405 LDA #$49 — load the CBM ASCII code of "I"

.A 1407 JSR $FFD2 — print that too

.A 140A LDA #$0D — print a carriage return as well

.A 140C JSR $FFD2

.A 140F BRK — return to 64MON

.G 1400 — will print "HI" and return to 64MON

The "PRINT a character" routine we have just used is part of the KERNAL jump

table. The instruction similar to GOTO in BASIC is JMP, which means JuMP to the

specified absolute address. The KERNAL is a long list of "standardized" subroutines

that control ALL input and output of the Commodore 64. Each entry in the KERNAL

JMPs to a subroutine in the operating system. This "jump table" is found between

memory locations $FF84 to $FFF5 in the operating system. A full explanation of

the KERNAL is available in the "KERNAL Reference Section" of this manual.

However, certain routines are used here to show how easy and effective the

KERNAL is.

Let's now use the new principles you've just learned in another program. It will

help you to put the instructions into context:

BASIC TO MACHINE LANGUAGE 229

This program will display the alphabet using a KERNAL routine. The only new

instruction introduced here is TXA Transfer the contents of the X index register,

into the Accumulator.

.A 1400 LDX #$41 — X = CBM ASCII of "A"

.A 1402 TXA — A = X

.A 1403 JSR $FFD2 — print character

.A 1406 INX — bump count

.A 1407 CPX #$5B — have we gone past "Z"?

.A 1409 BNE $1402 — no, go back and do more

.A 140B BRK — yes, return to 64MON

To see the Commodore 64 print the alphabet, type the familiar command:

.G 1400

The comments that are beside the program, explain the program flow and logic.

If you are writing a program, write it on paper first, and then test it in small parts

if possible.

USEFUL TIPS FOR THE BEGINNER

One of the best ways to learn machine language is to look at other peoples'

machine language programs. These are published all the time in magazines and

newsletters. Look at them even if the article is for a different computer, which

also uses the 6510 (or 6502) microprocessor. You should make sure that you

thoroughly understand the code that you look at. This will require perseverance,

especially when you see a new technique that you have never come across

before. This can be infuriating, but if patience prevails, you will be the victor.

Having looked at other machine language programs, you MUST write your own.

These may be utilities for your BASIC programs, or they may be an all machine

language program.

230 BASIC TO MACHINE LANGUAGE

You should also use the utilities that are available, either IN your computer, or in

a program, that aid you in writing, editing, or tracking down errors in a machine

language program. An example would be the KERNAL, which allows you to check

the keyboard, print text, control peripheral devices like disk drives, printers,

modems, etc., manage memory and the screen. It is extremely powerful and it is

advised strongly that it is used (refer to KERNAL section, Page 268).

Advantages of writing programs in machine language:

1. Speed – Machine language is hundreds, and in some cases thousands of times

faster than a high level language such as BASIC.

2. Tightness – A machine language program can be made totally "watertight,"

i.e., the user can be made to do ONLY what the program allows, and no more.

With a high level language, you are relying on the user not "crashing" the BASIC

interpreter by entering, for example, a zero which later causes a:

 ?DIVISION BY ZERO ERROR IN LINE 830

READY.

█

In essence, the computer can only be maximized by the machine language

programmer.

APPROACHING A LARGE TASK

When approaching a large task in machine language, a certain amount of

subconscious thought has usually taken place. You think about how certain

processes are carried out in machine language. When the task is started, it is

usually a good idea to write it out on paper. Use block diagrams of memory

usage, functional modules of code required, and a program flow. Let's say that

you wanted to write a roulette game in machine language. You could outline it

something like this:

BASIC TO MACHINE LANGUAGE 231

 Display title

 Ask if player requires instructions

 YES – display them – Go to START

 NO – Go to START

 START Initialize everything

 MAIN display roulette table

 Take in bets

 Spin wheel

 Slow wheel to stop

 Check bets with result

 Inform player

 Player any money left?

 YES – Go to MAIN

 NO – Inform user, and go to START

This is the main outline. As each module is approached, you can break it down

further. If you look at a large indigestible problem as something that can be

broken down into small enough pieces to be eaten, then you'll be able to

approach something that seems impossible, and have it all fall into place.

This process only improves with practice, so KEEP TRYING.

232 BASIC TO MACHINE LANGUAGE

MCS6510 MICROPROCESSOR

ADC

Add Memory to Accumulator with Carry

 AND "AND" Memory with Accumulator

 ASL Shift Left One Bit (Memory or Accumulator)

 BCC Branch on Carry Clear

 BCS Branch on Carry Set

 BEQ Branch on Result Zero

 BIT Test Bits in Memory with Accumulator

 BMI Branch on Result Minus

 BNE Branch on Result not Zero

 BPL Branch on Result Plus

 BRK Force Break

 BVC Branch on Overflow Clear

 BVS Branch on Overflow Set

 CLC Clear Carry Flag

 CLD Clear Decimal Mode

 CLI Clear Interrupt Disable Bit

 CLV Clear Overflow Flag

 CMP Compare Memory and Accumulator

 CPX Compare Memory and Index X

 CPY Compare Memory and Index Y

 DEC Decrement Memory by One

 DEX Decrement Index X by One

 DEY Decrement Index Y by One

 EOR "Exclusive-Or" Memory with Accumulator

 INC Increment Memory by One

 INX Increment Index X by One

 INY Increment Index Y by One

 JMP Jump to New Location

BASIC TO MACHINE LANGUAGE 233

INSTRUCTION SET – ALPHABETIC SEQUENCE

JSR

Jump to New Location Saving Return Address

 LDA Load Accumulator with Memory

 LDX Load Index X with Memory

 LDY Load Index Y with Memory

 LSR Shift Right One Bit (Memory or Accumulator)

 NOP No Operation

 ORA "OR" Memory with Accumulator

 PHA Push Accumulator on Stack

 PHP Push Processor Status on Stack

 PLA Pull Accumulator from Stack

 PLP Pull Processor Status from Stack

 ROL Rotate One Bit Left (Memory or Accumulator)

 ROR Rotate One Bit Right (Memory or Accumulator)

 RTI Return from Interrupt

 RTS Return from Subroutine

 SBC Subtract Memory from Accumulator with Borrow

 SEC Set Carry Flag

 SED Set Decimal Mode

 SEI Set Interrupt Disable Status

 STA Store Accumulator in Memory

 STX Store Index X in Memory

 STY Store Index Y in Memory

 TAX Transfer Accumulator to Index X

 TAY Transfer Accumulator to Index Y

 TSX Transfer Stack Pointer to Index X

 TXA Transfer Index X to Accumulator

 TXS Transfer Index X to Stack Pointer

 TYA Transfer Index Y to Accumulator

234 BASIC TO MACHINE LANGUAGE

THE FOLLOWING NOTATION APPLIES TO THIS SUMMARY:

A Accumulator

X, Y Index Registers

M Memory

P Processor Status Register

S Stack Pointer

� Change

_ No Change

+ Add

Ʌ Logical AND

– Subtract

⊻ Logical Exclusive OR

↑ Transfer from Stack

↓ Transfer to Stack

→ Transfer to

← Transfer from

∨ Logical OR

PC Program Counter

PCH Program Counter High

PCL Program Counter Low

Oper Operand

Immediate Addressing Mode

NOTE: At the top of each table is located in parenthesis a reference number (Ref: XX) which

directs the user to that Section in the MCS6500 Microcomputer Family Programming Manual in

which the instruction is defined and discussed.

BASIC TO MACHINE LANGUAGE 235

ADC Add Memory to Accumulator with Carry ADC

 N Ƶ C I D V

Operation: A + M + C → A, C � � � _ _ �

(Ref: 2.2.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate ADC # Oper 69 2 2

Zero Page ADC Oper 65 2 3

Zero Page, X ADC Oper, X 75 2 4

Absolute ADC Oper 6D 3 4

Absolute, X ADC Oper, X 7D 3 4*

Absolute, Y ADC Oper, Y 79 3 4*

(Indirect, X) ADC (Oper, X) 61 2 6

(Indirect), Y ADC (Oper), Y 71 2 5*

*Add 1 if page boundary is crossed

AND "AND" Memory with Accumulator AND

Logical AND to the accumulator N Ƶ C I D V

Operation: A Ʌ M → A � � _ _ _ _

(Ref: 2.2.4.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate AND # Oper 29 2 2

Zero Page AND Oper 25 2 3

Zero Page, X AND Oper, X 35 2 4

Absolute AND Oper 2D 3 4

Absolute, X AND Oper, X 3D 3 4*

Absolute, Y AND Oper, Y 39 3 4*

(Indirect, X) AND (Oper, X) 21 2 6

(Indirect), Y AND (Oper), Y 31 2 5

*Add 1 if page boundary is crossed

236 BASIC TO MACHINE LANGUAGE

ASL Shift Left One Bit (Memory or Accumulator) ASL

 N Ƶ C I D V

Operation: � � � _ _ _

(Ref: 10.2)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Accumulator ASL A 0A 1 2

Zero Page ASL Oper 06 2 5

Zero Page, X ASL Oper, X 16 2 6

Absolute ASL Oper 0E 3 6

Absolute, X ASL Oper, X 1E 3 7

BCC Branch on Carry Clear BCC

 N Ƶ C I D V

Operation: Branch on C = 0 _ _ _ _ _ _

(Ref: 4.1.2.3)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Relative BCC Oper 90 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BCS Branch on Carry Set BCS

 N Ƶ C I D V

Operation: Branch on C = 1 _ _ _ _ _ _

(Ref: 4.1.2.4)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Relative BCS Oper B0 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BASIC TO MACHINE LANGUAGE 237

BEQ Branch on Result Zero BEQ

 N Ƶ C I D V

Operation: Branch on Ƶ = 1 _ _ _ _ _ _

(Ref: 4.1.2.5)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Relative BEQ Oper F0 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BIT Test Bits in Memory with Accumulator BIT

Bit 6 and 7 are transferred to the Status Register.

If the result of A Ʌ M is zero then Ƶ = 1, otherwise Ƶ = 0. N Ƶ C I D V

Operation: A Ʌ M, M7 → N, M6 → ∨ M7 � _ _ _ M6

(Ref: 4.2.2.1)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Zero Page BIT Oper 24 2 3

Absolute BIT Oper 2C 3 4

BMI Branch on Result Minus BMI

 N Ƶ C I D V

Operation: Branch on N = 1 _ _ _ _ _ _

(Ref: 4.1.2.1)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Relative BMI Oper 30 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

238 BASIC TO MACHINE LANGUAGE

BNE Branch on Result Not Zero BNE

N Ƶ C I D V

Operation: Branch on Ƶ = 0 _ _ _ _ _ _

(Ref: 4.1.2.6)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Relative BNE Oper D0 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BPL Branch on Result Plus BPL

N Ƶ C I D V

Operation: Branch on N = 0 _ _ _ _ _ _

(Ref: 4.1.2.2)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Relative BPL Oper 10 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BRK
Force Break

BRK

N Ƶ C I D V

Operation: Forced Interrupt PC + 2 ↓ P ↓ _ _ _ 1 _ _

(Ref: 9.11)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Implied BRK 00 1 7

1. A BRK command cannot be masked by setting I.

BASIC TO MACHINE LANGUAGE 239

BVC Branch on Overflow Clear BVC

N Ƶ C I D V

Operation: Branch on ∨ = 0 _ _ _ _ _ _

(Ref: 4.1.2.8)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Relative BVC Oper 50 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BVS Branch on Overflow Set BVS

N Ƶ C I D V

Operation: Branch on ∨ = 1 _ _ _ _ _ _

(Ref: 4.1.2.7)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Relative BVS Oper 70 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

CLC Clear Carry Flag CLC

N Ƶ C I D V

Operation: 0 → C _ _ 0 _ _ _

(Ref: 3.0.2)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Implied CLC 18 1 2

240 BASIC TO MACHINE LANGUAGE

CLD Clear Decimal Mode CLD

N Ƶ C I D V

Operation: 0 → D _ _ _ _ 0 _

(Ref: 3.3.2)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Implied CLD D8 1 2

CLI Clear Interrupt Disable Bit CLI

N Ƶ C I D V

Operation: 0 → I _ _ _ 0 _ _

(Ref: 3.2.2)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Implied CLI 58 1 2

CLV Clear Overflow Flag CLV

N Ƶ C I D V

Operation: 0 → V _ _ _ _ _ 0

(Ref: 3.6.1)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Implied CLV B8 1 2

BASIC TO MACHINE LANGUAGE 241

CMP Compare Memory and Accumulator CMP

N Ƶ C I D V

Operation: A – M � � � _ _ _

(Ref: 4.2.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate CMP # Oper C9 2 2

Zero Page CMP Oper C5 2 3

Zero Page, X CMP Oper, X D5 2 4

Absolute CMP Oper CD 3 4

Absolute, X CMP Oper, X DD 3 4*

Absolute, Y CMP Oper, Y D9 3 4*

(Indirect, X) CMP (Oper, X) C1 2 6

(Indirect), Y CMP (Oper), Y D1 2 5*

*Add 1 if page boundary is crossed.

CPX Compare Memory and Index X CPX

N Ƶ C I D V

Operation: X – M � � � _ _ _

(Ref: 7.8)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate CPX # Oper E0 2 2

Zero Page CPX Oper E4 2 3

Absolute CPX Oper EC 3 4

CPY Compare Memory and Index Y CPY

N Ƶ C I D V

Operation: Y – M � � � _ _ _

(Ref: 7.9)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate CPY # Oper C0 2 2

Zero Page CPY Oper C4 2 3

Absolute CPY Oper CC 3 4

242 BASIC TO MACHINE LANGUAGE

DEC
Decrement Memory by One

DEC

N Ƶ C I D V

Operation: M – 1 → M � � _ _ _ _

(Ref: 10.8)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Zero Page DEC Oper C6 2 5

Zero Page, X DEC Oper, X D6 2 6

Absolute DEC Oper CE 3 6

Absolute, X DEC Oper, X DE 3 7

DEX
Decrement Index X by One

DEX

N Ƶ C I D V

Operation: X – 1 → X � � _ _ _ _

(Ref: 7.6)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied DEX CA 1 2

DEY
Decrement Index Y by One

DEY

N Ƶ C I D V

Operation: Y – 1 → Y � � _ _ _ _

(Ref: 7.7)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied DEY 88 1 2

BASIC TO MACHINE LANGUAGE 243

EOR "Exclusive-OR" Memory with Accumulator EOR

N Ƶ C I D V

Operation: A ⊻ M → A � � _ _ _ _

(Ref: 2.2.4.3)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate EOR # Oper 49 2 2

Zero Page EOR Oper 45 2 3

Zero Page, X EOR Oper, X 55 2 4

Absolute EOR Oper 4D 3 4

Absolute, X EOR Oper, X 5D 3 4*

Absolute, Y EOR Oper, Y 59 3 4*

(Indirect, X) EOR (Oper, X) 41 2 6

(Indirect), Y EOR (Oper), Y 51 2 5*

* Add 1 if page boundary is crossed.

INC Increment Memory by One INC

N Ƶ C I D V

Operation: M + 1 → M � � _ _ _ _

(Ref: 10.7)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Zero Page INC Oper E6 2 5

Zero Page, X INC Oper, X F6 2 6

Absolute INC Oper EE 3 6

Absolute, X INC Oper, X FE 3 7

INX Increment Index X by One INX

N Ƶ C I D V

Operation: X + 1 → X � � _ _ _ _

(Ref: 7.4)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied INX E8 1 2

244 BASIC TO MACHINE LANGUAGE

INY
Increment Index Y by One

INY

N Ƶ C I D V

Operation: Y + 1 → Y � � _ _ _ _

(Ref: 7.5)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied INY C8 1 2

JMP
Jump to New Location

JMP

N Ƶ C I D V

Operation: (PC + 1) → PCL
 (PC + 2) → PCH

_ _ _ _ _ _

(Ref: 4.0.2)
(Ref: 9.8.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Absolute JMP Oper 4C 3 3

Indirect JMP (Oper) 6C 3 5

JSR
Jump to New Location Saving Return Address

JSR

N Ƶ C I D V

Operation: PC + 2 ↓ , (PC + 1) → PCL
 (PC + 2) → PCH

_ _ _ _ _ _

(Ref: 8.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Absolute JSR Oper 20 3 6

BASIC TO MACHINE LANGUAGE 245

LDA
Load Accumulator with Memory

LDA

N Ƶ C I D V

Operation: M → A � � _ _ _ _

(Ref: 2.1.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate LDA # Oper A9 2 2

Zero Page LDA Oper A5 2 3

Zero Page, X LDA Oper, X B5 2 4

Absolute LDA Oper AD 3 4

Absolute, X LDA Oper, X BD 3 4*

Absolute, Y LDA Oper, Y B9 3 4*

(Indirect, X) LDA (Oper, X) A1 2 6

(Indirect), Y LDA (Oper), Y B1 2 5*

* Add 1 if page boundary is crossed.

LDX Load Index X with Memory LDX

N Ƶ C I D V

Operation: M → X � � _ _ _ _

(Ref: 7.0)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate LDX # Oper A2 2 2

Zero Page LDX Oper A6 2 3

Zero Page, Y LDX Oper, Y B6 2 4

Absolute LDX Oper AE 3 4

Absolute, Y LDX Oper, Y BE 3 4*

* Add 1 when page boundary is crossed.

246 BASIC TO MACHINE LANGUAGE

LDY Load Index Y with Memory LDY

N Ƶ C I D V

Operation: M → Y � � _ _ _ _

(Ref: 7.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate LDY # Oper A0 2 2

Zero Page LDY Oper A4 2 3

Zero Page, X LDY Oper, X B4 2 4

Absolute LDY Oper AC 3 4

Absolute, X LDY Oper, X BC 3 4*

* Add 1 when page boundary is crossed.

LSR Shift Right One Bit (Memory or Accumulator) LSR

N Ƶ C I D V

Operation: 0 � � _ _ _

(Ref: 10.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Accumulator LSR A 4A 1 2

Zero Page LSR Oper 46 2 5

Zero Page, X LSR Oper, X 56 2 6

Absolute LSR Oper 4E 3 6

Absolute, X LSR Oper, X 5E 3 7

NOP No Operation NOP

N Ƶ C I D V

Operation: No Operation (2 cycles) _ _ _ _ _ _

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied NOP EA 1 2

BASIC TO MACHINE LANGUAGE 247

ORA "OR" Memory with Accumulator ORA

N Ƶ C I D V

Operation: A ∨ M → A � � _ _ _ _

(Ref: 2.2.4.2)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate ORA # Oper 09 2 2

Zero Page ORA Oper 05 2 3

Zero Page, X ORA Oper, X 15 2 4

Absolute ORA Oper 0D 3 4

Absolute, X ORA Oper, X 1D 3 4*

Absolute, Y ORA Oper, Y 19 3 4*

(Indirect, X) ORA (Oper, X) 01 2 6

(Indirect), Y ORA (Oper), Y 11 2 5*

* Add 1 on page crossing.

PHA Push Accumulator on Stack PHA

N Ƶ C I D V

Operation: A ↓ _ _ _ _ _ _

(Ref: 8.5)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied PHA 48 1 3

PHP Push Processor Status on Stack PHP

N Ƶ C I D V

Operation: P ↓ _ _ _ _ _ _

(Ref: 8.11)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied PHP 08 1 3

248 BASIC TO MACHINE LANGUAGE

PLA
Pull Accumulator from Stack

PLA

N Ƶ C I D V

Operation: A ↑ � � _ _ _ _

(Ref: 8.6)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied PLA 68 1 4

PLP
Pull Processor Status from Stack

PLP

N Ƶ C I D V

Operation: P ↑ From Stack

(Ref: 8.12)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied PLP 28 1 4

ROL
Rotate One Bit Left (Memory or Accumulator)

ROL

N Ƶ C I D V

Operation: � � � _ _ _

(Ref: 10.3)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Accumulator ROL A 2A 1 2

Zero Page ROL Oper 26 2 5

Zero Page, X ROL Oper, X 36 2 6

Absolute ROL Oper 2E 3 6

Absolute, X ROL Oper, X 3E 3 7

BASIC TO MACHINE LANGUAGE 249

ROR
Rotate One Bit Right (Memory or Accumulator)

ROR

N Ƶ C I D V

Operation: � � � _ _ _

(Ref: 10.4)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Accumulator ROR A 6A 1 2

Zero Page ROR Oper 66 2 5

Zero Page, X ROR Oper, X 76 2 6

Absolute ROR Oper 6E 3 6

Absolute, X ROR Oper, X 7E 3 7

NOTE: ROR instruction is available on MCS650X microprocessors after June, 1976.

RTI Return from Interrupt RTI

N Ƶ C I D V

Operation: P ↑ PC ↑ From Stack

(Ref: 9.6)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied RTI 40 1 6

RTS Return from Subroutine RTS

N Ƶ C I D V

Operation: PC ↑, PC + 1 → PC _ _ _ _ _ _

(Ref: 8.2)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied RTS 60 1 6

250 BASIC TO MACHINE LANGUAGE

SBC Subtract Memory from Accumulator with Borrow SBC

Operation: A – M – C → A
N Ƶ C I D V

Note: C = Borrow
� � � _ _ �

(Ref: 2.2.2)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate SBC # Oper E9 2 2

Zero Page SBC Oper E5 2 3

Zero Page, X SBC Oper, X F5 2 4

Absolute SBC Oper ED 3 4

Absolute, X SBC Oper, X FD 3 4*

Absolute, Y SBC Oper, Y F9 3 4*

(Indirect, X) SBC (Oper, X) E1 2 6

(Indirect), Y SBC (Oper), Y F1 2 5*

*Add 1 when page boundary is crossed.

SEC Set Carry Flag SEC

N Ƶ C I D V

Operation: 1 → C _ _ 1 _ _ _

(Ref: 3.0.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied SEC 38 1 2

SED Set Decimal Mode SED

N Ƶ C I D V

Operation: 1 → D _ _ _ _ 1 _

(Ref: 3.3.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied SED F8 1 2

BASIC TO MACHINE LANGUAGE 251

SEI Set Interrupt Disable Status SEI

N Ƶ C I D V

Operation: 1 → I _ _ _ 1 _ _

(Ref: 3.2.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied SEI 78 1 2

STA Store Accumulator in Memory STA

N Ƶ C I D V

Operation: A → M _ _ _ _ _ _

(Ref: 2.1.2)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Zero Page STA Oper 85 2 3

Zero Page, X STA Oper, X 95 2 4

Absolute STA Oper 8D 3 4

Absolute, X STA Oper, X 9D 3 5

Absolute, Y STA Oper, Y 99 3 5

(Indirect, X) STA (Oper, X) 81 2 6

(Indirect), Y STA (Oper), Y 91 2 6

STX Store Index X in Memory STX

N Ƶ C I D V

Operation: X → M _ _ _ _ _ _

(Ref: 7.2)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Zero Page STX Oper 86 2 3

Zero Page, Y STX Oper, Y 96 2 4

Absolute STX Oper 8E 3 4

252 BASIC TO MACHINE LANGUAGE

STY
Store Index Y in Memory

STY

N Ƶ C I D V

Operation: Y → M _ _ _ _ _ _

(Ref: 7.3)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Zero Page STY Oper 84 2 3

Zero Page, X STY Oper, X 94 2 4

Absolute STY Oper 8C 3 4

TAX
Transfer Accumulator to Index X

TAX

N Ƶ C I D V

Operation: A → X � � _ _ _ _

(Ref: 7.11)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied TAX AA 1 2

TAY
Transfer Accumulator to Index Y

TAY

N Ƶ C I D V

Operation: A → Y � � _ _ _ _

(Ref: 7.13)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied TAY A8 1 2

BASIC TO MACHINE LANGUAGE 253

TSX Transfer Stack Pointer to Index X TSX

N Ƶ C I D V

Operation: S → X � � _ _ _ _

(Ref: 8.9)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied TSX BA 1 2

TXA Transfer Index X to Accumulator TXA

N Ƶ C I D V

Operation: X → A � � _ _ _ _

(Ref: 7.12)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied TXA 8A 1 2

TXS Transfer Index X to Stack Pointer TXS

N Ƶ C I D V

Operation: X → S _ _ _ _ _ _

(Ref: 8.8)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied TXS 9A 1 2

TYA Transfer Index Y to Accumulator TYA

N Ƶ C I D V

Operation: Y → A � � _ _ _ _

(Ref: 7.14)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied TYA 98 1 2

254 BASIC TO MACHINE LANGUAGE

INSTRUCTION ADDRESSING MODES AND

 A
cc

um
ul

a
to

r

Im
m

e
d

ia
te

Z
e
ro

 P
a

g
e

Z
e
ro

 P
a

g
e
,
X

Z
e
ro

 P
a

g
e
,
Y

A
b

so
lu

te

A
b

so
lu

te
,
X

A
b

so
lu

te
,
Y

Im
p

lie
d

R
e
la

ti
ve

(I
nd

ir
e
ct

,
X

)

(I
nd

ir
e
ct

),
 Y

A
b

so
lu

te
 I
nd

ir
e
ct

ADC 2 3 4 4 4* 4* 6 5*

AND 2 3 4 4 4* 4* 6 5*

ASL 2 5 6 6 7

BCC 2**

BCS 2**

BEQ 2**

BIT 3 4

BMI 2**

BNE 2**

BPL 2**

BRK

BVC 2**

BVS 2**

CLC 2

CLD 2

CLI 2

CLV 2

CMP 2 3 4 4 4* 4* 6 5*

CPX 2 3 4

CPY 2 3 4

DEC 5 6 6 7

DEX 2

DEY 2

EOR 2 3 4 4 4* 4* 6 5*

INC 5 6 6 7

INX 2

INY 2

JMP 3 5

* Add one cycle if indexing across page boundary.

**Add one cycle if branch is taken. Add one additional cycle if branching

BASIC TO MACHINE LANGUAGE 255

RELATED EXECUTION TIMES (in clock cycles)

 A
cc

um
ul

a
to

r

Im
m

e
d

ia
te

Z
e
ro

 P
a

g
e

Z
e
ro

 P
a

g
e
,
X

Z
e
ro

 P
a

g
e
,
Y

A
b

so
lu

te

A
b

so
lu

te
,
X

A
b

so
lu

te
,
Y

Im
p

lie
d

R
e
la

ti
ve

(I
nd

ir
e
ct

,
X

)

(I
nd

ir
e
ct

),
 Y

A
b

so
lu

te
 I
nd

ir
e
ct

JSR 6

LDA 2 3 4 4 4* 4* 6 5*

LDX 2 3 4 4 4*

LDY 2 3 4 4 4*

LSR 2 5 6 6 7

NOP 2

ORA 2 3 4 4 4* 4* 6 5*

PHA 3

PHP 3

PLA 4

PLP 4

ROL 2 5 6 6 7

ROR 2 5 6 6 7

RTI 6

RTS 6

SBC 2 3 4 4 4* 4* 6 5*

SEC 2

SED 2

SEI 2

STA 3 4 4 5 5 6 6

STX 3 4 4

STY 3 4 4

TAX 2

TAY 2

TSX 2

TXA 2

TXS 2

TYA 2

operation crosses page boundary.

256 BASIC TO MACHINE LANGUAGE

OPERATION CODE INSTRUCTION LISTING

00 – BRK 20 – JSR

01 – ORA – (Indirect, X) 21 – AND – (Indirect, X)

02 – Future Expansion 22 – Future Expansion

03 – Future Expansion 23 – Future Expansion

04 – Future Expansion 24 – BIT – Zero Page

05 – ORA – Zero Page 25 – AND – Zero Page

06 – ASL – Zero Page 26 – ROL – Zero Page

07 – Future Expansion 27 – Future Expansion

08 – PHP 28 – PLP

09 – ORA – Immediate 29 – AND – Immediate

0A – ASL – Accumulator 2A – ROL – Accumulator

0B – Future Expansion 2B – Future Expansion

0C – Future Expansion 2C – BIT – Absolute

0D – ORA – Absolute 2D – AND – Absolute

0E – ASL – Absolute 2E – ROL – Absolute

0F – Future Expansion 2F – Future Expansion

10 – BPL 30 – BMI

11 – ORA – (Indirect), Y 31 – AND – (Indirect), Y

12 – Future Expansion 32 – Future Expansion

13 – Future Expansion 33 – Future Expansion

14 – Future Expansion 34 – Future Expansion

15 – ORA – Zero Page, X 35 – AND – Zero Page, X

16 – ASL – Zero Page, X 36 – ROL – Zero Page, X

17 – Future Expansion 37 – Future Expansion

18 – CLC 38 – SEC

19 – ORA – Absolute, Y 39 – AND – Absolute, Y

1A – Future Expansion 3A – Future Expansion

1B – Future Expansion 3B – Future Expansion

1C – Future Expansion 3C – Future Expansion

1D – ORA – Absolute, X 3D – AND – Absolute, X

1E – ASL – Absolute, X 3E – ROL – Absolute, X

1F – Future Expansion 3F – Future Expansion

BASIC TO MACHINE LANGUAGE 257

40 – RTI 60 – RTS

41 – EOR – (Indirect, X) 61 – ADC – (Indirect, X)

42 – Future Expansion 62 – Future Expansion

43 – Future Expansion 63 – Future Expansion

44 – Future Expansion 64 – Future Expansion

45 – EOR – Zero Page 65 – ADC – Zero Page

46 – LSR – Zero Page 66 – ROR – Zero Page

47 – Future Expansion 67 – Future Expansion

48 – PHA 68 – PLA

49 – EOR – Immediate 69 – ADC – Immediate

4A – LSR – Accumulator 6A – ROR – Accumulator

4B – Future Expansion 6B – Future Expansion

4C – JMP – Absolute 6C – JMP – Indirect

4D – EOR – Absolute 6D – ADC – Absolute

4E – LSR – Absolute 6E – ROR – Absolute

4F – Future Expansion 6F – Future Expansion

50 – BVC 70 – BVS

51 – EOR – (Indirect), Y 71 – ADC – (Indirect), Y

52 – Future Expansion 72 – Future Expansion

53 – Future Expansion 73 – Future Expansion

54 – Future Expansion 74 – Future Expansion

55 – EOR – Zero Page, X 75 – ADC – Zero Page, X

56 – LSR – Zero Page, X 76 – ROR – Zero Page, X

57 – Future Expansion 77 – Future Expansion

58 – CLI 78 – SEI

59 – EOR – Absolute, Y 79 – ADC – Absolute, Y

5A – Future Expansion 7A – Future Expansion

5B – Future Expansion 7B – Future Expansion

5C – Future Expansion 7C – Future Expansion

5D – EOR – Absolute, X 7D – ADC – Absolute, X

5E – LSR – Absolute, X 7E – ROR – Absolute, X

5F – Future Expansion 7F – Future Expansion

258 BASIC TO MACHINE LANGUAGE

80 – Future Expansion A0 – LDY – Immediate

81 – STA – (Indirect, X) A1 – LDA – (Indirect, X)

82 – Future Expansion A2 – LDX – Immediate

83 – Future Expansion A3 – Future Expansion

84 – STY – Zero Page A4 – LDY – Zero Page

85 – STA – Zero Page A5 – LDA – Zero Page

86 – STX – Zero Page A6 – LDX – Zero Page

87 – Future Expansion A7 – Future Expansion

88 – DEY A8 – TAY

89 – Future Expansion A9 – LDA – Immediate

8A – TXA AA – TAX

8B – Future Expansion AB – Future Expansion

8C – STY – Absolute AC – LDY – Absolute

8D – STA – Absolute AD – LDA – Absolute

8E – STX – Absolute AE – LDX – Absolute

8F – Future Expansion AF – Future Expansion

90 – BCC B0 – BCS

91 – STA – (Indirect), Y B1 – LDA – (Indirect), Y

92 – Future Expansion B2 – Future Expansion

93 – Future Expansion B3 – Future Expansion

94 – STY – Zero Page, X B4 – LDY – Zero Page, X

95 – STA – Zero Page, X B5 – LDA – Zero Page, X

96 – STX – Zero Page, Y B6 – LDX – Zero Page, Y

97 – Future Expansion B7 – Future Expansion

98 – TYA B8 – CLV

99 – STA – Absolute, Y B9 – LDA – Absolute, Y

9A – TXS BA – TSX

9B – Future Expansion BB – Future Expansion

9C – Future Expansion BC – LDY – Absolute, X

9D – STA – Absolute, X BD – LDA – Absolute, X

9E – Future Expansion BE – LDX – Absolute, Y

9F – Future Expansion BF – Future Expansion

BASIC TO MACHINE LANGUAGE 259

C0 – CPY – Immediate E0 – CPX – Immediate

C1 – CMP – (Indirect, X) E1 – SBC – (Indirect, X)

C2 – Future Expansion E2 – Future Expansion

C3 – Future Expansion E3 – Future Expansion

C4 – CPY – Zero Page E4 – CPX – Zero Page

C5 – CMP – Zero Page E5 – SBC – Zero Page

C6 – DEC – Zero Page E6 – INC – Zero Page

C7 – Future Expansion E7 – Future Expansion

C8 – INY E8 – INX

C9 – CMP – Immediate E9 – SBC – Immediate

CA – DEX EA – NOP

CB – Future Expansion EB – Future Expansion

CC – CPY – Absolute EC – CPX – Absolute

CD – CMP – Absolute ED – SBC – Absolute

CE – DEC – Absolute EE – INC – Absolute

CF – Future Expansion EF – Future Expansion

D0 – BNE F0 – BEQ

D1 – CMP – (Indirect), Y F1 – SBC – (Indirect), Y

D2 – Future Expansion F2 – Future Expansion

D3 – Future Expansion F3 – Future Expansion

D4 – Future Expansion F4 – Future Expansion

D5 – CMP – Zero Page, X F5 – SBC – Zero Page, X

D6 – DEC – Zero Page, X F6 – INC – Zero Page, X

D7 – Future Expansion F7 – Future Expansion

D8 – CLD F8 – SED

D9 – CMP – Absolute, Y F9 – SBC – Absolute, Y

DA – Future Expansion FA – Future Expansion

DB – Future Expansion FB – Future Expansion

DC – Future Expansion FC – Future Expansion

DD – CMP – Absolute, X FD – SBC – Absolute, X

DE – DEC – Absolute, X FE – INC – Absolute, X

DF – Future Expansion FF – Future Expansion

260 BASIC TO MACHINE LANGUAGE

MEMORY MANAGEMENT ON THE COMMODORE 64

The Commodore 64 has 64K bytes of RAM. It also has 20K bytes of ROM,

containing BASIC, the operating system, and the standard character set. It also

accesses input/output devices as a 4K chunk of memory. How is this all possible

on a computer with a 16-bit address bus, that is normally only capable of

addressing 64K?

The secret is in the 6510 processor chip itself. On the chip is an input/output port.

This port is used to control whether RAM or ROM or I/O will appear in certain

portions of the system's memory. The port is also used to control the DatassetteTM,

so it is important to affect only the proper bits.

The 6510 input/output port appears at location 1. The data direction register

for this port appears at location 0. The port is controlled like any of the other

input/output ports in the system… the data direction controls whether a given

bit will be an input or an output, and the actual data transfer occurs through the

port itself.

The lines in the 6510 control port are defined as follows:

NAME BIT DIRECTION DESCRIPTION

LORAM 0 OUTPUT Control for RAM/ROM at

$A000 to $BFFF (BASIC)

HIRAM 1 OUTPUT Control for RAM/ROM at

$E000 to $FFFF (KERNAL)

CHAREN 2

3

4

5

OUTPUT

OUTPUT

INPUT

OUTPUT

Control for I/O ROM at

$D000 to $DFFF

Cassette write line

Cassette switch sense

Cassette motor control

The proper value for the data direction register is as follows:

BITS 5 4 3 2 1 0

 1 0 1 1 1 1

(where 1 is an output, and 0 is an input).

BASIC TO MACHINE LANGUAGE 261

This gives a value of 47 decimal. The Commodore 64 automatically sets the data

direction register to this value.

The control lines, in general, perform the function given in their descriptions.

However, a combination of control lines are occasionally used to get a particular

memory configuration.

LORAM (bit 0) can generally be thought of as a control line which banks the 8K

byte BASIC ROM in and out of the microprocessor address space. Normally, this

line is HIGH for BASIC operation. If this line is programmed LOW, the BASIC

ROM will disappear from the memory map and be replaced by 8K bytes of

RAM from $A000 to $BFFF.

HIRAM (bit 1) can generally be thought of as a control line which banks the 8K

byte KERNAL ROM in and out of the microprocessor address space. Normally,

this line is HIGH for BASIC operation. If this line is programmed LOW, the

KERNAL ROM will disappear from the memory map and be replaced by 8K

bytes of RAM from $E000 to $FFFF.

CHAREN (bit 2) is used only to bank the 4K byte character generator ROM in

or out of the microprocessor address space. From the processor point of view,

the character ROM occupies the same address space as the I/O devices ($D000

to $DFFF). When the CHAREN line is set to 1 (as is normal), the I/O devices

appear in the microprocessor address space, and the character ROM is not

accessible. When the CHAREN bit is cleared to 0, the character ROM appears

in the processor address space, and the I/O devices are not accessible. (The

microprocessor only needs to access the character ROM when downloading the

character set from ROM to RAM. Special care is needed for this… see the section

on PROGRAMMABLE CHARACTERS in the GRAPHICS chapter). CHAREN can be

overridden by other control lines in certain memory configurations. CHAREN will

have no effect on any memory configuration without I/O devices. RAM will

appear from $D000 to $DFFF instead.

NOTE: In any memory map containing ROM, a WRITE (a POKE) to a ROM location will store data

in the RAM "under" the ROM. Writing to a ROM location stores data in the "hidden" RAM. For

example, this allows a hi-resolution screen to be kept underneath a ROM, and be changed without

having to bank the screen back into the processor address space. Of course a READ of a ROM

location will return the contents of the ROM, not the "hidden" RAM.

262 BASIC TO MACHINE LANGUAGE

COMMODORE 64 FUNDAMENTAL MEMORY MAP

I/O BREAKDOWN

$D000 to $D3FF VIC (Video Controller) 1K Bytes

$D400 to $D7FF SID (Sound Synthesizer) 1K Bytes

$D800 to $DBFF Color RAM 1K Nybbles

$DC00 to $DCFF CIA 1 (Keyboard) 256 Bytes

$DD00 to $DDFF CIA 2 (Serial Bus, User Port/RS-232) 256 Bytes

$DE00 to $DEFF Open I/O slot #1 (CP/M Enable) 256 Bytes

$DF00 to $DFFF Open I/O slot #2 (Disk) 256 Bytes

BASIC TO MACHINE LANGUAGE 263

The two open I/O slots are for general purpose user I/O, special purpose I/O

cartridges (such as IEEE), and have been tentatively designated for enabling the

Z-80 cartridge (CP/M option) and for interfacing to a low-cost high-speed disk

system.

The system provides for "auto-start" of the program in a Commodore 64

Expansion Cartridge. The cartridge program is started if the first nine bytes of

the cartridge ROM starting at location 32768 ($8000) contain specific data.

The first two bytes must hold the Cold Start vector to be used by the cartridge

program. The next two bytes at 32770 ($8002) must be the Warm Start vector

used by the cartridge program. The next three bytes must be the letters, CBM,

with bit 7 set in each letter. The last two bytes must be the digits "80" in PET

ASCII.

COMMODORE 64 MEMORY MAPS

The following table lists the various memory configurations available on the

COMMODORE 64, the states of the control lines which select each memory map,

and the intended use of each map.

X = DON'T CARE

0 = LOW

1 = HIGH

LORAM =1

HIRAM =1

GAME =1

EXROM =1

This is the default BASIC memory
map which provides BASIC 2.0 and
38K contiguous bytes of user RAM.

264 BASIC TO MACHINE LANGUAGE

X = DON'T CARE

0 = LOW

1 = HIGH

LORAM =1

HIRAM =0

GAME =1

EXROM =X

OR

LORAM =1

HIRAM =0

GAME =0

(THE CHARACTER ROM IS NOT

ACCESSIBLE BY THE CPU IN THIS MAP)

EXROM =0

This map provides 60K bytes of
RAM and I/O devices. The user must
write his own I/O driver routines.

X = DON'T CARE

0 = LOW

1 = HIGH

LORAM =0

HIRAM =1

GAME =1

EXROM =X

This map is intended for use with
Softload languages (including
CP/M), providing 52K contiguous
bytes of user RAM, I/O devices,
and I/O driver routines.

BASIC TO MACHINE LANGUAGE 265

X = DON'T CARE

0 = LOW

1 = HIGH

LORAM =0

HIRAM =0

GAME =1

EXROM =X

OR

LORAM =0

HIRAM =0

GAME =X

EXROM =0

This map gives access to all 64K
bytes of RAM. The I/O devices
must be banked back into the
processor's address space for any
I/O operation.

X = DON'T CARE

0 = LOW

1 = HIGH

LORAM =1

HIRAM =1

GAME =1

EXROM =0

This is the standard configuration
for a BASIC system with a BASIC
expansion ROM. This map provides
32K contiguous bytes of user RAM
and up to 8K bytes of BASIC
"enhancement."

266 BASIC TO MACHINE LANGUAGE

X = DON'T CARE

0 = LOW

1 = HIGH

LORAM =0

HIRAM =1

GAME =0

EXROM =0

This map provides 40K contiguous
bytes of user RAM and up to 8K
bytes of plug-in ROM for special
ROM-based applications which
don't require BASIC.

X = DON'T CARE

0 = LOW

1 = HIGH

LORAM =1

HIRAM =1

GAME =0

EXROM =0

This map provides 32K contiguous
bytes of user RAM and up to 16K
bytes of plug-in ROM for special
ROM-based applications which
don't require BASIC (word
processors, other languages, etc.).

BASIC TO MACHINE LANGUAGE 267

X = DON'T CARE

0 = LOW

1 = HIGH

LORAM =X

HIRAM =X

GAME =0

EXROM =1

This is the ULTIMAX video game
memory map. Note that the 2K
byte "expansion RAM" for the
ULTIMAX, if required, is accessed
out of the COMMODORE 64 and
any RAM in the cartridge is
ignored.

268 BASIC TO MACHINE LANGUAGE

THE KERNAL

One of the problems facing programmers in the microcomputer field is the

question of what to do when changes are made to the operating system of the

computer by the company. Machine language programs which took much time to

develop might no longer work, forcing major revisions in the program. To

alleviate this problem, Commodore has developed a method of protecting

software writers called the KERNAL.

Essentially, the KERNAL is a standardized JUMP TABLE to the input, output, and

memory management routines in the operating system. The locations of each

routine in ROM may change as the system is upgraded. But the KERNAL jump

table will always be changed to match. If your machine language routines only

use the system ROM routines through the KERNAL, it will take much less work to

modify them, should that need ever arise.

The KERNAL is the operating system of the Commodore 64 computer. All input,

output, and memory management is controlled by the KERNAL.

To simplify the machine language programs you write, and to make sure that

future versions of the Commodore 64 operating system don't make your machine

language programs obsolete, the KERNAL contains a jump table for you to use.

By taking advantage of the 39 input/output routines and other utilities available

to you from the table, not only do you save time, you also make it easier to

translate your programs from one Commodore computer to another.

The jump table is located on the last page of memory, in read-only memory

(ROM).

To use the KERNAL jump table, first you set up the parameters that the KERNAL

routine needs to work. Then JSR (Jump to SubRoutine) to the proper place in the

KERNAL jump table. After performing its function, the KERNAL transfers control

back to your machine language program. Depending on which KERNAL routine

you are using, certain registers may pass parameters back to your program. The

particular registers for each KERNAL routine may be found in the individual

descriptions of the KERNAL subroutines.

BASIC TO MACHINE LANGUAGE 269

A good question at this point is why use the jump table at all? Why not just JSR

directly to the KERNAL subroutine involved? The jump table is used so that if the

KERNAL or BASIC is changed, your machine language programs will still work. In

future operating systems the routines may have their memory locations moved

around to a different position in the memory map… but the jump table will still

work correctly!

KERNAL POWER-UP ACTIVITIES

1. On power-up, the KERNAL first resets the stack pointer, and clears

 decimal mode.

2. The KERNAL then checks for the presence of an autostart ROM cartridge

 at location $8000 HEX (32768 decimal). If this is present, normal

 initialization is suspended, and control is transferred to the cartridge

 code. If an autostart ROM is not present, normal system initialization

 continues.

3. Next, the KERNAL initializes all INPUT/OUTPUT devices. The serial bus

 is initialized. Both 6526 CIA chips are set to the proper values for

 keyboard scanning, and the 60-Hz timer is activated. The SID chip is

 cleared. The BASIC memory map is selected and the cassette motor is

 switched off.

4. Next, the KERNAL performs a RAM test, setting the top and bottom of

 memory pointers. Also, page zero is initialized, and the tape buffer is

 set up.

 The RAM TEST routine is a nondestructive test starting at location $0300

 and working upward. Once the test has found the first non-RAM

 location, the top of RAM has its pointer set. The bottom of memory is

 always set to $0800, and the screen setup is always set at $0400.

5. Finally, the KERNAL performs these other activities. I/O vectors are set

 to default values. The indirect jump table in low memory is established.

 The screen is then cleared, and all screen editor variables reset. Then

 the indirect at $A000 is used to start BASIC.

270 BASIC TO MACHINE LANGUAGE

HOW TO USE THE KERNAL

When writing machine language programs it is often convenient to use the

routines which are already part of the operating system for input/output, access

to the system clock, memory management, and other similar operations. It is an

unnecessary duplication of effort to write these routines over and over again, so

easy access to the operating system helps speed machine language

programming.

As mentioned before, the KERNAL is a jump table. This is just a collection of JMP

instructions to many operating system routines.

To use a KERNAL routine you must first make all of the preparations that the

routine demands. If one routine says that you must call another KERNAL routine

first, then that routine must be called. If the routine expects you to put a number

in the accumulator, then that number must be there. Otherwise your routines have

little chance of working the way you expect them to work.

After all preparations are made, you must call the routine by means of the JSR

instruction. All KERNAL routines you can access are structured as SUBROUTINES,

and must end with an RTS instruction. When the KERNAL routine has finished its

task, control is returned to your program at the instruction after the JSR.

Many of the KERNAL routines return error codes in the status word or the

accumulator if you have problems in the routine. Good programming practice

and the success of your machine language programs demand that you handle

this properly. If you ignore an error return, the rest of your program might

"bomb."

That's all there is to do when you're using the KERNAL. Just these three simple

steps:

1. Set up

2. Call the routine

3. Error handling

BASIC TO MACHINE LANGUAGE 271

The following conventions are used in describing the KERNAL routines:

 FUNCTION NAME: Name of the KERNAL routine.

 CALL ADDRESS: This is the call address of the KERNAL routine, given in

 hexadecimal.

 COMMUNICATION REGISTERS: Registers listed under this heading are

 used to pass parameters to and from the KERNAL routines.

 PREPARATORY ROUTINES: Certain KERNAL routines require that data

 be set up before they can operate. The routines needed are listed here.

 ERROR RETURNS: A return from a KERNAL routine with the CARRY set

 indicates that an error was encountered in processing. The accumulator

 will contain the number of the error.

 STACK REQUIREMENTS: This is the actual number of stack bytes used

 by the KERNAL routine.

 REGISTERS AFFECTED: All registers used by the KERNAL routine are

 listed here.

 DESCRIPTION: A short tutorial on the function of the KERNAL routine is

 given here.

The list of the KERNAL routines follows.

272 BASIC TO MACHINE LANGUAGE

USER CALLABLE KERNAL ROUTINES

NAME
ADDRESS

FUNCTION
HEX DECIMAL

ACPTR $FFA5 65445 Input byte from serial port

CHKIN $FFC6 65478 Open channel for input

CHKOUT $FFC9 65481 Open channel for output

CHRIN $FFCF 65487 Input character from channel

CHROUT $FFD2 65490 Output character to channel

CIOUT $FFA8 65448 Output byte to serial port

CINT $FF81 65409 Initialize screen editor

CLALL $FFE7 65511 Close all channels and files

CLOSE $FFC3 65475 Close a specified logical file

CLRCHN $FFCC 65484 Close input and output channels

GETIN $FFE4 65508 Get character from keyboard queue

(keyboard buffer)

IOBASE $FFF3 65523 Returns base address of I/O devices

IOINIT $FF84 65412 Initialize input/output

LISTEN $FFB1 65457 Command devices on the serial bus to

LISTEN

LOAD $FFD5 65493 Load RAM from a device

MEMBOT $FF9C 65436 Read/set the bottom of memory

MEMTOP $FF99 65433 Read/set the top of memory

OPEN $FFC0 65472 Open a logical file

PLOT $FFF0 65520 Read/set X,Y cursor position

RAMTAS $FF87 65415 Initialize RAM, allocate tape buffer,

set screen $0400

RDTIM $FFDE 65502 Read real time clock

BASIC TO MACHINE LANGUAGE 273

NAME
ADDRESS

FUNCTION
HEX DECIMAL

READST $FFB7 65463 Read I/O status word

RESTOR $FF8A 65418 Restore default I/O vectors

SAVE $FFD8 65496 Save RAM to device

SCNKEY $FF9F 65439 Scan keyboard

SCREEN $FFED 65517 Return X,Y organization of screen

SECOND $FF93 65427 Send secondary address after LISTEN

SETLFS $FFBA 65466 Set logical, first, and second addresses

SETMSG $FF90 65424 Control KERNAL messages

SETNAM $FFBD 65469 Set file name

SETTIM $FFDB 65499 Set real time clock

SETTMO $FFA2 65442 Set timeout on serial bus

STOP $FFE1 65505 Scan stop key

TALK $FFB4 65460 Command serial bus device to TALK

TKSA $FF96 65430 Send secondary address after TALK

UDTIM $FFEA 65514 Increment real time clock

UNLSN $FFAE 65454 Command serial bus to UNLISTEN

UNTLK $FFAB 65451 Command serial bus to UNTALK

VECTOR $FF8D 65421 Read/set vectored I/O

274 BASIC TO MACHINE LANGUAGE

B-1. Function Name: ACPTR

Purpose: Get data from the serial bus

Call address: $FFA5 (hex) 65445 (decimal)

Communication registers: .A

Preparatory routines: TALK, TKSA

Error returns: See READST

Stack requirements: 13

Registers affected: .A, .X

Description:

This is the routine to use when you want to get information from a device on

the serial bus, like a disk. This routine gets a byte of data off the serial bus

using full handshaking. The data is returned in the accumulator. To prepare

for this routine the TALK routine must be called first to command the device on

the serial bus to send data through the bus. If the input device needs a

secondary command, it must be sent by using the TKSA KERNAL routine before

calling this routine. Errors are returned in the status word. The READST routine

is used to read the status word.

How to Use:

1. Command a device on the serial bus to prepare to send data to the

 Commodore 64. (Use the TALK and TKSA KERNAL routines.)

2. Call this routine (using JSR).

3. Store or otherwise use the data.

EXAMPLE:

;GET A BYTE FROM THE BUS

JSR ACPTR

STA DATA

BASIC TO MACHINE LANGUAGE 275

B-2. Function Name: CHKIN

Purpose: Open a channel for input

Call address: $FFC6 (hex) 65478 (decimal)

Communication registers: .X

Preparatory routines: (OPEN)

Error returns:

Stack requirements: None

Registers affected: .A, .X

Description:

Any logical file that has already been opened by the KERNAL OPEN routine
can be defined as an input channel by this routine. Naturally, the device on
the channel must be an input device. Otherwise an error will occur, and the
routine will abort.

If you are getting data from anywhere other than the keyboard, this routine
must be called before using either the CHRIN or the GETIN KERNAL routines
for data input. If you want to use the input from the keyboard, and no other
input channels are opened, then the calls to this routine, and to the OPEN
routine are not needed.

When this routine is used with a device on the serial bus, it automatically sends
the talk address (and the secondary address if one was specified by the
OPEN routine) over the bus.

How to Use:

1. OPEN the logical file (if necessary; see description above).
2. Load the .X register with number of the logical file to be used.
3. Call this routine (using a JSR command).

Possible errors are:

#3: File not open
#5: Device not present
#6: File not an input file

EXAMPLE:

;PREPARE FOR INPUT FROM LOGICAL FILE 2

LDX #2

JSR CHKIN

276 BASIC TO MACHINE LANGUAGE

B-3. Function Name: CHKOUT

Purpose: Open a channel for output
Call address: $FFC9 (hex) 65481 (decimal)
Communication registers: .X
Preparatory routines: (OPEN)
Error returns: 0, 3, 5, 7 (See READST)
Stack requirements: 4+
Registers affected: .A, .X

Description:
Any logical file number that has been created by the KERNAL routine OPEN
can be defined as an output channel. Of course, the device you intend opening
a channel to must be an output device. Otherwise an error will occur, and the
routine will be aborted.

This routine must be called before any data is sent to any output device unless
you want to use the Commodore 64 screen as your output device. If screen
output is desired, and there are no other output channels already defined,
then calls to this routine, and to the OPEN routine are not needed.

When used to open a channel to a device on the serial bus, this routine will
automatically send the LISTEN address specified by the OPEN routine (and a
secondary address if there was one).

How to Use:

REMEMBER: this routine is NOT NEEDED to send data to the screen

1. Use the KERNAL OPEN routine to specify a logical file number, a LISTEN
 address, and a secondary address (if needed).
2. Load the .X register with the logical file number used in the open
 statement.
3. Call this routine (by using the JSR instruction).

EXAMPLE:

LDX #3 ;DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL
JSR CHKOUT

Possible errors are:
#3: File not open
#5: Device not present
#7: Not an output file

BASIC TO MACHINE LANGUAGE 277

B-4. Function Name: CHRIN

Purpose: Get a character from the input channel

Call address: $FFCF (hex) 65487 (decimal)

Communication registers: .A

Preparatory routines: (OPEN, CHKIN)

Error returns: 0 (See READST)

Stack requirements: 7+

Registers affected: .A, .X

Description:

This routine gets a byte of data from a channel already set up as the input
channel by the KERNAL routine CHKIN. If the CHKIN has NOT been used to
define another input channel, then all your data is expected from the
keyboard. The data byte is returned in the accumulator. The channel remains
open after the call.

Input from the keyboard is handled in a special way. First, the cursor is turned
on, and blinks until a carriage return is typed on the keyboard. All characters
on the line (up to 88 characters) are stored in the BASIC input buffer. These
characters can be retrieved one at a time by calling this routine once for each
character. When the carriage return is retrieved, the entire line has been
processed. The next time this routine is called, the whole process begins again,
i.e., by flashing the cursor.

How to Use:

FROM THE KEYBOARD
1. Retrieve a byte of data by calling this routine.
2. Store the data byte.
3. Check if it is the last data byte (is it a CR?)
4. If not, go to step 1.

EXAMPLE:

 LDY $#00 ;PREPARE THE .Y REGISTER TO STORE THE DATA
RD JSR CHRIN
 STA DATA,Y ;STORE THE YTH DATA BYTE IN THE YTH
 ;LOCATION IN THE DATA AREA.
 INY
 CMP #CR ;IS IT A CARRIAGE RETURN?
 BNE RD ;NO, GET ANOTHER DATA BYTE

278 BASIC TO MACHINE LANGUAGE

EXAMPLE:

JSR CHRIN
STA DATA

FROM OTHER DEVICES
1. Use the KERNAL OPEN and CHKIN routines.
2. Call this routine (using a JSR instruction).
3. Store the data.

EXAMPLE:

JSR CHRIN
STA DATA

B-5. Function Name: CHROUT

Purpose: Output a character

Call address: $FFD2 (hex) 65490 (decimal)

Communication registers: .A

Preparatory routines: (CHKOUT, OPEN)

Error returns: 0 (See READST)

Stack requirements: 8+

Registers affected: .A

Description:

This routine outputs a character to an already opened channel. Use the

KERNAL OPEN and CHKOUT routines to set up the output channel before

calling this routine, If this call is omitted, data is sent to the default output

device (number 3, the screen). The data byte to be output is loaded into the

accumulator, and this routine is called. The data is then sent to the specified

output device. The channel is left open after the call.

NOTE: Care must be taken when using this routine to send data to a specific serial device

since data will be sent to all open output channels on the bus. Unless this is desired, all open

output channels on the serial bus other than the intended destination channel must be closed

by a call to the KERNAL CLRCHN routine.

BASIC TO MACHINE LANGUAGE 279

How to Use:

1. Use the CHKOUT KERNAL routine if needed, (see description above).

2. Load the data to be output into the accumulator.

3. Call this routine

EXAMPLE:

;DUPLICATE THE BASIC INSTRUCTION CMD 4,"A";

LDX #4 ;LOGICAL FILE #4

JSR CHKOUT ;OPEN CHANNEL OUT

LDA #'A

JSR CHROUT ;SEND CHARACTER

B-6. Function Name: CIOUT

Purpose: Transmit a byte over the serial bus

Call address: $FFA8 (hex) 65448 (decimal)

Communication registers: .A

Preparatory routines: LISTEN, [SECOND]

Error returns: See READST

Stack requirements: 5

Registers affected: None

Description:

This routine is used to send information to devices on the serial bus. A call to

this routine will put a data byte onto the serial bus using full serial

handshaking. Before this routine is called, the LISTEN KERNAL routine must be

used to command a device on the serial bus to get ready to receive data. (If

a device needs a secondary address, it must also be sent by using the

SECOND KERNAL routine.) The accumulator is loaded with a byte to

handshake as data on the serial bus. A device must be listening or the status

word will return a timeout. This routine always buffers one character. (The

routine holds the previous character to be sent back.) So when a call to the

KERNAL UNLSN routine is made to end the data transmission, the buffered

character is sent with an End Or Identify (EOI) set. Then the UNLSN command

is sent to the device.

280 BASIC TO MACHINE LANGUAGE

How to Use:

1. Use the LISTEN KERNAL routine (and the SECOND routine if needed).

2. Load the accumulator with a byte of data.

3. Call this routine to send the data byte.

EXAMPLE:

LDA #'X ;SEND AN X TO THE SERIAL BUS

JSR CIOUT

B-7. Function Name: CINT

Purpose: Initialize screen editor & 6567 video chip

Call address: $FF81 (hex) 65409 (decimal)

Communication registers: None

Preparatory routines: None

Error returns: None

Stack requirements: 4

Registers affected: .A, .X, .Y

Description:

This routine sets up the 6567 video controller chip in the Commodore 64 for

normal operation. The KERNAL screen editor is also initialized. This routine

should be called by a Commodore 64 program cartridge.

How to Use:

1. Call this routine.

EXAMPLE:

JSR CINT

JMP RUN ;BEGIN EXECUTION

BASIC TO MACHINE LANGUAGE 281

B-8. Function Name: CLALL

Purpose: Close all files

Call address: $FFE7 (hex) 65511 (decimal)

Communication registers: None

Preparatory routines: None

Error returns: None

Stack requirements: 11

Registers affected: .A, .X

Description:

This routine closes all open files. When this routine is called, the pointers into
the open file table are reset, closing all files. Also, the CLRCHN routine is
automatically called to reset the I/O channels.

How to Use:

1. Call this routine.

EXAMPLE:

JSR CLALL ;CLOSE ALL FILES AND SELECT DEFAULT I/O
 ;CHANNELS
JMP RUN ;BEGIN EXECUTION

B-9. Function Name: CLOSE

Purpose: Close a logical file

Call address: $FFC3 (hex) 65475 (decimal)

Communication registers: .A

Preparatory routines: None

Error returns: 0, 240 (See READST)

Stack requirements: 2+

Registers affected: .A, .X, .Y

Description:

This routine is used to close a logical file after all I/O operations have been
completed on that file. This routine is called after the accumulator is loaded
with the logical file number to be closed (the same number used when the file
was opened using the OPEN routine).

282 BASIC TO MACHINE LANGUAGE

How to Use:

1. Load the accumulator with the number of the logical file to be closed.
2. Call this routine.

EXAMPLE:

;CLOSE 15
LDA #15
JSR CLOSE

B-10. Function Name: CLRCHN

Purpose: Clear I/O channels
Call address: $FFCC (hex) 65484 (decimal)
Communication registers: None
Preparatory routines: None
Error returns:
Stack requirements: 9
Registers affected: .A, .X

Description:

This routine is called to clear all open channels and restore the I/O channels
to their original default values. It is usually called after opening other I/O
channels (like a tape or disk drive) and using them for input/output operations.
The default input device is 0 (keyboard). The default output device is 3 (the
Commodore 64 screen).

If one of the channels to be closed is to the serial port, an UNTALK signal is
sent first to clear the input channel or an UNLISTEN is sent to clear the output
channel. By not calling this routine (and leaving listener(s) active on the serial
bus) several devices can receive the same data from the Commodore 64 at
the same time. One way to take advantage of this would be to command the
printer to TALK and the disk to LISTEN. This would allow direct printing of a
disk file.

This routine is automatically called when the KERNAL CLALL routine is
executed.

How to Use:

1. Call this routine using the JSR instruction.

EXAMPLE:

JSR CLRCHN

BASIC TO MACHINE LANGUAGE 283

B-11. Function Name: GETIN

Purpose: Get a character

Call address: $FFE4 (hex) 65508 (decimal)

Communication registers: .A

Preparatory routines: CHKIN, OPEN

Error returns: See READST

Stack requirements: 7+

Registers affected: .A (.X, .Y)

Description:

If the channel is the keyboard, this subroutine removes one character from the

keyboard queue and returns it as an ASCII value in the accumulator. If the

queue is empty, the value returned in the accumulator will be zero. Characters

are put into the queue automatically by an interrupt driven keyboard scan

routine which calls the SCNKEY routine. The keyboard buffer can hold up to

ten characters. After the buffer is filled, additional characters are ignored

until at least one character has been removed from the queue. If the channel

is RS-232, then only the .A register is used and a single character is returned.

See READST to check validity. If the channel is serial, cassette, or screen, call

BASIN routine.

How to Use:

1. Call this routine using a JSR instruction.

2. Check for a zero in the accumulator (empty buffer).

3. Process the data.

EXAMPLE:

;WAIT FOR A CHARACTER

WAIT JSR GETIN

CMP #0

BEQ WAIT

284 BASIC TO MACHINE LANGUAGE

B-12. Function Name: IOBASE

Purpose: Define I/O memory page

Call address: $FFF3 (hex) 65523 (decimal)

Communication registers: .X, .Y

Preparatory routines: None

Error returns:

Stack requirements: 2

Registers affected: .X, .Y

Description:

This routine sets the X and Y registers to the address of the memory section
where the memory mapped I/O devices are located. This address can then
be used with an offset to access the memory mapped I/O devices in the
Commodore 64. The offset is the number of locations from the beginning of
the page on which the I/O register you want is located. The .X register
contains the low order address byte, while the .Y register contains the high
order address byte.

This routine exists to provide compatibility between the Commodore 64, VIC-
20, and future models of the Commodore 64. If the I/O locations for a
machine language program are set by a call to this routine, they should still
remain compatible with future versions of the Commodore 64, the KERNAL
and BASIC.

How to Use:

1. Call this routine by using the JSR instruction.
2. Store the .X and the .Y registers in consecutive locations.
3. Load the .Y register with the offset.
4. Access that I/O location

EXAMPLE:

;SET THE DATA DIRECTION REGISTER OF THE USER PORT TO 0

;(INPUT)

JSR IOBASE

STX POINT ;SET BASE REGISTERS

STY POINT+1

LDY #2

LDA #0 ;OFFSET FOR DDR OF THE USER PORT

STA (POINT),Y ;SET DDR TO 0

BASIC TO MACHINE LANGUAGE 285

B-13. Function Name: IOINIT

Purpose: Initialize I/O devices
Call address: $FF84 (hex) 65412 (decimal)
Communication registers: None
Preparatory routines: None
Error returns:
Stack requirements: None
Registers affected: .A, .X, .Y

Description:

This routine initializes all input/output devices and routines. It is normally
called as part of the initialization procedure of a Commodore 64 program
cartridge.

EXAMPLE:

JSR IOINIT

B-14. Function Name: LISTEN

Purpose: Command a device on the serial bus to listen
Call address: $FFB1 (hex) 65457 (decimal)
Communication registers: .A
Preparatory routines: None
Error returns: See READST
Stack requirements: None
Registers affected: .A

Description:

This routine will command a device on the serial bus to receive data. The
accumulator must be loaded with a device number between 0 and 31 before
calling the routine. LISTEN will OR the number bit by bit to convert to a listen
address, then transmits this data as a command on the serial bus. The specified
device will then go into listen mode, and be ready to accept information.

How to Use:
1. Load the accumulator with the number of the device to command to LISTEN.
2. Call this routine using the JSR instruction.

EXAMPLE:

;COMMAND DEVICE #8 TO LISTEN

LDA #8

JSR LISTEN

286 BASIC TO MACHINE LANGUAGE

B-15. Function Name: LOAD

Purpose: Load RAM from device

Call address: $FFD5 (hex) 65493 (decimal)

Communication registers: .A, .X, .Y

Preparatory routines: SETLFS, SETNAM

Error returns: 0, 4, 5, 8, 9, READST

Stack requirements: None

Registers affected: .A, .X, Y

Description:

This routine LOADs data bytes from any input device directly into the memory

of the Commodore 64. It can also be used for a verify operation, comparing

data from a device with the data already in memory, while leaving the data

stored in RAM unchanged.

The accumulator (.A) must be set to 0 for a LOAD operation, or 1 for a verify.

If the input device is OPENed with a secondary address (SA) of 0 the header

information from the device is ignored. In this case, the .X and .Y registers must

contain the starting address for the load. If the device is addressed with a

secondary address of 1, then the data is loaded into memory starting at the

location specified by the header. This routine returns the address of the highest

RAM location loaded.

Before this routine can be called, the KERNAL SETLFS, and SETNAM routines

must be called.

NOTE: You can NOT LOAD from the keyboard (0), RS-232 (2), or the screen (3).

How to Use:

1. Call the SETLFS, and SETNAM routines. If a relocated load is desired, use

 the SETLFS routine to send a secondary address of 0.

2. Set the .A register to 0 for load, 1 for verify.

3. If a relocated load is desired, the .X and .Y registers must be set to the

 start address for the load.

4. Call the routine using the JSR instruction.

BASIC TO MACHINE LANGUAGE 287

EXAMPLE:

;LOAD A FILE FROM TAPE

LDA #FILENO ;SET LOGICAL FILE NUMBER

LDX #DEVICE1 ;SET DEVICE NUMBER

LDY CMD1 ;SET SECONDARY ADDRESS

JSR SETLFS

LDA #NAME1-NAME ;LOAD .A WITH NUMBER OF

 ;CHARACTERS IN FILE NAME

LDX #<NAME ;LOAD X AND Y WITH ADDRESS OF

LDY #>NAME ;FILE NAME

JSR SETNAM

LDA #0 ;SET FLAG FOR A LOAD

LDX #$FF ;ALTERNATE START

LDY #$FF

JSR LOAD

STX VARTAB ;END OF LOAD

STY VARTAB+1

JMP START

NAME .BYT 'FILE NAME'

NAME1 ;

B-16. Function Name: MEMBOT

Purpose: Set bottom of memory

Call address: $FF9C (hex) 65436 (decimal)

Communication registers: .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: .X, .Y

Description:

This routine is used to set the bottom of the memory. If the accumulator carry

bit is set when this routine is called, a pointer to the lowest byte of RAM is

returned in the .X and .Y registers. On the unexpanded Commodore 64 the

initial value of this pointer is $0800 (2048 in decimal). If the accumulator

carry bit is clear (=0) when this routine is called, the values of the .X and .Y

registers are transferred to the low and high bytes, respectively, of the

pointer to the beginning of RAM.

288 BASIC TO MACHINE LANGUAGE

How to Use:

TO READ THE BOTTOM OF RAM
1. Set the carry.
2. Call this routine

TO SET THE BOTTOM OF MEMORY
1. Clear the carry.
2. Call this routine

EXAMPLE:

;MOVE BOTTOM OF MEMORY UP 1 PAGE
SEC ;READ MEMORY BOTTOM
JSR MEMBOT
INY
CLC ;SET MEMORY BOTTOM TO NEW VALUE
JSR MEMBOT

B-17. Function Name: MEMTOP

Purpose: Set the top of RAM
Call address: $FF99 (hex) 65433 (decimal)
Communication registers: .X, .Y
Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: .X, .Y

Description:

This routine is used to set the top of RAM. When this routine is called with the

carry bit of the accumulator set, the pointer to the top of RAM will be loaded

into the .X and .Y registers. When this routine is called with the accumulator

carry bit clear, the contents of the .X and .Y registers are loaded in the top

of memory pointer, changing the top of memory.

EXAMPLE:

;DEALLOCATE THE RS-232 BUFFER

SEC

JSR MEMTOP ;READ TOP OF MEMORY

DEX

CLC

JSR MEMTOP ;SET NEW TOP OF MEMORY

BASIC TO MACHINE LANGUAGE 289

B-18. Function Name: OPEN

Purpose: Open a logical file

Call address: $FFC0 (hex) 65472 (decimal)

Communication registers: None

Preparatory routines: SETLFS, SETNAM

Error returns: 1, 2, 4, 5, 6, 240, READST

Stack requirements: None

Registers affected: .A, .X, .Y

Description:

This routine is used to OPEN a logical file. Once the logical file is set up, it can

be used for input/output operations. Most of the I/O KERNAL routines call on

this routine to create the logical files to operate on. No arguments need to be

set up to use this routine, but both the SETLFS and SETNAM KERNAL routines

must be called before using this routine.

How to Use:

1. Use the SETLFS routine.

2. Use the SETNAM routine.

3. Call this routine.

EXAMPLE:

This is an implementation of the BASIC statement: OPEN 15,8,15,"I/O"

 LDA #NAME2-NAME ;LENGTH OF FILE NAME FOR SETLFS

 LDY #>NAME ;ADDRESS OF FILE NAME

 LDX #<NAME

 JSR SETNAM

 LDA #15

 LDX #8

 LDY #15

 JSR SETLFS

 JSR OPEN

NAME .BYT 'I/O'

NAME2

290 BASIC TO MACHINE LANGUAGE

B-19. Function Name: PLOT

Purpose: Set cursor location

Call address: $FFF0 (hex) 65520 (decimal)

Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X, .Y

Description:

A call to this routine with the accumulator carry flag set loads the current
position of the cursor on the screen (in X, Y coordinates) into the .Y and .X
registers. Y is the column number of the cursor location (0 to 39), and X is the
row number of the location of the cursor (0 to 24). A call with the carry bit
clear moves the cursor to X, Y as determined by the .Y and .X registers.

How to Use:

READING CURSOR LOCATION

1. Set the carry flag.

2. Call this routine.

3. Get the X and Y position from the .Y and .X registers, respectively.

SETTING CURSOR LOCATION

1. Clear carry flag.

2. Set the .Y and .X registers to the desired cursor location.

3. Call this routine

EXAMPLE:

;MOVE THE CURSOR TO ROW 10, COLUMN 5 (5,10)

LDX #10

LDY #5

CLC

JSR PLOT

BASIC TO MACHINE LANGUAGE 291

B-20. Function Name: RAMTAS

Purpose: Perform RAM test
Call address: $FF87 (hex) 65415 (decimal)
Communication registers: .A, .X, .Y
Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: .A, .X, .Y

Description:

This routine is used to test RAM and set the top and bottom of memory pointers
accordingly. It also clears locations $0000 to $0101 and $0200 to $03FF. It
also allocates the cassette buffer, and sets the screen base to $0400.
Normally, this routine is called as part of the initialization process of a
Commodore 64 program cartridge.

EXAMPLE:

JSR RAMTAS

B-21. Function Name: RDTIM

Purpose: Read system clock
Call address: $FFDE (hex) 65502 (decimal)
Communication registers: .A, .X, .Y
Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: .A, .X, .Y

Description:

This routine is used to read the system clock. The clock's resolution is a 60th of
a second. Three bytes are returned by the routine. The accumulator contains
the most significant byte, the X index register contains the next most significant
byte, and the Y index register contains the least significant byte.

EXAMPLE:

JSR RDTIM
STY TIME
STX TIME+1
STA TIME+2
...
TIME *=*+3

292 BASIC TO MACHINE LANGUAGE

B-22. Function Name: READST

Purpose: Read status word

Call address: $FFB7 (hex) 65463 (decimal)

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A

Description:

This routine returns the current status of the I/O devices in the accumulator.

The routine is usually called after new communication to an I/O device. The

routine gives you information about device status, or errors that have occurred

during the I/O operation.

The bits returned in the accumulator contain the following information: (see

table below)

ST BIT

POSITION

ST

NUMERIC

VALUE

CASSETTE

READ
SERIAL R/W

TAPE

VERIFY +

LOAD

0 1 Time out

write

1 2 Time out

read

2 4 Short block Short block

3 8 Long block Long block

4 16 Unrecoverable

read error

 Any

mismatch

5 32 Checksum

error

 Checksum

error

6 64 End of file EOI line

7 –128 End of tape Device not

present

End of tape

BASIC TO MACHINE LANGUAGE 293

How to Use:

1. Call this routine.
2. Decode the information in the .A register as it refers to your program

EXAMPLE:

;CHECK FOR END OF FILE DURING READ
JSR READST
AND #64 ;CHECK EOF BIT (EOF=END OF FILE)
BNE EOF ;BRANCH ON EOF

B-23. Function Name: RESTOR

Purpose: Restore default system and interrupt vectors
Call address: $FF8A (hex) 65418 (decimal)
Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: .A, .X, .Y

Description:

This routine restores the default values of all system vectors used in KERNAL
and BASIC routines and interrupts. (See the Memory Map for the default
vector contents). The KERNAL VECTOR routine is used to read and alter
individual system vectors

How to Use:

1. Call this routine.

EXAMPLE:

JSR RESTOR

B-24. Function Name: SAVE

Purpose: Save memory to a device

Call address: $FFD8 (hex) 65496 (decimal)

Communication registers: .A, .X, .Y

Preparatory routines: SETLFS, SETNAM

Error returns: 5, 8, 9, READST

Stack requirements: None

Registers affected: .A, .X, .Y

294 BASIC TO MACHINE LANGUAGE

Description:

This routine saves a section of memory. Memory is saved from an indirect

address on page 0 specified by the accumulator to the address stored in the

X and Y registers. It is then sent to a logical file on an input/output device.

The SETLFS and SETNAM routines must be used before calling this routine.

However, a file name is not required to SAVE to device 1 (the Datasette™

recorder). Any attempt to save to other devices without using a file name

results in an error.

NOTE: Device 0 (the keyboard), device 2 (RS-232), and device 3 (the screen) cannot be

SAVEd to. If the attempt is made, an error occurs, and the SAVE is stopped.

How to Use:

1. Use the SETLFS routine and the SETNAM routine (unless a SAVE with no

 file name is desired on "a save to the tape recorder").

2. Load two consecutive locations on page 0 with a pointer to the start of

 your save (in standard 6502 low byte first, high byte next format).

3. Load the accumulator with the single byte page zero offset to the pointer.

4. Load the .X and .Y registers with the low byte and high byte respectively

 of the location of the end of the save.

5. Call this routine.

EXAMPLE:

LDA #1 ;DEVICE = 1:CASSETTE

JSR SETLFS

LDA #0 ;NO FILE NAME

JSR SETNAM

LDA PROG ;LOAD START ADDRESS OF SAVE

STA TXTTAB ;(LOW BYTE)

LDA PROG+1

STA TXTTAB+1 ;(HIGH BYTE)

LDX VARTAB ;LOAD .X WITH LOW BYTE OF END OF SAVE

LDY VARTAB+1 ;LOAD .Y WITH HIGH BYTE

LDA #<TXTTAB ;LOAD ACCUMULATOR WITH PAGE 0 OFFSET

JSR SAVE

BASIC TO MACHINE LANGUAGE 295

B-25. Function Name: SCNKEY

Purpose: Scan the keyboard
Call address: $FF9F (hex) 65439 (decimal)
Communication registers: None
Preparatory routines: IOINIT
Error returns: None
Stack requirements: 5
Registers affected: .A, .X, .Y

Description:

This routine scans the Commodore 64 keyboard and checks for pressed keys.

It is the same routine called by the interrupt handler. If a key is down, its ASCII

value is placed in the keyboard queue. This routine is called only if the normal

IRQ interrupt is bypassed.

How to Use:

1. Call this routine.

EXAMPLE:

GET JSR SCNKEY ;SCAN KEYBOARD
 JSR GETIN ;GET CHARACTER
 CMP #0 ;IS IT NULL?
 BEQ GET ;YES... SCAN AGAIN
 JSR CHROUT ;PRINT IT

B-26. Function Name: SCREEN

Purpose: Return screen format

Call address: $FFED (hex) 65517 (decimal)

Communication registers: .X, .Y

Preparatory routines: None

Stack requirements: 2

Registers affected: .X, .Y

Description:

This routine returns the format of the screen, e.g., 40 columns in .X and 25 lines

in .Y. The routine can be used to determine what machine a program is running

on. This function has been implemented on the Commodore 64 to help upward

compatibility of your programs.

296 BASIC TO MACHINE LANGUAGE

How to Use:

1. Call this routine.

EXAMPLE:

JSR SCREEN
STX MAXCOL
STY MAXROW

B-27. Function Name: SECOND

Purpose: Send secondary address for LISTEN
Call address: $FF93 (hex) 65427 (decimal)
Communication registers: .A
Preparatory routines: LISTEN
Error returns: See READST
Stack requirements: 8
Registers affected: .A

Description:

This routine is used to send a secondary address to an I/O device after a call
to the LISTEN routine is made, and the device is commanded to LISTEN. The
routine can NOT be used to send a secondary address after a call to the TALK
routine.

A secondary address is usually used to give setup information to a device
before I/O operations begin.

When a secondary address is to be sent to a device on the serial bus, the
address must first be ORed with $60.

How to Use:

1. Load the accumulator with the secondary address to be sent.

2. Call this routine.

EXAMPLE:

;ADDRESS DEVICE #8 WITH COMMAND (SECONDARY ADDRESS) #15

LDA #8

JSR LISTEN

LDA #15

JSR SECOND

BASIC TO MACHINE LANGUAGE 297

B-28. Function Name: SETLFS

Purpose: Set up a logical file

Call address: $FFBA (hex) 65466 (decimal)

Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

Description:

This routine sets the logical file number, device address, and secondary

address (command number) for other KERNAL routines.

The logical file number is used by the system as a key to the file table created

by the OPEN file routine. Device addresses can range from 0 to 31. The

following codes are used by the Commodore 64 to stand for the CBM devices

listed below:

ADDRESS DEVICE

0 Keyboard

1 Datasette™ #1

2 RS-232C device

3 CRT display

4 Serial bus printer

8 CBM serial bus disk drive

Device numbers 4 or greater automatically refer to devices on the serial bus.

A command to the device is sent as a secondary address on the serial bus

after the device number is sent during the serial attention handshaking

sequence. If no secondary address is to be sent, the .Y index register should

be set to 255.

How to Use:

1. Load the accumulator with the logical file number.

2. Load the .X index register with the device number.

3. Load the .Y index register with the command.

298 BASIC TO MACHINE LANGUAGE

EXAMPLE:

FOR LOGICAL FILE 32, DEVICE #4, AND NO COMMAND:

LDA #32

LDX #4

LDY #255

JSR SETLFS

B-29. Function Name: SETMSG

Purpose: Control system message output

Call address: $FF90 (hex) 65424 (decimal)

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A

Description:

This routine controls the printing of error and control messages by the KERNAL.

Either print error messages or print control messages can be selected by

setting the accumulator when the routine is called. FILE NOT FOUND is an

example of an error message. PRESS PLAY ON CASSETTE is an example of

a control message.

Bits 6 and 7 of this value determine where the message will come from. If bit

7 is 1, one of the error messages from the KERNAL is printed. If bit 6 is set,

control messages are printed.

How to Use:

1. Set accumulator to desired value.
2. Call this routine.

EXAMPLE:

LDA #$40

JSR SETMSG ;TURN ON CONTROL MESSAGES

LDA #$80

JSR SETMSG ;TURN ON ERROR MESSAGES

LDA #0

JSR SETMSG ;TURN OFF ALL KERNAL MESSAGES

BASIC TO MACHINE LANGUAGE 299

B-30. Function Name: SETNAM

Purpose: Set up file name
Call address: $FFBD (hex) 65469 (decimal)
Communication registers: .A, .X, .Y
Preparatory routines: None
Stack requirements: None
Registers affected: None

Description:

This routine is used to set up the file name for the OPEN, SAVE, or LOAD

routines. The accumulator must be loaded with the length of the file name. The

.X and .Y registers must be loaded with the address of the file name, in

standard 6502 low-byte/high-byte format. The address can be any valid

memory address in the system where a string of characters for the file name

is stored. If no file name is desired, the accumulator must be set to 0,

representing a zero file length. The .X and .Y registers can be set to any

memory address in that case.

How to Use:

1. Load the accumulator with the length of the file name.

2. Load the .X index register with the low order address of the file name.

3. Load the .Y index register with the high order address.

4. Call this routine

EXAMPLE:

LDA #NAME2-NAME ;LOAD LENGTH OF FILE NAME
LDX #<NAME ;LOAD ADDRESS OF FILE NAME
LDY #>NAME
JSR SETNAM

B-31. Function Name: SETTIM

Purpose: Set the system clock

Call address: $FFDB (hex) 65499 (decimal)

Communication registers: .A, .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

300 BASIC TO MACHINE LANGUAGE

Description:

A system clock is maintained by an interrupt routine that updates the clock
every 1/60th of a second (one "jiffy"). The clock is three bytes long, which
gives it the capability to count up to 5,184,000 jiffies (24 hours). At that point
the clock resets to zero. Before calling this routine to set the clock, the
accumulator must contain the most significant byte, the .X index register the
next most significant byte, and the .Y index register the least significant byte
of the initial time setting (in jiffies).

How to Use:

1. Load the accumulator with the MSB of the 3-byte number to set the clock.
2. Load the .X register with the next byte.
3. Load the .Y register with the LSB.
4. Call this routine.

EXAMPLE:

;SET THE CLOCK TO 10 MINUTES = 3600 JIFFIES
LDA #0 ;MOST SIGNIFICANT
LDX #>3600
LDY #<3600 ;LEAST SIGNIFICANT
JSR SETTIM

B-32. Function Name: SETTMO

Purpose: Set IEEE bus card timeout flag
Call address: $FFA2 (hex) 65442 (decimal)
Communication registers: .A
Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: None

NOTE: This routine is used ONLY with an IEEE add-on card!

Description:

This routine sets the timeout flag for the IEEE bus. When the timeout flag is set,
the Commodore 64 will wait for a device on the IEEE port for 64 milliseconds.
If the device does not respond to the Commodore 64's Data Address Valid
(DAV) signal within that time the Commodore 64 will recognize an error
condition and leave the handshake sequence. When this routine is called when
the accumulator contains a 0 in bit 7, timeouts are enabled. A 1 in bit 7 will
disable the timeouts.

BASIC TO MACHINE LANGUAGE 301

NOTE: The Commodore 64 uses the timeout feature to communicate that a disk file is not

found on an attempt to OPEN a file only with an IEEE card.

How to Use:

TO SET THE TIMEOUT FLAG
1. Set bit 7 of the accumulator to 0.
2. Call this routine.

TO RESET THE TIMEOUT FLAG
1. Set bit 7 of the accumulator to 1.
2. Call this routine.

EXAMPLE:

;DISABLE TIMEOUT
LDA #0
JSR SETTMO

B-33. Function Name: STOP

Purpose: Check if STOP key is pressed

Call address: $FFE1 (hex) 65505 (decimal)

Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: .A, .X

Description:

If the STOP key on the keyboard was pressed during a UDTIM call, this call

returns the Z flag set. In addition, the channels will be reset to default values.

All other flags remain unchanged. If the STOP key is not pressed then the

accumulator will contain a byte representing the lost row of the keyboard

scan. The user can also check for certain other keys this way.

How to Use:

1. UDTIM should be called before this routine.
2. Call this routine.
3. Test for the zero flag

302 BASIC TO MACHINE LANGUAGE

EXAMPLE:

JSR UDTIM ;SCAN FOR STOP

JSR STOP

BNE *+5 ;KEY NOT DOWN

JMP READY ;=... STOP

B-34. Function Name: TALK

Purpose: Command a device on the serial bus to TALK
Call address: $FFB4 (hex) 65460 (decimal)
Communication registers: .A
Preparatory routines: None
Error returns: See READST
Stack requirements: 8
Registers affected: .A

Description:

To use this routine the accumulator must first be loaded with a device number
between 0 and 31. When called, this routine then ORs bit by bit to convert
this device number to a talk address. Then this data is transmitted as a
command on the serial bus.

How to Use:

1. Load the accumulator with the device number.
2. Call this routine.

EXAMPLE:

;COMMAND DEVICE #4 TO TALK
LDA #4
JSR TALK

B-35. Function Name: TKSA

Purpose: Send a secondary address to a device commanded to TALK

Call address: $FF96 (hex) 65430 (decimal)

Communication registers: .A

Preparatory routines: TALK

Error returns: See READST

Stack requirements: 8

Registers affected: .A

BASIC TO MACHINE LANGUAGE 303

Description:

This routine transmits a secondary address on the serial bus for a TALK device.
This routine must be called with a number between 0 and 31 in the
accumulator. The routine sends this number as a secondary address command
over the serial bus. This routine can only be called after a call to the TALK
routine. It will not work after a LISTEN.

How to Use:

1. Use the TALK routine.
2. Load the accumulator with the secondary address.
3. Call this routine.

EXAMPLE:

;TELL DEVICE #4 TO TALK WITH COMMAND #7
LDA #4
JSR TALK
LDA #7
JSR TKSA

B-36. Function Name: UDTIM

Purpose: Update the system clock
Call address: $FFEA (hex) 65514 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: .A, .X

Description:

This routine updates the system clock. Normally this routine is called by the
normal KERNAL interrupt routine every 1/60th of a second. If the user
program processes its own interrupts this routine must be called to update the
time. In addition, the STOP key routine must be called, if the STOP key is to
remain functional.

How to Use:

1. Call this routine.

EXAMPLE:

JSR UDTIM

304 BASIC TO MACHINE LANGUAGE

B-37. Function Name: UNLSN

Purpose: Send an UNLISTEN command
Call address: $FFAE (hex) 65454 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: See READST
Stack requirements: 8
Registers affected: .A

Description:

This routine commands all devices on the serial bus to stop receiving data from

the Commodore 64 (i.e., UNLISTEN). Calling this routine results in an UNLISTEN

command being transmitted on the serial bus. Only devices previously

commanded to listen are affected. This routine is normally used after the

Commodore 64 is finished sending data to external devices. Sending the

UNLISTEN commands the listening devices to get off the serial bus so it can be

used for other purposes.

How to Use:
1. Call this routine.

EXAMPLE:
JSR UNLSN

B-38. Function Name: UNTLK

Purpose: Send an UNTALK command
Call address: $FFAB (hex) 65451 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: See READST
Stack requirements: 8
Registers affected: .A

Description:
This routine transmits an UNTALK command on the serial bus. All devices

previously set to TALK will stop sending data when this command is received.

How to Use:
1. Call this routine.

EXAMPLE:
JSR UNTLK

BASIC TO MACHINE LANGUAGE 305

B-39. Function Name: VECTOR

Purpose: Manage RAM vectors

Call address: $FF8D (hex) 65421 (decimal)

Communication registers: .X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X, .Y

Description:

This routine manages all system vector jump addresses stored in RAM. Calling

this routine with the accumulator carry bit set stores the current contents of the

RAM vectors in a list pointed to by the X and Y registers. When this routine is

called with the carry clear, the user list pointed to by the X and Y registers is

transferred to the system RAM vectors. The RAM vectors are listed in the

memory map.

NOTE: This routine requires caution in its use. The best way to use it is to first read the entire

vector contents into the user area, alter the desired vectors, and then copy the contents back

to the system vectors.

How to Use:

READ THE SYSTEM RAM VECTORS

1. Set the carry.

2. Set the .X and .Y registers to the address to put the vectors.

3. Call this routine.

LOAD THE SYSTEM RAM VECTORS

1. Clear the carry bit.

2. Set the .X and .Y registers to the address of the vector list in RAM that must

 be loaded.

3. Call this routine.

306 BASIC TO MACHINE LANGUAGE

EXAMPLE:

;CHANGE THE INPUT ROUTINES TO NEW SYSTEM

LDX #<USER

LDY #>USER

SEC

JSR VECTOR ;READ OLD VECTORS

LDA #<MYINP ;CHANGE INPUT

STA USER+10

LDA #>MYINP

STA USER+11

LDX #<USER

LDY #>USER

CLC

JSR VECTOR ;ALTER SYSTEM

...

USER *=*+26

ERROR CODES

The following is a list of error messages which can occur when using the KERNAL

routines. If an error occurs during a KERNAL routine, the carry bit of the

accumulator is set, and the number of the error message is returned in the

accumulator.

NOTE: Some KERNAL I/O routines do not use these codes for error messages. Instead, errors are

identified using the KERNAL READST routine.

NUMBER MEANING

0 Routine terminated by the STOP key

1 Too many open files

2 File already open

3 File not open

4 File not found

5 Device not present

6 File is not an input file

7 File is not an output file

8 File name is missing

9 Illegal device number

240 Top-of-memory change RS-232 buffer allocation/deallocation

BASIC TO MACHINE LANGUAGE 307

USING MACHINE LANGUAGE FROM BASIC

There are several methods of using BASIC and machine language on the

Commodore 64, including special statements as part of CBM BASIC as well as

key locations in the machine. There are five main ways to use machine language

routines from BASIC on the Commodore 64. They are:

 1. The BASIC SYS statement

 2. The BASIC USR function

 3. Changing one of the RAM I/O vectors

 4. Changing one of the RAM interrupt vectors

 5. Changing the CHRGET routine

1. The BASIC statement SYS X causes a JUMP to a machine language

 subroutine located at address X. The routine must end with an RTS

 (ReTurn from Subroutine) instruction. This will transfer control back to

 BASIC.

 Parameters are generally passed between the machine language

 routine and the BASIC program using the BASIC PEEK and POKE

 statements, and their machine language equivalents.

 The SYS command is the most useful method of combining BASIC with

 machine language. PEEKs and POKEs make multiple parameter passing

 easy. There can be many SYS statements in a program, each to a

 different (or even the same) machine language routine.

2. The BASIC function USR(X) transfers control to the machine language

 subroutine located at the address stored in locations 785 and 786. (The

 address is stored in standard low-byte/high-byte format.) The value X

 is evaluated and passed to the machine language subroutine through

 floating point accumulator #1, located beginning at address $61 (see

 memory map for more details). A value may be returned back to the

 BASIC program by placing it in the floating point accumulator. The

 machine language routine must end with an RTS instruction to return to

 BASIC.

 This statement is different from the SYS, because you have to set up an

 indirect vector. Also different is the format through which the variable

 is passed (floating point format). The indirect vector must be changed

 if more than one machine language routine is used.

308 BASIC TO MACHINE LANGUAGE

3. Any of the input/output or BASIC internal routines accessed through the

 vector table located on page 310 (see ADDRESSING MODES, ZERO

 PAGE) can be replaced, or amended by user code. Each 2-byte vector

 consists of a low byte and a high byte address which is used by the

 operating system.

 The KERNAL VECTOR routine is the most reliable way to change any

 of the vectors, but a single vector can be changed by POKEs. A new

 vector will point to a user prepared routine which is meant to replace

 or augment the standard system routine. When the appropriate BASIC

 command is executed, the user routine will be executed. If after

 executing the user routine, it is necessary to execute the normal system

 routine, the user program must JMP (JuMP) to the address formerly

 contained in the vector. If not, the routine must end with a RTS to transfer

 control back to BASIC.

4. The HARDWARE INTERRUPT (IRQ) VECTOR can be changed. Every

 1/60th of a second, the operating system transfers control to the routine

 specified by this vector. The KERNAL normally uses this for timing,

 keyboard scanning, etc. If this technique is used, you should always

 transfer control to the normal IRQ handling routine, unless the

 replacement routine is prepared to handle the CIA chip. (REMEMBER to

 end the routine with an RTI (ReTurn from Interrupt) if the CIA is handled

 by the routine).

 This method is useful for tasks which must happen concurrently with a

 BASIC program, but has the drawback of being more difficult.

NOTE: ALWAYS DISABLE INTERRUPTS BEFORE CHANGING THIS VECTOR!

5. The CHRGET routine is used by BASIC to get each character/token. This
 makes it simple to add new BASIC commands. Naturally, each new
 command must be executed by a user written machine language
 subroutine. A common way to use this method is to specify a character
 (@ for example) which will occur before any of the new commands.
 The new CHRGET routine will search for the special character. If none
 is present, control is passed to the normal BASIC CHRGET routine. If the
 special character is present, the new command is interpreted and
 executed by your machine language program. This minimizes the extra
 execution time added by the need to search for additional commands.
 This technique is often called a wedge.

BASIC TO MACHINE LANGUAGE 309

WHERE TO PUT MACHINE LANGUAGE ROUTINES

The best place for machine language routines on the Commodore 64 is from

$C000 – $CFFF, assuming the routines are smaller than 4K bytes long. This

section of memory is not disturbed by BASIC.

If for some reason it's not possible or desirable to put the machine language

routine at $C000, for instance if the routine is larger than 4K bytes, it then

becomes necessary to reserve an area at the top of memory from BASIC for the

routine. The top of memory is normally $9FFF. The top of memory can be

changed through the KERNAL routine MEMTOP, or by the following BASIC

statements:

10 POKE51,L:POKE52,H:POKE55,L:POKE56,H:CLR

Where H and L are the high and low portions, respectively, of the new top of

memory. For example, to reserve the area from $9000 to $9FFF for machine

language, use the following:

10 POKE51,0:POKE52,144:POKE55,0:POKE56,144:CLR

HOW TO ENTER MACHINE LANGUAGE

There are 3 common methods to add the machine language programs to a BASIC
program. They are:

1. DATA STATEMENTS:

By READing DATA statements, and POKEing the values into memory at the start

of the program, machine language routines can be added. This is the easiest

method. No special methods are needed to save the two parts of the program,

and it is fairly easy to debug. The drawbacks include taking up more memory

space, and the wait while the program is POKEd in. Therefore, this method is

better for smaller routines.

EXAMPLE:

 10 RESTORE:FORX=1T09:READA:POKE12*4096+X,A:NEXT
 .
 .
 .
 BASIC PROGRAM
 .
 .
 .
 1000 DATA 161,1,204,204,204,204,204,204,96

310 BASIC TO MACHINE LANGUAGE

2. MACHINE LANGUAGE MONITOR (64MON):

This program allows you to enter a program in either HEX or SYMBOLIC codes,

and save the portion of memory the program is in. Advantages of this method

include easier entry of the machine language routines, debugging aids, and a

much faster means of saving and loading. The drawback to this method is that it

generally requires the BASIC program to load the machine language routine

from tape or disk when it is started. (For more details on 64MON see the machine

language section.)

EXAMPLE:

The following is an example of a BASIC program using a machine language

routine prepared by 64MON. The routine is stored on tape:

 10 IF FLAG=1 THEN 20

 15 FLAG=1:LOAD"MACHINE LANGUAGE ROUTINE NAME",1,1

 20

 .

 .

 .

 REST OF BASIC PROGRAM

3. EDITOR/ASSEMBLER PACKAGE:

Advantages are similar to using a machine language monitor, but programs are

even easier to enter. Disadvantages are also similar to the use of a machine

language monitor.

COMMODORE 64 MEMORY MAP

LABEL
HEX

ADDRESS

DECIMAL

LOCATION
DESCRIPTION

D6510 0000 0 6510 On-Chip Data-Direction

Register

R6510 0001 1 6510 On-Chip 8-Bit

Input/Output Register

 0002 2 Unused

ADRAY1 0003–0004 3–4 Jump Vector: Convert

Floating-Integer

BASIC TO MACHINE LANGUAGE 311

LABEL
HEX

ADDRESS

DECIMAL

LOCATION
DESCRIPTION

ADRAY2 0005–0006 5–6 Jump Vector: Convert

Integer–Floating

CHARAC 0007 7 Search Character

ENDCHR 0008 8 Flag: Scan for Quote at End

of String

TRMPOS 0009 9 Screen Column From Last TAB

VERCK 000A 10 Flag: 0 = Load, 1 = Verify

COUNT 000B 11 Input Buffer Pointer / No. of

Subscripts

DIMFLG 000C 12 Flag: Default Array

DIMension

VALTYP 000D 13 Data Type: $FF = String,

$00 = Numeric

INTFLG 000E 14 Data Type: $80 = Integer,

$00 = Floating

GARBFL 000F 15 Flag: DATA scan/LIST

quote/Garbage Coll

SUBFLG 0010 16 Flag: Subscript Ref / User

Function Call

INPFLG 0011 17 Flag: $00 = INPUT, $40 =

GET, $98 = READ

TANSGN 0012 18 Flag: TAN sign / Comparison

Result

 0013 19 Flag: INPUT Prompt

LINNUM 0014–0015 20–21 Temp: Integer Value

TEMPPT 0016 22 Pointer: Temporary String

Stack

LASTPT 0017–0018 23–24 Last Temp String Address

TEMPST 0019–0021 25–33 Stack for Temporary Strings

INDEX 0022–0025 34–37 Utility Pointer Area

RESHO 0026–002A 38–42 Floating-Point Product of

Multiply

TXTTAB 002B–002C 43–44 Pointer: Start of BASIC Text

312 BASIC TO MACHINE LANGUAGE

LABEL
HEX

ADDRESS

DECIMAL

LOCATION
DESCRIPTION

VARTAB 002D–002E 45–46 Pointer: start of BASIC

Variables

ARYTAB 002F–0030 47–48 Pointer: start of BASIC Arrays

STREND 0031–0032 49–50 Pointer: end of BASIC Arrays

(+1)

FRETOP 0033–0034 51–52 Pointer: Bottom of String

Storage

FRESPC 0035–0036 53–54 Utility String Pointer

MEMSIZ 0037–0038 55–56 Pointer: Highest Address used

by BASIC

CURLIN 0039–003A 57–58 Current BASIC Line Number

OLDLIN 003B–003C 59–60 Previous BASIC Line Number

OLDTXT 003D–003E 61–62 Pointer: BASIC Statement for

CONT

DATLIN 003F–0040 63–64 Current DATA Line Number

DATPTR 0041–0042 65–66 Pointer: Current DATA Item

Address

INPPTR 0043–0044 67–68 Vector: INPUT Routine

VARNAM 0045–0046 69–70 Current BASIC Variable

Name

VARPNT 0047–0048 71–72 Pointer: Current BASIC

Variable Data

FORPNT 0049–004A 73–74 Pointer: Index Variable for

FOR/NEXT

 004B–0060 75–96 Temp Pointer / Data Area

FACEXP 0061 97 Floating-Point Accumulator

#1: Exponent

FACHO 0062–0065 98–101 Floating-Point Accumulator

#1: Mantissa

FACSGN 0066 102 Floating-Point Accumulator

#1: Sign

SGNFLG 0067 103 Pointer: Series Evaluation

Constant

BASIC TO MACHINE LANGUAGE 313

LABEL
HEX

ADDRESS

DECIMAL

LOCATION
DESCRIPTION

BITS 0068 104 Floating-Point Accumulator

#1: Overflow Digit

ARGEXP 0069 105 Floating-Point Accumulator

#2: Exponent

ARGHO 006A–006D 106–109 Floating-Point Accumulator

#2: Mantissa

ARGSGN 006E 110 Floating-Point Accumulator

#2: Sign

ARISGN 006F 111 Sign Comparison Result:

Accumulator #1 vs #2

FACOV 0070 112 Floating-Point Accumulator

#1: Low-Order (Rounding)

FBUFPT 0071–0072 113–114 Pointer: Cassette Buffer

CHRGET 0073–008A 115–138 Subroutine: Get Next Byte of

BASIC Text

CHRGOT 0079 121 Entry to Get Same Byte of

Text Again

TXTPTR 007A–007B 122–123 Pointer: Current Byte of BASIC

Text

RNDX 008B–008F 139–143 Floating RND Function Seed

Value

STATUS 0090 144 KERNAL I/O Status Word: ST

STKEY 0091 145 Flag: STOP key / RVS key

SVXT 0092 146 Timing Constant for Tape

VERCK 0093 147 Flag: 0 = Load, 1 = Verify

C3P0 0094 148 Flag: Serial Bus – Output

Character Buffer

BSOUR 0095 149 Buffered Character for Serial

Bus

SYNO 0096 150 Cassette Sync Number

 0097 151 Temp Data Area

LDTND 0098 152 Number of Open Files /

Index to File Table

DFLTN 0099 153 Default Input Device (0)

DFLTO 009A 154 Default Output (CMD) Device

(3)

314 BASIC TO MACHINE LANGUAGE

LABEL
HEX

ADDRESS

DECIMAL

LOCATION
DESCRIPTION

PRTY 009B 155 Tape Character Parity

DPSW 009C 156 Flag: Tape Byte-Received

MSGFLG 009D 157 Flag: $80 = Direct Mode,

$00= Program

PTR1 009E 158 Tape Pass 1 Error Log

PTR2 009F 159 Tape Pass 2 Error Log

TIME 00A0–00A2 160–162 Real-Time Jiffy Clock

(approx.) 1/60 Sec

 00A3–00A4 163–164 Temp Data Area

CNTDN 00A5 165 Cassette Sync Countdown

BUFPT 00A6 166 Pointer: Tape I/O Buffer

INBIT 00A7 167 RS-232 Input Bits / Cassette

Temp

BITCI 00A8 168 RS-232 Input Bit Count /

Cassette Temp

RINONE 00A9 169 RS-232 Flag: Check for Start

Bit

RIDATA 00AA 170 RS-232 Input Byte Buffer /

Cassette Temp

RIPRTY 00AB 171 RS-232 Input Parity /

Cassette Short Count

SAL 00AC–00AD 172–173 Pointer: Tape Buffer / Screen

Scrolling

EAL 00AE–00AF 174–175 Tape End Address / End of

Program

CMP0 00B0–00B1 176–177 Tape Timing Constants

TAPE1 00B2–00B3 178–179 Pointer: Start of Tape Buffer

BITTS 00B4 180 RS-232 Out Bit Count /

Cassette Temp

NXTBIT 00B5 181 RS-232 Next Bit to Send /

Tape EOT Flag

RODATA 00B6 182 RS-232 Out Byte Buffer

FNLEN 00B7 183 Length of Current File Name

LA 00B8 184 Current Logical File Number

BASIC TO MACHINE LANGUAGE 315

LABEL
HEX

ADDRESS

DECIMAL

LOCATION
DESCRIPTION

SA 00B9 185 Current Secondary Address

FA 00BA 186 Current Device Number

FNADR 00BB–00BC 187–188 Pointer: Current File Name

ROPRTY 00BD 189 RS-232 Out Parity / Cassette

Temp

FSBLK 00BE 190 Cassette Read/Write Block

Count

MYCH 00BF 191 Serial Word Buffer

CAS1 00C0 192 Tape Motor Interlock

STAL 00C1–00C2 193–194 I/O Start Address

MEMUSS 00C3–00C4 195–196 Tape Load Temps

LSTX 00C5 197 Current Key Pressed:

CHR$(n) 0 = No Key

NDX 00C6 198 Number of Characters in

Keyboard Buffer (Queue)

RVS 00C7 199 Flag: Print Reverse Characters

1 = Yes, 0 = No Used

INDX 00C8 200 Pointer: End of Logical Line

for INPUT

LSXP 00C9–00CA 201–202 Cursor X-Y Position at Start of

INPUT

SFDX 00CB 203 Flag: Print Shifted Characters

BLNSW 00CC 204 Cursor Blink Enable:

0 = Flash Cursor

BLNCT 00CD 205 Timer: Countdown to Toggle

Cursor

GDBLN 00CE 206 Character Under Cursor

BLNON 00CF 207 Flag: Last Cursor Blink

On/Off

CRSW 00D0 208 Flag: INPUT or GET from

Keyboard

PNT 00D1–00D2 209–210 Pointer: Current Screen Line

Address

316 BASIC TO MACHINE LANGUAGE

LABEL
HEX

ADDRESS

DECIMAL

LOCATION
DESCRIPTION

PNTR 00D3 211 Cursor Column on Current Line

QTSW 00D4 212 Flag: Editor in Quote Mode,

$00 = NO

LNMX 00D5 213 Physical Screen Line Length

TBLX 00D6 214 Current Cursor Physical Line

Number

 00D7 215 Temp Data Area

INSRT 00D8 216 Flag: Insert Mode,

>0 = # INSTs

LDTB1 00D9–00F2 217–242 Screen Line Link Table /

Editor Temps

USER 00F3–00F4 243–244 Pointer: Current Screen Color

RAM location

KEYTAB 00F5–00F6 245–246 Vector: Keyboard Decode

Table

RIBUF 00F7–00F8 247–248 RS-232 Input Buffer Pointer

ROBUF 00F9–00FA 249–250 RS-232 Output Buffer Pointer

FREKZP 00FB–00FE 251–254 Free Zero-Page Space for

User Programs

BASZPT 00FF 255 BASIC Temp Data Area

 0100–01FF 256–511 Microprocessor System Stack

Area

 0100–010A 256–266 Floating to String Work Area

BAD 0100–013E 256–318 Tape Input Error Log

BUF 0200–0258 512–600 System INPUT Buffer

LAT 0259–0262 601–610 KERNAL Table: Active Logical

File Numbers

FAT 0263–026C 611–620 KERNAL Table: Device

Number for Each File

SAT 026D–0276 621–630 KERNAL Table: Second

Address Each File

KEYD 0277–0280 631–640 Keyboard Buffer Queue

(FIFO)

BASIC TO MACHINE LANGUAGE 317

LABEL
HEX

ADDRESS

DECIMAL

LOCATION
DESCRIPTION

MEMSTR 0281–0282 641–642 Pointer: Bottom of Memory

for O.S.

MEMSIZ 0283–0284 643 – 644 Pointer: Top of Memory for

O.S.

TIMOUT 0285 645 Flag: KERNAL Variable for

IEEE Timeout

COLOR 0286 646 Current Character Color Code

GDCOL 0287 647 Background Color Under

Cursor

HIBASE 0288 648 Top of Screen Memory (Page)

XMAX 0289 649 Size of Keyboard Buffer

RPTFLG 028A 650 Flag: REPEAT Key Used,

$80 = Repeat

KOUNT 028B 651 Repeat Speed Counter

DELAY 028C 652 Repeat Delay Counter

SHFLAG 028D 653 Flag: Keyboard SHIFT Key /

CTRL Key /  Key

LSTSHF 028E 654 Last Keyboard Shift Pattern

KEYLOG 028F–0290 655–656 Vector: Keyboard Table

Setup

MODE 0291 657 Flag: $00 = Disable SHIFT

Keys, $80 = Enable SHIFT

Keys

AUTODN 0292 658 Flag: Auto Scroll Down,

0 = ON

M51CTR 0293 659 RS-232: 6551 Control

Register Image

M51CDR 0294 660 RS-232: 6551 Command

Register Image

M51AJB 0295–0296 661–662 RS-232 Non-Standard BPS

(Time/2–100) USA

RSSTAT 0297 663 RS-232 6551 Status Register

Image

BITNUM 0298 664 RS-232 Number of Bits Left to

Send

318 BASIC TO MACHINE LANGUAGE

LABEL
HEX

ADDRESS

DECIMAL

LOCATION
DESCRIPTION

BAUDOF 0299–029A 665–666 RS-232 Baud Rate: Full Bit

Time (µs)

RIDBE 029B 667 RS-232 Index to End of Input

Buffer

RIDBS 029C 668 RS-232 Start of Input Buffer

(Page)

RODBS 029D 669 RS-232 Start of Output Buffer

(Page)

RODBE 029E 670 RS-232 Index to End of

Output Buffer

IRQTMP 029F–02A0 671–672 Holds IRQ Vector During Tape

I/O

ENABL 02A1 673 RS-232 Enables

 02A2 674 TOD Sense During Cassette

I/O

 02A3 675 Temp Storage For Cassette

Read

 02A4 676 Temp D1IRQ Indicator For

Cassette Read

 02A5 677 Temp For Line Index

 02A6 678 PAL/NTSC Flag, 0 = NTSC,

1 = PAL

 02A7–02FF 679–767 Unused

IERROR 0300–0301 768–769 Vector: Print BASIC Error

Message

IMAIN 0302–0303 770–771 Vector: BASIC Warm Start

ICRNCH 0304–0305 772–773 Vector: Tokenize BASIC Text

IQPLOP 0306–0307 774–775 Vector: BASIC Text LIST

IGONE 0308–0309 776–777 Vector: BASIC Character

Dispatch

IEVAL 030A–030B 778–779 Vector: BASIC Token

Evaluation

SAREG 030C 780 Storage for 6502 .A Register

SXREG 030D 781 Storage for 6502 .X Register

BASIC TO MACHINE LANGUAGE 319

LABEL
HEX

ADDRESS

DECIMAL

LOCATION
DESCRIPTION

SYREG 030E 782 Storage for 6502 .Y Register

SPREG 030F 783 Storage for 6502 .SP

Register

USRPOK 0310 784 USR Function Jump Instr (4C)

USRADD 0311–0312 785–786 USR Address Low Byte / High

Byte

 0313 787 Unused

CINV 0314–0315 788–789 Vector: Hardware IRQ Interrupt

CBINV 0316–0317 790–791 Vector: BRK Instr. Interrupt

NMINV 0318–0319 792–793 Vector: Non-Maskable

Interrupt

IOPEN 031A–031B 794–795 KERNAL OPEN Routine Vector

ICLOSE 031C–031D 796–797 KERNAL CLOSE Routine Vector

ICHKIN 031E–031F 798–799 KERNAL CHKIN Routine Vector

ICKOUT 0320–0321 800–801 KERNAL CHKOUT Routine Vector

ICLRCH 0322–0323 802–803 KERNAL CLRCHN Routine Vector

IBASIN 0324–0325 804–805 KERNAL CHRIN Routine Vector

IBSOUT 0326–0327 806–807 KERNAL CHROUT Routine Vector

ISTOP 0328–0329 808–809 KERNAL STOP Routine Vector

IGETIN 032A–032B 810–811 KERNAL GETIN Routine Vector

ICLALL 032C–032D 812–813 KERNAL CLALL Routine Vector

USRCMD 032E–032F 814–815 User-Defined Vector

ILOAD 0330–0331 816–817 KERNAL LOAD Routine Vector

320 BASIC TO MACHINE LANGUAGE

LABEL
HEX

ADDRESS

DECIMAL

LOCATION
DESCRIPTION

ISAVE 0332–0333 818–819 KERNAL SAVE Routine Vector

 0334–033B 820–827 Unused

TBUFFR 033C–03FB 828–1019 Tape I/O Buffer

 03FC–03FF 1020–1023 Unused

VICSCN 0400–07FF 1024–2047 1024 Byte Screen Memory

Area

 0400–07E7 1024–2023 Video Matrix: 25 Lines × 40

Columns

 07F8–07FF 2040–2047 Sprite Data Pointers

 0800–9FFF 2048–40959 Normal BASIC Program Space

 8000–9FFF 32768–40959 VSP Cartridge ROM – 8192

Bytes

 A000–BFFF 40960–49151 BASIC ROM – 8192 Bytes (or

8K RAM)

 C000–CFFF 49152–53247 RAM – 4096 Bytes

 D000–DFFF 53248–57343 Input/Output Devices and

Color RAM or Character

Generator ROM or RAM –

4096 Bytes

 E000–FFFF 57344–65535 KERNAL ROM – 8192 Bytes

(or 8K RAM)

COMMODORE 64 INPUT/OUTPUT ASSIGNMENTS

HEX DECIMAL BITS DESCRIPTION

0000 0 7–0 MOS 6510 Data Direction

Register (xx101111)

Bit= 1: Output, Bit=0: Input,

x=Don't Care

0001 1 MOS 6510 Microprocessor

On-Chip I/O Port

 0 /LORAM Signal (0=Switch

BASIC ROM Out)

BASIC TO MACHINE LANGUAGE 321

HEX DECIMAL BITS DESCRIPTION

 1 /HIRAM Signal (0=Switch

KERNAL ROM Out)

 2 /CHAREN Signal (0=Switch

Char. ROM In)

 3 Cassette Data Output Line

 4 Cassette Switch Sense

1 = Switch Closed

 5 Cassette Motor Control

0 = ON, 1 = OFF

 6–7 Undefined

D000–D02E 53248–54271 MOS 6566 VIDEO

INTERFACE CONTROLLER

(VIC)

D000 53248 Sprite 0 X Pos

D001 53249 Sprite 0 Y Pos

D002 53250 Sprite 1 X Pos

D003 53251 Sprite 1 Y Pos

D004 53252 Sprite 2 X Pos

D005 53253 Sprite 2 Y Pos

D006 53254 Sprite 3 X Pos

D007 53255 Sprite 3 Y Pos

D008 53256 Sprite 4 X Pos

D009 53257 Sprite 4 Y Pos

D00A 53258 Sprite 5 X Pos

D00B 53259 Sprite 5 Y Pos

D00C 53260 Sprite 6 X Pos

D00D 53261 Sprite 6 Y Pos

D00E 53262 Sprite 7 X Pos

D00F 53263 Sprite 7 Y Pos

D010 53264 Sprites 0–7 X Pos (msb of X

coord.)

D011 53265 VIC Control Register

 7 Raster Compare: (Bit 8) See

53266

 6 Extended Color Text Mode:

1 = Enable

322 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

 5 Bitmap Mode: 1 = Enable

 4 Blank Screen to Border Color:

0 = Blank

 3 Select 24/25 Row Text

Display: 1=25 Rows

 2–0 Smooth Scroll to Y Dot-

Position (0–7)

D012 53266 Read Raster/Write Raster

Value for Compare IRQ

D013 53267 Light-Pen Latch X Pos

D014 53268 Light-Pen Latch Y Pos

D015 53269 Sprite display Enable:

1 = Enable

D016 53270 VIC Control Register

 7–6 Unused

 5 ALWAYS SET THIS BIT TO 0!

 4 Multicolor Mode: 1 = Enable

(Text or Bit-Map)

 3 Select 38/40 Column Text

Display: 1 = 40 Cols

 2–0 Smooth Scroll to X Pos

D017 53271 Sprites 0-7 Expand 2 ×

Vertical (Y)

D018 53272 VIC Memory Control Register

 7–4 Video Matrix Base Address

(inside VIC)

 3–1 Character Dot-Data Base

Address (inside VIC)

 0 Select upper/lower Character

Set

D019 53273 VIC Interrupt Flag Register

(Bit = 1: IRQ Occurred)

 7 Set on Any Enabled VIC IRQ

Condition

 3 Light-Pen Triggered IRQ Flag

BASIC TO MACHINE LANGUAGE 323

HEX DECIMAL BITS DESCRIPTION

 2 Sprite to Sprite Collision IRQ

Flag

 1 Sprite to Background Collision

IRQ Flag

 0 Raster Compare IRQ Flag

D01A 53274 IRQ Mask Register: 1 =

Interrupt Enabled

D01B 53275 Sprite to Background Display

Priority: 1 = Sprite

D01C 53276 Sprites 0–7 Multicolor Mode

Select: 1 = M.C.M.

D01D 53277 Sprites 0–7 Expand 2 ×

Horizontal (X)

D01E 53278 Sprite to Sprite Collision

Detect

D01F 53279 Sprite to Background Collision

Detect

D020 53280 Border Color

D021 53281 Background Color 0

D022 53282 Background Color 1

D023 53283 Background Color 2

D024 53284 Background Color 3

D025 53285 Sprite Multicolor Register 0

D026 53286 Sprite Multicolor Register 1

D027 53287 Sprite 0 Color

D028 53288 Sprite 1 Color

D029 53289 Sprite 2 Color

D02A 53290 Sprite 3 Color

D02B 53291 Sprite 4 Color

D02C 53292 Sprite 5 Color

D02D 53293 Sprite 6 Color

D02E 53294 Sprite 7 Color

D400–D7FF 54272–55295 MOS 6581 SOUND

INTERFACE DEVICE (SID)

324 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

D400 54272 Voice 1: Frequency Control –

Low-Byte

D401 54273 Voice 1: Frequency Control –

High-Byte

D402 54274 Voice 1: Pulse Waveform

Width – Low-Byte

D403 54275 7–4 Unused

 3–0 Voice 1: Pulse Waveform

Width – High-Nybble

D404 54276 Voice 1: Control Register

 7 Select Random Noise

Waveform, 1 = On

 6 Select Pulse Waveform, 1 =

On

 5 Select Sawtooth Waveform, 1

= On

 4 Select Triangle Waveform, 1

= On

 3 Test Bit: 1 = Disable

Oscillator 1

 2 Ring Modulate Osc. 1 with

Osc. 3 Output, 1 = On

 1 Synchronize Osc.1 with Osc.3

Frequency, 1 = On

 0 Gate Bit: 1 = Start

Att/Dec/Sus, 0 = Start

Release

D405 54277 Envelope Generator 1:

Attack/Decay Cycle Control

 7–4 Select Attack Cycle Duration:

0–15

 3–0 Select Decay Cycle Duration:

0–15

D406 54278 Envelope Generator 1:

Sustain/Release Cycle Control

BASIC TO MACHINE LANGUAGE 325

HEX DECIMAL BITS DESCRIPTION

 7–4 Select Sustain Cycle Duration:

0–15

 3–0 Select Release Cycle

Duration: 0–15

D407 54279 Voice 2: Frequency Control –

Low-Byte

D408 54280 Voice 2: Frequency Control –

High-Byte

D409 54281 Voice 2: Pulse Waveform

Width – Low-Byte

D40A 54282 7–4 Unused

 3–0 Voice 2: Pulse Waveform

Width – High-Nybble

D40B 54283 Voice 2: Control Register

 7 Select Random Noise

Waveform, 1 = On

 6 Select Pulse Waveform, 1 =

On

 5 Select Sawtooth Waveform, 1

= On

 4 Select Triangle Waveform, 1

= On

 3 Test Bit: 1 = Disable

Oscillator 2

 2 Ring Modulate Osc. 2 with

Osc. 1 Output, 1 = On

 1 Synchronize Osc.2 with Osc. 1

Frequency, 1 = On

 0 Gate Bit: 1 = Start

Att/Dec/Sus, 0 = Start

Release

D40C 54284 Envelope Generator 2: Attack

/ Decay Cycle Control

 7–4 Select Attack Cycle Duration:

0–15

326 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

 3–0 Select Decay Cycle Duration:

0–15

D40D 54285 Envelope Generator 2: Sustain

/ Release Cycle Control

 7–4 Select Sustain Cycle Duration:

0–15

 3–0 Select Release Cycle Duration:

0–15

D40E 54286 Voice 3: Frequency Control –

Low-Byte

D40F 54287 Voice 3: Frequency Control –

High-Byte

D410 54288 Voice 3: Pulse Waveform

Width – Low-Byte

D411 54289 7–4 Unused

 3–0 Voice 3: Pulse Waveform

Width – High-Nybble

D412 54290 Voice 3: Control Register

 7 Select Random Noise

Waveform, 1 = On

 6 Select Pulse Waveform, 1 =

On

 5 Select Sawtooth Waveform, 1

= On

 4 Select Triangle Waveform, 1

= On

 3 Test Bit: 1 = Disable

Oscillator 3

 2 Ring Modulate Osc. 3 with

Osc. 2 Output, 1 = On

 1 Synchronize Osc. 3 with Osc.2

Frequency, 1 = On

 0 Gate Bit: 1 = Start

Att/Dec/Sus, 0 = Start

Release

BASIC TO MACHINE LANGUAGE 327

HEX DECIMAL BITS DESCRIPTION

D413 54291 Envelope Generator 3:

Attack/Decay Cycle Control

 7–4 Select Attack Cycle Duration:

0–15

 3–0 Select Decay Cycle Duration:

0–15

D414 54292 Envelope Generator 3:

Sustain / Release Cycle

Control

 7–4 Select Sustain Cycle Duration:

0–15

 3–0 Select Release Cycle

Duration: 0–15

D415 54293 Filter Cutoff Frequency: Low-

Nybble (Bits 2–0)

D416 54294 Filter Cutoff Frequency: High-

Byte

D417 54295 Filter Resonance Control /

Voice Input Control

 7–4 Select Filter Resonance: 0–15

 3 Filter External Input: 1 = Yes,

0 = No

 2 Filter Voice 3 Output: 1 =

Yes, 0 = No

 1 Filter Voice 2 Output: 1 =

Yes, 0 = No

 0 Filter Voice 1 Output: 1 =

Yes, 0 = No

D418 54296 Select Filter Mode and

Volume

 7 Cut-Off Voice 3 Output: 1 =

Off, 0 = On

 6 Select Filter High-Pass Mode:

1 = On

 5 Select Filter Band-Pass Mode:

1 = On

328 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

 4 Select Filter Low-Pass Mode:

1 = On

 3–0 Select Output Volume: 0–15

D419 54297 Analog/Digital Converter:

Game Paddle 1 (0–255)

D41A 54298 Analog/Digital Converter:

Game Paddle 2 (0–255)

D41B 54299 Oscillator 3 Random Number

Generator

D41C 54230 Envelope Generator 3 Output

D500–D7FF 54528–55295 SID IMAGES

D800–DBFF 55296–56319 Color RAM (Nybbles)

DC00–DCFF 56320–56575 MOS 6526 Complex

Interface Adapter (CIA) #1

DC00 56320 Data Port A (Keyboard,

Joystick, Paddles, Light-Pen)

 7–0 Write Keyboard Column

Values for Keyboard Scan

 7–6 Read Paddles on Port A / B

(01 = Port A, 10 = Port B)

 4 Joystick A Fire Button: 1 =

Fire

 3–2 Paddle Fire Buttons

 3–0 Joystick A Direction (0–15)

DC01 56321 Data Port B (Keyboard,

Joystick, Paddles): Game Port

1

BASIC TO MACHINE LANGUAGE 329

HEX DECIMAL BITS DESCRIPTION

 7–0 Read Keyboard Row Values

for Keyboard Scan

 7 Timer B Toggle/Pulse Output

 6 Timer A: Toggle/Pulse Output

 4 Joystick 1 Fire Button: 1 =

Fire

 3–2 Paddle Fire Buttons

 3–0 Joystick 1 Direction

DC02 56322 Data Direction Register – Port

A (56320)

DC03 56323 Data Direction Register – Port

B (56321)

DC04 56324 Timer A: Low-Byte

DC05 56325 Timer A: High-Byte

DC06 56326 Timer B: Low-Byte

DC07 56327 Timer B: High-Byte

DC08 56328 Time-of-Day Clock: 1/10

Seconds

DC09 56329 Time-of-Day Clock: Seconds

DC0A 56330 Time-of-Day Clock: Minutes

DC0B 56331 Time-of-Day Clock: Hours +

AM/PM Flag (Bit 7)

DC0C 56332 Synchronous Serial I/O Data

Buffer

DC0D 56333 CIA Interrupt Control Register

(Read IRQs/Write Mask)

 7 IRQ Flag (1 = IRQ Occurred)

/ Set-Clear Flag

 4 FLAG1 IRQ (Cassette Read /

Serial Bus SRQ Input)

330 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

 3 Serial Port Interrupt

 2 Time-of-Day Clock Alarm

Interrupt

 1 Timer B Interrupt

 0 Timer A Interrupt

DC0E 56334 CIA Control Register A

 7 Time-of-Day Clock Frequency:

1 = 50 Hz, 0 = 60 Hz

 6 Serial Port I/O Mode:

1 = Output, 0 = Input

 5 Timer A Counts: 1 = CNT

Signals, 0 = System φ2 Clock

 4 Force Load Timer A: 1 = Yes

 3 Timer A Run Mode: 1 = One-

Shot, 0 = Continuous

 2 Timer A Output Mode to PB6:

1 = Toggle, 0 = Pulse

 1 Timer A Output on PB6: 1 =

Yes, 0 = No

 0 Start/Stop Timer A: 1 = Start,

0 = Stop

DC0F 56335 CIA Control Register B

 7 Set Alarm/TOD-Clock: 1 =

Alarm, 0 = Clock

BASIC TO MACHINE LANGUAGE 331

HEX DECIMAL BITS DESCRIPTION

 6–5 Timer B Mode Select:

00 = Count System φ2 Clock

Pulses

01 = Count Positive CNT

Transitions

10 = Count Timer A

Underflow Pulses

11 = Count Timer A

Underflows While CNT

Positive

 4–0 Same as CIA Control Reg. A –

for Timer B

DD00–DDFF 56576–56831 MOS 6526 Complex

Interface Adapter (CIA) #2

DD00 56576 Data Port A (Serial Bus, RS-

232, VIC Memory Control)

 7 Serial Bus Data Input

 6 Serial Bus Clock Pulse Input

 5 Serial Bus Data Output

 4 Serial Bus Clock Pulse Output

 3 Serial Bus ATN Signal Output

 2 RS-232 Data Output (User

Port)

 1–0 VIC Chip System Memory

Bank Select (Default = 11)

DD01 56577 Data Port B (User Port, RS-

232)

 7 User / RS-232 Data Set

Ready

332 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

 6 User / RS-232 Clear to Send

 5 User

 4 User / RS-232 Carrier Detect

 3 User / RS-232 Ring Indicator

 2 User / RS-232 Data Terminal

Ready

 1 User / RS-232 Request to

Send

 0 User / RS-232 Received Data

DD02 56578 Data Direction Register – Port

A

DD03 56579 Data Direction Register – Port

B

DD04 56580 Timer A: Low-Byte

DD05 56581 Timer A: High-Byte

DD06 56582 Timer B: Low-Byte

DD07 56583 Timer B: High-Byte

DD08 56584 Time-of-Day Clock: 1/10

Seconds

DD09 56585 Time-of-Day Clock: Seconds

DD0A 56586 Time-of-Day Clock: Minutes

DD0B 56587 Time-of-Day Clock: Hours +

AM/PM Flag (Bit 7)

DD0C 56588 Synchronous Serial I/O Data

Buffer

DD0D 56589 CIA Interrupt Control Register

(Read NMls/Write Mask)

BASIC TO MACHINE LANGUAGE 333

HEX DECIMAL BITS DESCRIPTION

 7 NMI Flag (1 = NMI Occurred)

/ Set-Clear Flag

 4 FLAG1 NMI (User/RS-232

Received Data Input)

 3 Serial Port Interrupt

 1 Timer B Interrupt

 0 Timer A Interrupt

DD0E 56590 CIA Control Register A

 7 Time-of-Day Clock Frequency:

1 = 50 Hz, 0 = 60 Hz

 6 Serial Port I/O Mode:

1 = Output, 0 = Input

 5 Timer A Counts: 1 = CNT

Signals, 0 = System φ2 Clock

 4 Force Load Timer A: 1 = Yes

 3 Timer A Run Mode: 1 = One-

Shot, 0 = Continuous

 2 Timer A Output Mode to PB6:

1 = Toggle, 0 = Pulse

 1 Timer A Output on PB6: 1 =

Yes, 0 = No

 0 Start/Stop Timer A: 1 = Start,

0 = Stop

DD0F 56591 CIA Control Register B

 7 Set Alarm/TOD-Clock: 1 =

Alarm, 0 = Clock

334 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

 6–5 Timer B Mode Select:

00 = Count System φ2 Clock

Pulses

01 = Count Positive CNT

Transitions

10 = Count Timer A

Underflow Pulses

11 = Count Timer A

Underflows While CNT

Positive

 4–0 Same as CIA Control Reg. A –

for Timer B

DE00–DEFF 56832–57087 Reserved for Future I/O

Expansion

DF00–DFFF 57088–57343 Reserved for Future I/O

Expansion

CHAPTER 6

INPUT/OUTPUT
GUIDE

 Introduction

 Output to the TV

 Output to Other Devices

 The Game Ports

 RS-232 Interface Description

 The User Port

 The Serial Bus

 The Expansion Port

 Z-80 Microprocessor Cartridge

336 INPUT/OUTPUT GUIDE

INTRODUCTION

Computers have three basic abilities: they can calculate, make decisions, and

communicate. Calculation is probably the easiest to program. Most of the rules

of mathematics are familiar to us. Decision making is not too difficult, since the

rules of logic are relatively few, even if you don't know them too well yet.

Communication is the most complex, because it involves the least exacting set of

rules. This is not an oversight in the design of computers. The rules allow enough

flexibility to communicate virtually anything, and in many possible ways. The only

real rule is this: whatever sends information must present the information so that

it can be understood by the receiver.

OUTPUT TO THE TV

The simplest form of output in BASIC is the PRINT statement. PRINT uses the TV

screen as the output device, and your eyes are the input device because they

use the information on the screen.

When PRINTing on the screen, your main objective is to format the information

on the screen so it's easy to read. You should try to think like a graphic artist,

using colors, placement of letters, capital and lower case letters, as well as

graphics to best communicate the information. Remember, no matter how smart

your program, you want to be able to understand what the results mean to you.

The PRINT statement uses certain character codes as "commands" to the cursor.

The CRSR key doesn't actually display anything, it just makes the cursor change

position. Other commands change colors, clear the screen, and insert or delete

spaces. The RETURN key has a character code number (CHR$) of 13. A complete

table of these codes is contained in Appendix C.

There are two functions in the BASIC language that work with the PRINT

statement. TAB positions the cursor on the given position from the left edge of

the screen, SPC moves the cursor right a given number of spaces from the current

position.

Punctuation marks in the PRINT statement serve to separate and format

information. The semicolon (;) separates 2 items without any spaces in between.

If it is the last thing on a line, the cursor remains after the last thing PRINTed

instead of going down to the next line. It suppresses (replaces) the RETURN

character that is normally PRINTed at the end of the line.

INPUT/OUTPUT GUIDE 337

The comma (,) separates items into columns. The Commodore 64 has 4 columns

of 10 characters each on the screen. When the computer PRINTs a comma, it

moves the cursor right to the start of the next column. If it is past the last column

of the line, it moves the cursor down to the next line. Like the semicolon, if it is the

last item on a line the RETURN is suppressed.

The quote marks (" ") separate literal text from variables. The first quote mark

on the line starts the literal area, and the next quote mark ends it. By the way,

you don't have to have a final quote mark at the end of the line.

The RETURN code (CHR$ code of 13) makes the cursor go to the next logical line

on the screen. This is not always the very next line. When you type past the end

of a line, that line is linked to the next line. The computer knows that both lines

are really one long line. The links are held in the line link table (see the memory

map for how this is set up).

A logical line can be 1 or 2 screen lines long, depending on what was typed or

PRINTed. The logical line the cursor is on determines where the RETURN key

sends it. The logical line at the top of the screen determines if the screen scrolls

1 or 2 lines at a time.

There are other ways to use the TV as an output device. The chapter on graphics

describes the commands to create objects that move across the screen. The VIC

chip section tells how the screen and border colors and sizes are changed. And

the sound chapter tells how the TV speaker creates music and special effects.

OUTPUT TO OTHER DEVICES

It is often necessary to send output to devices other than the screen, like a cassette

deck, printer, disk drive, or modem. The OPEN statement in BASIC creates a

"channel" to talk to one of these devices. Once the channel is OPEN, the PRINT#

statement will send characters to that device.

EXAMPLE of OPEN and PRINT# Statements:

100 OPEN 4, 4: PRINT# 4,"WRITING ON PRINTER"

110 OPEN 3, 8, 3, "0:DISK-FILE,S,W": PRINT# 3, "SEND TO DISK"

120 OPEN 1, 1, 1, "TAPE-FILE": PRINT# 1, "WRITE ON TAPE"

130 OPEN 2, 2, 0, CHR$(10): PRINT# 2, "SEND TO MODEM"

338 INPUT/OUTPUT GUIDE

The OPEN statement is somewhat different for each device. The parameters in

the OPEN statement are shown in the table below for each device.

TABLE of OPEN Statement Parameters:

FORMAT: OPEN file#, device#, number, string

DEVICE DEVICE# NUMBER STRING

CASSETTE 1 0 = Input

1= Output

2 = Output with EOT

File Name

MODEM 2 0 Control Registers

SCREEN 3 0, 1

PRINTER 4 or 5 0 = Upper/Graphics

7 = Upper/Lower Case

Text Is PRINTed

DISK 8 to 11 2–14 = Data Channel

15 = Command

 Channel

Drive #, File Name,

File Type, Read/Write

Command

OUTPUT TO PRINTER

The printer is an output device similar to the screen. Your main concern when

sending output to the printer is to create a format that is easy on the eyes. Your

tools here include reversed, double-width, capital and lower case letters, as well

as dot-programmable graphics.

The SPC function works for the printer in the same way it works for the screen.

However, the TAB function does not work correctly on the printer, because it

calculates the current position on the line based on the cursor's position on the

screen, not on the paper.

The OPEN statement for the printer creates the channel for communication. It also

specifies which character set will be used, either upper case with graphics or

upper and lower case.

EXAMPLES of OPEN Statement for Printer:

OPEN 1,4: REM UPPER CASE/GRAPHICS

OPEN 1,4,7: REM UPPER AND LOWER CASE

INPUT/OUTPUT GUIDE 339

When working with one character set, individual lines can be PRINTed in the

opposite character set. When in upper case with graphics, the cursor down

character (CHR$(17)) switches the characters to the upper and lower case set.

When in upper and lower case, the cursor up character (CHR$(145)) allows

upper case and graphics characters to be PRINTed.

Other special functions in the printer are controlled through character codes. All

these codes are simply PRINTed just like any other character.

TABLE of Printer Control Character Codes:

CHR$ CODE PURPOSE

10 Line feed

13 RETURN (automatic line feed on CBM printers)

14 Begin double-width character mode

15 End double-width character mode

18 Begin reverse character mode

146 End reverse character mode

17 Switch to upper/lower case character set

145 Switch to upper case/graphics character set

16 Tab to position in next 2 characters

27 Move to specified dot position

8 Begin dot-programmable graphic mode

26 Repeat graphics data

See your Commodore printer's manual for details on using the command codes.

OUTPUT TO MODEM

The modem is a simple device that can translate character codes into audio

pulses and vice-versa, so that computers can communicate over telephone lines.

The OPEN statement for the modem sets up the parameters to match the speed

and format of the other computer you are communicating with. Two characters

can be sent in the string at the end of the OPEN statement.

The bit positions of the first character code determine the baud rate, number of

data bits, and number of stop bits. The second code is optional, and its bits

specify the parity and duplex of the transmission. See the RS-232 section or your

VICMODEM manual for specific details on this device.

340 INPUT/OUTPUT GUIDE

EXAMPLE of OPEN Statement for Modem:

OPEN 1,2,0,CHR$(6): REM 300 BAUD

100 OPEN 2,2,0,CHR$(163) CHR$(112): REM 110 BAUD, ETC.

Most computers use the American Standard Code for Information Interchange,

known as ASCII (pronounced ASK-KEY). This standard set of character codes is

somewhat different from the codes used in the Commodore 64. When

communicating with other computers, the Commodore character codes must be

translated into their ASCII counterparts. A table of standard ASCII codes is

included in this book in Appendix C.

Output to the modem is a fairly uncomplicated task, aside from the need for

character translation. However, you must know the receiving device fairly well,

especially when writing programs where your computer "talks" to another

computer without human intervention. An example of this would be a terminal

program that automatically types in your account number and secret password.

To do this successfully, you must carefully count the number of characters and

RETURN characters. Otherwise, the computer receiving the characters won't know

what to do with them.

WORKING WITH CASSETTE TAPE

Cassette tapes have an almost unlimited capacity for data. The longer the tape,

the more information it can store. However, tapes are limited in time. The more

data on the tape, the longer the time it takes to find the information.

The programmer must try to minimize the time factor when working with tape

storage. One common practice is to read the entire cassette data file into RAM,

then process it, and then re-write all the data on the tape. This allows you to sort,

edit, and examine your data. However, this limits the size of your files to the

amount of available RAM.

If your data file is larger than the available RAM, it is probably time to switch

to using the floppy disk. The disk can read data at any position on the disk,

without needing to read through all the other data. You can write data over old

data without disturbing the rest of the file. That's why the disk is used for all

business applications like ledgers and mailing lists.

The PRINT# statement formats data just like the PRINT statement does. All

punctuation works the same. But remember, you're not working with the screen

now. The formatting must be done with the INPUT# statement constantly in mind.

INPUT/OUTPUT GUIDE 341

Consider the statement PRINT# 1, A$, B$, C$. When used with the screen, the

commas between the variables provide enough blank space between items to

format them into columns ten characters wide. On cassette, anywhere from 1 to

10 spaces will be added, depending on the length of the strings. This wastes

space on your tape.

Even worse is what happens when the INPUT# statement tries to read these

strings. The statement INPUT# 1, A$, B$, C$ will discover no data for B$ and

C$. A$ will contain all three variables, plus the spaces between them. What

happens? Here's a look at the tape file:

A$="DOG" B$="CAT" C$="TREE"

PRINT# 1, A$, B$, C$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

D O G C A T T R E E RETURN

The INPUT# statement works like the regular INPUT statement. When typing

data into the INPUT statement, the data items are separated, either by hitting

the RETURN key or using commas to separate them. The PRINT# statement puts

a RETURN at the end of a line just like the PRINT statement. A$ fills up with all

three values because there's no separator on the tape between them, only after

all three.

A proper separator would be a comma (,) or a RETURN on the tape. The RETURN

code is automatically put at the end of a PRINT or PRINT# statement. One way

to put the RETURN code between each item is to use only one item per PRINT#

statement. A better way is to set a variable to the RETURN CHR$ code, which is

CHR$(13), or use a comma. The statement for this is R$=",":PRINT# 1, A$ R$ B$

R$ C$. Don't use commas or any other punctuation between the variable names,

since the Commodore 64 can tell them apart and they'll only use up space in

your program.

A proper tape file looks like this:

1 2 3 4 5 6 7 8 9 10 11 12 13

D O G , C A T , T R E E RETURN

The GET# statement will pick data from the tape one character at a time. It will
receive each character, including the RETURN code and other punctuation. The
CHR$(0) code is received as an empty string, not as a one character string with
a code of 0. If you try to use the ASC function on an empty string, you get the
error message ?ILLEGAL QUANTITY ERROR.

342 INPUT/OUTPUT GUIDE

The line GET# 1, A$: A= ASC(A$) is commonly used in programs to examine
tape data. To avoid error messages, the line should be modified to GET#1, A$:
A= ASC(A$+ CHR$(0)). The CHR$(0) at the end acts as insurance against empty
strings, but doesn't affect the ASC function when there are other characters in
A$.

DATA STORAGE ON FLOPPY DISKETTES

Diskettes allow 3 different forms of data storage. Sequential files are similar to
those on tape, but several can be used at the same time. Relative files let you
organize the data into records, and then read and replace individual records
within the file. Random files let you work with data anywhere on the disk. They
are organized into 256 byte sections called blocks.

The PRINT# statement's limitations are discussed in the section on cassette tape.
The same limitations to format apply on the disk. RETURNs or commas are needed
to separate your data. The CHR$(0) is still read by the GET# statement as an
empty string.

Relative and random files both make use of separate data and command
"channels." Data written to the disk goes through the data channel, where it is
stored in a temporary buffer in the disk's RAM. When the record or block is
complete, a command is sent through the command channel that tells the drive
where to put the data, and the entire buffer is written.

Applications that require large amounts of data to be processed are best stored
in relative disk files. These will use the least amount of time and provide the best
flexibility for the programmer. Your disk drive manual gives a complete
programming guide to use of disk files.

INPUT/OUTPUT GUIDE 343

THE GAME PORTS

The Commodore 64 has two 9-pin Game Ports which allow the use of joysticks,

paddles, or a light pen. Each port will accept either one joystick or one paddle

pair. A light pen can be plugged into Port A (only) for special graphic control,

etc. This section gives you examples of how to use the joysticks and paddles from

both BASIC and machine language.

The digital joystick is connected to CIA#1 (MOS 6526 Complex Interface

Adapter). This input/output device also handles the paddle fire buttons and

keyboard scanning. The 6526 CIA chip has 16 registers which are in memory

locations 56320 through 56335 inclusive ($DC00 to $DC0F). Port A data

appears at location 56320 ($DC00) and Port B data is found at location 56321

($DC01).

A digital joystick has five distinct switches, four of the switches are used for

direction and one of the switches is used for the fire button. The joystick switches

are arranged as shown:

These switches correspond to the lower 5 bits of the data in location 56320 or

56321. Normally the bit is set to a one if a direction is NOT chosen or the fire

button is NOT pressed. When the fire button is pressed, the bit (bit 4 in this case)

changes to a 0. To read the joystick from BASIC, the following subroutine should

be used:

344 INPUT/OUTPUT GUIDE

10 FORK=0TO10:REM SET UP DIRECTION STRING

20 READDR$(K):NEXT

30 DATA"","N","S","","W","NW"

40 DATA"SW","","E","NE","SE"

50 PRINT"GOING...";

60 GOSUB100:REM READ THE JOYSTICK

65 IFDR$(JV)=""THEN80:REM CHECK IF A DIRECTION WAS CHOSEN

70 PRINTDR$(JV);" ";:REM OUTPUT WHICH DIRECTION

80 IFFR=16THEN60:REM CHECK IF FIRE BUTTON WAS PUSHED

90 PRINT"-----F-----I-----R-----E-----!!!":GOTO60

100 JV=PEEK(56320):REM GET JOYSTICK VALUE

110 FR=JVAND16:REM FORM FIRE BUTTON STATUS

120 JV=15-(JVAND15):REM FORM DIRECTION VALUE

130 RETURN

NOTE: For the second joystick, set JV = PEEK (56321).

The values for JV correspond to these directions:

JV EQUAL TO DIRECTION

0 NONE

1 UP

2 DOWN

3 –

4 LEFT

5 UP & LEFT

6 DOWN & LEFT

7 –

8 RIGHT

9 UP & RIGHT

10 DOWN & RIGHT

INPUT/OUTPUT GUIDE 345

A small machine code routine which accomplishes the same task is as follows:

1000 .PAGE (JOYSTICK.8/5) JOYSTICK - BUTTON READ ROUTINE

1010 ;

1020 ; AUTHOR - BILL HINDORFF

1030 ;

1040 DX = $C110

1050 DY = $C111

1060 * = $C200

1070 DJRR LDA $DC00 ; GET INPUT FROM PORT A ONLY

1080 DJRRB LDY #0 ; THIS ROUTINE READS AND DECODES THE

1090 LDX #0 ; JOYSTICK/FIREBUTTON INPUT DATA IN

1100 LSR A ; THE ACCUMULATOR. THIS LEAST

SIGNIFICANT

1110 BCS DJR0 ; 5 BITS CONTAIN THE SWITCH CLOSURE

1120 DEY ; INFORMATION. IF A SWITCH IS CLOSED

THEN IT

1130 DJR0 LSR A ; PRODUCES A ZERO BIT. IF A SWITCH IS

OPEN THEN

1140 BCS DJR1 ; IT PRODUCES A ONE BIT. THE JOYSTICK

DIR-

1150 INY ; ECTIONS ARE RIGHT, LEFT, FORWARD,

BACKWARD

1160 DJR1 LSR A ; BIT3=RIGHT, BIT2=LEFT,

BIT1=BACKWARD,

1170 BCS DJR2 ; BIT0=FORWARD AND BIT4=FIRE BUTTON.

1180 DEX ; AT RTS TIME DX AND DY CONTAIN 2'S

COMPLIMENT

1190 DJR2 LSR A ; DIRECTION NUMBERS I.E. $FF=-1,

$00=0, $01=1.

1200 BCS DJR3 ; DX=1 (MOVE RIGHT), DX=-1 (MOVE

LEFT),

1210 INX ; DX=0 (NO X CHANGE). DY=-1 (MOVE UP

SCREEN),

1220 DJR3 LSR A ; DY=1 (MOVE DOWN SCREEN), DY=0 (NO Y

CHANGE).

1230 STX DX ; THE FORWARD JOYSTICK POSITION

CORRESPONDS

1240 STY DY ; TO MOVE UP THE SCREEN AND THE

BACKWARD

1250 RTS ; POSITION TO MOVE DOWN SCREEN.

1260 ;

1270 ; AT RTS TIME THE CARRY FLAG CONTAINS THE FIRE BUTTON

STATE

1280 ; IF C=1 THEN BUTTON NOT PRESSED. IF C=0 THEN PRESSED.

1290 ;

1300 .END

346 INPUT/OUTPUT GUIDE

PADDLES

A paddle is connected to both CIA #1 and the SID chip (MOS 6581 Sound

Interface Device) through a game port. The paddle value is read via the SID

registers 54297 ($D419) and 54298 ($D41A). PADDLES ARE NOT RELIABLE

WHEN READ FROM BASIC ALONE!!!! The best way to use paddles, from BASIC

or machine code, is to use the following machine language routine... (SYS to it

from BASIC then PEEK the memory locations used by the subroutine).

1000 ;***

1010 ;* FOUR PADDLE READ ROUTINE (CAN ALSO BE USED FOR TWO)

1020 ;***

1030 ;AUTHOR - BILL HINDORFF

1040 PORTA=$DC00

1050 CIDDRA=$DC02

1060 SID=$D400

1070 *=$C100

1080 BUFFER *=*+1

1090 PDLX *=*+2

1100 PDLY *=*+2

1110 BTNA *=*+1

1120 BTNB *=*+1

1130 * = $C000

1140 PDLRD

1150 LDX #1 ; FOR FOUR PADDLES OR TWO ANALOG

JOYSTICKS

1160 PDLRD0 ; ENTRY POINT FOR ONE PAIR (CONDITION X

1ST)

1170 SEI

1180 LDA CIDDRA ; GET CURRENT VALUE OF DDR

1190 STA BUFFER ; SAVE IT AWAY

1200 LDA #$C0

1210 STA CIDDRA ; SET PORT A FOR INPUT

1220 LDA #$80

1230 PDLRD1

1240 STA PORTA ; ADDRESS A PAIR OF PADDLES

1250 LDY #$80 ; WAIT A WHILE

1260 PDLRD2

1270 NOP

1280 DEY

1290 BPL PDLRD2

1300 LDA SID+25 ; GET X VALUE

1310 STA PDLX,X

1320 LDA SID+26

1330 STA PDLY,X ; GET Y VALUE

INPUT/OUTPUT GUIDE 347

1340 LDA PORTA ; TIME TO READ PADDLE FIRE BUTTONS

1350 ORA #$80 ; MAKE IT THE SAME AS OTHER PAIR

1360 STA BTNA ; BIT 2 IS PDL X, BIT 3 IS PDL Y

1370 LDA #$40

1380 DEX ; ALL PAIRS DONE?

1390 BPL PDLRD1 ; NO

1400 LDA BUFFER

1410 STA CIDDRA ; RESTORE PREVIOUS VALUE OF DDR

1420 LDA PORTA+1 ; FOR 2ND PAIR -

1430 STA BTNB ; BIT 2 IS PDL X, BIT 3 IS PDL Y

1440 CLI

1450 RTS

1460 .END

The paddles can be read by using the following BASIC program:

10 C=12*4096:REM SET PADDLE ROUTINE START

11 REM POKE IN THE PADDLE READING ROUTINE

15 FORI=0TO63:READA:POKEC+I,A:NEXT

20 SYSC:REM CALL THE PADDLE ROUTINE

30 P1=PEEK(C+257):REM SET PADDLE ONE VALUE

40 P2=PEEK(C+258):REM SET PADDLE TWO VALUE

50 P3=PEEK(C+259):REM SET PADDLE THREE VALUE

60 P4=PEEK(C+260):REM SET PADDLE FOUR VALUE

61 REM READ FIRE BUTTON STATUS

62 S1=PEEK(C+261):S2=PEEK(C+262)

70 PRINTP1,P2,P3,P4:REM PRINT PADDLE VALUES

72 REM PRINT FIRE BUTTON STATUS

75 PRINT:PRINT"FIRE A ";S1,"FIRE B ";S2

80 FORW=1TO50:NEXT:REM WAIT A WHILE

90 PRINT"":PRINT:GOTO20:REM CLEAR SCREEN AND DO AGAIN
95 REM DATA FOR MACHINE CODE ROUTINE

100 DATA162,1,120,173,2,220,141,0,193,169,192,141,2,220,169

110 DATA128,141,0,220,160,128,234,136,16,252,173,25,212,157

120 DATA1,193,173,26,212,157,3,193,173,0,220,9,128,141,5,193

130 DATA169,64,202,16,222,173,0,193,141,2,220,173,1,220,141

140 DATA6,193,88,96

 SHIFT CLR/HOME

348 INPUT/OUTPUT GUIDE

LIGHT PEN

The light pen input latches the current screen position into a pair of registers (LPX,

LPY) on a low-going edge. The X position register 19 ($13) will contain the 8

MSB of the X position at the time of transition. Since the X position is defined by

a 512-state counter (9 bits), resolution to 2 horizontal dots is provided. Similarly,

the Y position is latched in its register 20 ($14), but here 8 bits provide single

raster resolution within the visible display. The light pen latch may be triggered

only once per frame, and subsequent triggers within the same frame will have

no effect. Therefore, you must take several samples before turning the pen to

the screen (3 or more samples average), depending upon the characteristics of

your light pen.

RS-232 INTERFACE DESCRIPTION

GENERAL OUTLINE

The Commodore 64 has a built-in RS-232 interface for connection to any RS-

232 modem, printer, or other device. To connect a device to the Commodore 64,

all you need is a cable and a little bit of programming.

RS-232 on the Commodore 64 is set-up in the standard RS-232 format, but the

voltages are TTL levels (0 to 5V) rather than the normal RS-232 –12 to 12 volt

range. The cable between the Commodore 64 and the RS-232 device should

take care of the necessary voltage conversions. The Commodore RS-232

interface cartridge handles this properly.

The RS-232 interface software can be accessed from BASIC or from the KERNAL

for machine language programming.

RS-232 on the BASIC level uses the normal BASIC commands: OPEN, CLOSE,

CMD, INPUT#, GET#, PRINT#, and the reserved variable ST. INPUT# and GET#

fetch data from the receiving buffer, while PRINT# and CMD place data into the

transmitting buffer. The use of these commands (and examples) will be described

in more detail later in this chapter.

The RS-232 KERNAL byte and bit level handlers run under the control of the

6526 CIA #2 device timers and interrupts. The 6526 chip generates NMI (Non-

Maskable Interrupt) requests for RS-232 processing. This allows background RS-

INPUT/OUTPUT GUIDE 349

232 processing to take place during BASIC and machine language programs.

There are built-in hold-offs in the KERNAL, cassette, and serial bus routines to

prevent the disruption of data storage or transmission by the NMIs that are

generated by the RS-232 routines. During cassette or serial bus activities, data

can NOT be received from RS-232 devices. But because these hold-offs are only

local (assuming you're careful about your programming) no interference should

result.

There are two buffers in the Commodore 64 RS-232 interface to help prevent
the loss of data when transmitting or receiving RS-232 information.

The Commodore 64 RS-232 KERNAL buffers consist of two first-in/first-out (FIFO)
buffers, each 256 bytes long, at the top of memory. The OPENing of an RS-232
channel automatically allocates 512 bytes of memory for these buffers. If there
is not enough free space beyond the end of your BASIC program no error
message will be printed, and the end of your program will be destroyed. SO BE
CAREFUL!

These buffers are automatically removed by using the CLOSE command.

OPENING AN RS-232 CHANNEL

Only one RS-232 channel should be open at any time; a second OPEN statement

will cause the buffer pointers to be reset. Any characters in either the transmit

buffer or the receive buffer will be lost.

Up to 4 characters can be sent in the filename field. The first two are the control

and command register characters; the other two are reserved for future system

options. Baud rate, parity, and other options can be selected through this feature.

No error-checking is done on the control word to detect a non-implemented baud

rate. Any illegal control word will cause the system output to operate at a very

slow rate (below 50 baud).

BASIC SYNTAX:

OPEN lfn,2,0,"<control register><command register><opt baud low><opt

 baud high>"

lfn – The logical file number (lfn) then can be any number from 1 through 255.

But be aware of the fact that if you choose a logical file number that is greater

than 127, then a line feed will follow all carriage returns.

350 INPUT/OUTPUT GUIDE

FIGURE 6-1. CONTROL REGISTER MAP

<control register> – Is a single byte character (see Figure 6-1, Control Register

Map) required to specify the baud rates. If the lower 4 bits of the baud rate is

equal to zero (0), the <opt baud low><opt baud high> characters give you a

rate based on the following:

<opt baud low>=<system frequency/rate/2–100–<opt baud high>*256

<opt baud high>=INT((system frequency/rate/2–100)/256

INPUT/OUTPUT GUIDE 351

FIGURE 6-2. COMMAND REGISTER MAP.

The formulas above are based on the fact that:

system frequency = 1.02273E6 NTSC (North American TV standard)

 = 0.98525E6 PAL (U.K. and most European TV standard)

<command register> – Is a single byte character (see Figure 6-2, Command

Register Map) that defines other terminal parameters. This character is NOT

required.

352 INPUT/OUTPUT GUIDE

KERNAL ENTRY:

OPEN ($FFC0) (See KERNAL specifications for more information on entry

conditions and instructions.)

IMPORTANT NOTE: In a BASIC program, the RS-232 OPEN command should be performed

before creating any variables or arrays because an automatic CLR is performed when an RS-

232 channel is OPENed (This is due to the allocation of 512 bytes at the top of memory.) Also

remember that your program will be destroyed if 512 bytes of space are not available at the

time of the OPEN statement.

GETTING DATA FROM AN RS-232 CHANNEL

When getting data from an RS-232 channel, the Commodore 64 receiver buffer

will hold up to 255 characters before the buffer overflows. This is indicated in

the RS-232 status word (ST in BASIC, or RSSTAT in machine language). If an

overflow occurs, then all characters received during a full buffer condition, from

that point on, are lost. Obviously, it pays to keep the buffer as clear as possible.

If you wish to receive RS-232 data at high speeds (BASIC can only go so fast,

especially considering garbage collects. This can cause the receiver buffer to

overflow), you will have to use machine language routines to handle this type of

data burst.

BASIC SYNTAX:

Recommended: GET#lfn, <string variable>

NOT Recommended: INPUT#lfn, <variable list>

KERNAL ENTRIES:

CHKIN ($FFC6) – See Memory Map for more information on entry and exit

 conditions.

GETIN ($FFE4) – See Memory Map for more information on entry and exit

 conditions.

CHRIN ($FFCF) – See Memory Map for more information on entry and exit

 conditions.

INPUT/OUTPUT GUIDE 353

NOTES:

If the word length is less than 8 bits, all unused bit(s) will be assigned a value of zero.

If a GET# does not find any data in the buffer, the character "" (a null) is returned.

If INPUT# is used, then the system will hang in a waiting condition until a non-null character and

a following carriage return is received. Therefore, if the Clear To Send (CTS) or DataSette Ready

(DSR) line(s) disappear during character INPUT#, the system will hang in a RESTORE-only state.

This is why the INPUT# and CHRIN routines are NOT recommended.

The routine CHKIN handles the x-line handshake which follows the EIA standard (August 1979)

for RS-232-C interfaces. (The Request To Send (RTS), CTS, and Received line signal (DCD) lines

are implemented with the Commodore 64 computer defined as the Data Terminal device.)

SENDING DATA TO AN RS-232 CHANNEL

When sending data, the output buffer can hold 255 characters before a full

buffer hold-off occurs. The system will wait in the CHROUT routine until

transmission is allowed or the RUN/STOP and RESTORE keys are used to recover

the system through a WARM START.

BASIC SYNTAX:

CMD lfn – acts same as in the BASIC specifications.

PRINT#lfn,<variable list>

KERNAL ENTRIES:

CHKOUT ($FFC9) – See Memory Map for more information on entry

 and exit conditions.

CHROUT ($FFD2) – See Memory Map for more information on entry

 conditions.

354 INPUT/OUTPUT GUIDE

IMPORTANT NOTES: There is no carriage-return delay built into the output channel. This means

that a normal RS-232 printer cannot correctly print, unless some form of hold-off (asking the

Commodore 64 to wait) or internal buffering is implemented by the printer. The hold-off can

easily be implemented in your program. If a CTS (x-line) handshake is implemented, the

Commodore 64 buffer will fill, and then hold-off more output until transmission is allowed by the

RS-232 device. X-line handshaking is a handshake routine that uses multi-lines for receiving and

transmitting data.

The routine CHKOUT handles the x-line handshake, which follows the EIA standard (August 1979)

for RS-232-C interfaces. The RTS, CTS, and DCD lines are implemented with the Commodore 64

defined as the Data Terminal Device.

CLOSING AN RS-232 DATA CHANNEL

Closing an RS-232 file discards all data in the buffers at the time of execution

(whether or not it had been transmitted or printed out), stops all RS-232

transmitting and receiving, sets the RTS and transmitted data (Sout) lines high,

and removes both RS-232 buffers.

BASIC SYNTAX:

CLOSE lfn

KERNAL ENTRY:

CLOSE ($FFC3) – See Memory Map for more information on entry and exit

conditions.

NOTE: Care should be taken to ensure all data is transmitted before closing the channel. A way

to check this from BASIC is:

100 SS=ST: IF(SS=0 OR SS=8) THEN 100

110 CLOSE lfn

INPUT/OUTPUT GUIDE 355

Table 6-1. User-Port Lines

(6526 DEVICE #2 Loc. $DD00 to $DD0F)

PIN

ID

6526

ID
DESCRIPTION EIA ABV

IN/

OUT
MODES

C PB0 RECEIVED DATA (BB) Sin IN 1 2

D PB1 REQUEST TO SEND (CA) RTS OUT 1*2

E PB2 DATA TERMINAL READY (CD) DTR OUT 1*2

F PB3 RING INDICATOR (CE) RI IN 3

H PB4 RECEIVED LINE SIGNAL (CF) DCD IN 2

J PB5 UNASSIGNED () XXX IN 3

K PB6 CLEAR TO SEND (CB) CTS IN 2

L PB7 DATA SET READY (CC) DSR IN 2

B FLAG2 RECEIVED DATA (BB) Sin IN 1 2

M PA2 TRANSMITTED DATA (BA) Sout OUT 1 2

A GND PROTECTIVE GROUND (AA) GND 1 2

N GND SIGNAL GROUND (AB) GND 1 2 3

MODES:

1. 3-LINE INTERFACE (Sin, Sout, GND)

2. X-LINE INTERFACE

3. USER AVAILABLE ONLY (Unused/unimplemented in code.)

*These lines are held high during 3-LINE mode.

[7] [6] [5] [4] [3] [2] [1] [0] (Machine Language – RSSTAT)

: : : : : : : : PARITY ERROR BIT

: : : : : : : FRAMING ERROR BIT

: : : : : : RECEIVER BUFFER OVERRUN BIT

: : : : : RECEIVER BUFFER – EMPTY

 (USE TO TEST AFTER A GET#)

: : : : CTS SIGNAL MISSING BIT

: : : UNUSED BIT

: : DSR SIGNAL MISSING BIT

: BREAK DETECTED BIT

FIGURE 6-3. RS-232 STATUS REGISTER

356 INPUT/OUTPUT GUIDE

NOTES:

If the BIT=0, then no error has been detected.

The RS-232 status register can be read from BASIC using the variable ST.

If ST is read by BASIC or by using the KERNAL READST routine the RS-232 status word is cleared

when you exit. If multiple uses of the STATUS word are necessary the ST should be assigned to

another variable. For example:

SR=ST: REM ASSIGNS ST TO SR

The RS-232 status is read (and cleared) only when the RS-232 channel was the last external I/O

used.

SAMPLE BASIC PROGRAMS

10 REM THIS PROGRAM SENDS AND RECEIVES DATA TO/FROM A

SILENT 700

11 REM TERMINAL MODIFIED FOR PET ASCII

20 REM TI SILENT 700 SET-UP: 300 BAUD, 7-BIT ASCII, MARK

PARITY,

21 REM FULL DUPLEX

30 REM SAME SET-UP AT COMPUTER USING 3-LINE INTERFACE

100 OPEN 2,2,3,CHR$(6+32)+CHR$(32+128):REM OPEN THE

CHANNEL

110 GET#2,A$:REM TURN ON THE RECEIVER CHANNEL (TOSS A

NULL)

200 REM MAIN LOOP

210 GET B$:REM GET FROM COMPUTER KEYBOARD

220 IF B$<>"" THEN PRINT#2,B$;:REM IF A KEY PRESSED, SEND

TO TERMINAL

230 GET#2,C$:REM GET A KEY FROM THE TERMINAL

240 PRINT B$;C$;:REM PRINT ALL INPUTS TO COMPUTER SCREEN

250 SR=ST: IF SR=0 OR SR=8 THEN 200: REM CHECK STATUS, IF

GOOD THEN CONTINUE

300 REM ERROR REPORTING

310 PRINT "ERROR: ";

320 IF SR AND 1 THEN PRINT "PARITY"

330 IF SR AND 2 THEN PRINT "FRAME"

340 IF SR AND 4 THEN PRINT "RECEIVER BUFFER FULL"

350 IF SR AND 128 THEN PRINT "BREAK"

360 IF (PEEK(673) AND 1) THEN 360:REM WAIT UNTIL ALL CHARS

TRANSMITTED

370 CLOSE 2: END

INPUT/OUTPUT GUIDE 357

10 REM THIS PROGRAM SENDS AND RECEIVES TRUE ASCII DATA

100 OPEN 5,2,3,CHR$(6)

110 DIM F%(255),T%(255)

200 FOR J=32 TO 64:T%(J)=J:NEXT

210 T%(13)=13:T%(20)=8:RV=18:CT=0

220 FOR J=65 TO 90:K=J+32:T%=(J)=K:NEXT

230 FOR J=91 TO 95:T%(J)=J:NEXT

240 FOR J=193 TO 218:K=J-128:T%(J)=K:NEXT

250 T%(146)=16:T%(133)=16

260 FOR J=0 TO 255

270 K=T%(J)

280 IF K<>0THEN F%(K)=J:F%(K+128)=J

290 NEXT

300 PRINT" "CHR$(147)

310 GET#5,A$

320 IF A$=""OR ST<>0 THEN 360

330 PRINT" "CHR$(157);CHR$(F%(ASC(A$)));

340 IF F%(ASC(A$))=34 THEN POKE212,0

350 GOTO310

360 PRINTCHR$(RV)" "CHR$(157);CHR$(146);:GET A$

370 IF A$<>"" THEN PRINT#5,CHR$(T%(ASC(A$)));

380 CT=CT+1

390 IF CT=8 THENCT=0:RV=164-RV

410 GOTO310

RECEIVER/TRANSMITTER BUFFER BASE LOCATION POINTERS

$00F7–RIBUF – A two-byte pointer to the Receiver Buffer base location.

$00F9–ROBUF – A two-byte pointer to the Transmitter Buffer base location.

The two locations above are set up by the OPEN KERNAL routine, each pointing

to a different 256-byte buffer. They are de-allocated by writing a zero into the

high order bytes ($00F8 and $00FA), which is done by the CLOSE KERNAL entry.

They may also be allocated/de-allocated by the machine language

programmer for his/her own purposes, removing/creating only the buffer(s)

required. When using a machine language program that allocates these buffers,

care must be taken to make sure that the top of memory pointers stay correct,

especially if BASIC programs are expected to run at the same time.

358 INPUT/OUTPUT GUIDE

ZERO-PAGE MEMORY LOCATIONS AND USAGE
FOR RS-232 SYSTEM INTERFACE

$00A7–INBIT – Receiver input bit temp storage.

$00A8–BITCI – Receiver bit count in.

$00A9–RINONE – Receiver flag Start bit check.

$00AA–RIDATA – Receiver byte buffer/assembly location.

$00AB–RIPRTY – Receiver parity bit storage.

$00B4–BITTS – Transmitter bit count out.

$00B5–NXTBIT – Transmitter next bit to be sent.

$00B6–RODATA – Transmitter byte buffer/disassembly location.

All the above zero-page locations are used locally and are only given as a

guide to understand the associated routines. These cannot be used directly by

the BASIC or KERNAL level programmer to do RS-232 type things. The system

RS-232 routines must be used.

NONZERO-PAGE MEMORY LOCATIONS AND USAGE
FOR RS-232 SYSTEM INTERFACE

General RS-232 storage:

$0293–M51CTR – Pseudo 6551 control register (see Figure 6-1).

$0294–M51COR – Pseudo 6551 command register (see Figure 6-2).

$0295–M51AJB – Two bytes following the control and command registers in the

 file name field. These locations contain the baud rate for the

 start of the bit test during the interface activity, which, in turn,

 is used to calculate baud rate.

$0297–RSSTAT – The RS-232 status register (see Figure 6-3).

$0298–BITNUM – The number of bits to be sent/received.

$0299–BAUDOF – Two bytes that are equal to the time of one bit cell. (Based

 on system clock/baud rate.)

INPUT/OUTPUT GUIDE 359

$029B–RIDBE – The byte index to the end of the receiver FIFO buffer.

$029C–RIDBS – The byte index to the start of the receiver FIFO buffer.

$029D–RODBS – The byte index to the start of the transmitter FIFO buffer.

$029E–RODBE – The byte index to the end of the transmitter FIFO buffer.

$02A1–ENABL – Holds current active interrupts in the CIA #2 ICR. When bit 4

 is turned on means that the system is waiting for the Receiver

 Edge. When bit 1 is turned on then the system is receiving

 data. When bit 0 is turned on then the system is transmitting

 data.

THE USER PORT

The user port is meant to connect the Commodore 64 to the outside world. By

using the lines available at this port, you can connect the Commodore 64 to a

printer, a Votrax Type and Talk, a MODEM, even another computer.

The port on the Commodore 64 is directly connected to one of the 6526 CIA

chips. By programming, the CIA will connect to many other devices.

PORT PIN DESCRIPTION

360 INPUT/OUTPUT GUIDE

PORT PIN DESCRIPTION

PIN
DESCRIPTION NOTES

TOP SIDE

1 GROUND

2 +5V (100 mA MAX.)

3 RESET By grounding this pin, the Commodore 64

will do a COLD START, resetting completely.

The pointers to a BASIC program will be

reset, but memory will not be cleared. This is

also a RESET output for the external devices.

4 CNT1 Serial port counter from CIA #1 (SEE CIA

SPECS)

5 SP1 Serial port from CIA #1 (SEE 6526 CIA

SPECS)

6 CNT2 Serial port counter from CIA #2 (SEE CIA

SPECS)

7 SP2 Serial port from CIA #1 (SEE 6526 CIA

SPECS)

8 PC2 Handshaking line from CIA #2 (SEE CIA

SPECS)

9 SERIAL ATN This pin is connected to the ATN line of the

serial bus.

10 9 VAC+phase Connected directly to the Commodore 64

transformer (50 mA MAX.). 11 9 VAC–phase

12 GND

BOTTOM SIDE

A GND The Commodore 64 gives you control over

PORT B on CIA chip #1. Eight lines for input

or output are available, as well as 2 lines for

handshaking with an outside device. The I/O

lines for PORT B are controlled by two

locations. One is the PORT itself, and is

located at 56577 ($DD01 HEX). Naturally

you PEEK it to read an INPUT, or POKE it to

set an OUTPUT. Each of the eight I/O lines

can be set up as either an INPUT or an

OUTPUT by setting the DATA DIRECTION

REGISTER properly.

B FLAG2

C PB0

D PB1

E PB2

F PB3

H PB4

J PB5

K PB6

L PB7

M PA2

N GND

INPUT/OUTPUT GUIDE 361

The DATA DIRECTION REGISTER has its location at 56579 ($DD03 hex). Each

of the eight lines in the PORT has a BIT in the eight-bit DATA DIRECTION

REGISTER (DDR) which controls whether that line will be an input or an output. If

a bit in the DDR is a ONE, the corresponding line of the PORT will be an OUTPUT.

If a bit in the DDR is a ZERO, the corresponding line of the PORT will be an

INPUT. For example, if bit 3 of the DDR is set to 1, then line 3 of the PORT will

be an output. A further example:

If the DDR is set like this:

BIT #: 7 6 5 4 3 2 1 0
VALUE: 0 0 1 1 1 0 0 0

You can see that lines 5, 4 and 3 will be outputs since those bits are ones. The
rest of the lines will be inputs, since those lines are zeros.

To PEEK or POKE the USER port, it is necessary to use both the DDR and the PORT
itself.

Remember that the PEEK and POKE statements want a number from 0–255. The
numbers given in the example must be translated into decimal before they can
be used. The value would be:

25 + 24 + 23 = 32 + 16 + 8 = 56

Notice that the bit # for the DDR is the same number that = 2 raised to a power
to turn the bit value on.

(16 = 2↑4=2×2×2×2, 8 = 2↑3=2×2×2)

The two other lines, FLAG1 and PA2 are different from the rest of the USER

PORT. These two lines are mainly for HANDSHAKING, and are programmed

differently from port B.

Handshaking is needed when two devices communicate. Since one device may

run at a different speed than another device it is necessary to give the devices

some way of knowing what the other device is doing. Even when the devices are

operating at the same speed, handshaking is necessary to let the other know

when data is to be sent, and if it has been received. The FLAG1 line has special

characteristics which make it well suited for handshaking.

FLAG1 is a negative edge sensitive input which can be used as a general

purpose interrupt input. Any negative transition on the FLAG line will set the FLAG

interrupt bit. If the FLAG interrupt is enabled, this will cause an INTERRUPT

362 INPUT/OUTPUT GUIDE

REQUEST. If the FLAG bit is not enabled, it can be polled from the interrupt

register under program control.

PA2 is bit 2 of PORT A of the CIA. It is controlled like any other bit in the port.

The port is located at 56576 ($DD00). The data direction register is located at

56578 ($DD02.)

FOR MORE INFORMATION ON THE 6526 SEE THE CHIP SPECIFICATIONS IN

APPENDIX M.

THE SERIAL BUS

The serial bus is a daisy chain arrangement designed to let the Commodore 64

communicate with devices such as the VIC-1541 DISK DRIVE and the VIC-1525

GRAPHICS PRINTER. The advantage of the serial bus is that more than one

device can be connected to the port. Up to 5 devices can be connected to the

serial bus at one time.

There are three types of operation over a serial bus: CONTROL, TALK, and

LISTEN. A CONTROLLER device is one which controls operation of the serial bus.

A TALKER transmits data onto the bus. A LISTENER receives data from the bus.

The Commodore 64 is the controller of the bus. It also acts as a TALKER (when

sending data to the printer, for example) and as a LISTENER (when loading a

program from the disk drive, for example). Other devices may be either

LISTENERS (the printer), TALKERS, or both (the disk drive). Only the Commodore

64 can act as the controller.

All devices connected on the serial bus will receive all the data transmitted over

the bus. To allow the Commodore 64 to route data to its intended destination,

each device has a bus ADDRESS. By using this device address, the Commodore

64 can control access to the bus. Addresses on the serial bus range from 4 to 31.

The Commodore 64 can COMMAND a particular device to TALK or LISTEN.

When the Commodore 64 commands a device to TALK, the device will begin

putting data onto the serial bus. When the Commodore 64 commands a device

to LISTEN, the device addressed will get ready to receive data (from the

Commodore 64 or from another device on the bus). Only one device can TALK

on the bus at a time; otherwise, the data will collide and the system will crash in

confusion. However, any number of devices can LISTEN at the same time to one

TALKER.

INPUT/OUTPUT GUIDE 363

COMMON SERIAL BUS ADDRESSES

NUMBER DEVICE

4 or 5 VIC-1525 GRAPHIC PRINTER

8 VIC-1541 DISK DRIVE

Other device addresses are possible. Each device has its own address. Certain

devices (like the Commodore 64 printer) provide a choice between two

addresses for the convenience of the user.

The SECONDARY ADDRESS is to let the Commodore 64 transmit setup

information to a device. For example, to OPEN a connection on the bus to the

printer, and have it print in UPPER/LOWER case, use the following:

OPEN 1,4,7

where:

1 is the logical file number (the number you PRINT# to),

4 is the ADDRESS of the printer, and

7 is the SECONDARY ADDRESS that tells the printer to go into UPPER/LOWER

case mode.

There are 6 lines used in serial bus operation – 3 input and 3 output. The 3 input

lines bring data, control, and timing signals into the Commodore 64. The 3 output

lines send data, control, and timing signals from the Commodore 64 to external

devices on the serial bus.

SERIAL BUS PINOUTS

PIN DESCRIPTION

1 SERIAL SRQ IN

2 GND

3 SERIAL ATN IN/OUT

4 SERIAL CLK IN/OUT

5 SERIAL DATA IN/OUT

6 NO CONNECTION

364 INPUT/OUTPUT GUIDE

SERIAL SRQ IN: (SERIAL SERVICE REQUEST IN)

Any device on the serial bus can bring this signal LOW when it requires attention

from the Commodore 64. The Commodore 64 will then take care of the device.

(See Figure 6-4).

FIGURE 6-4. SERIAL

INPUT/OUTPUT GUIDE 365

SERIAL ATN IN/OUT: (SERIAL ATTENTION IN/OUT)

The Commodore 64 uses this signal to start a command sequence for a device

on the serial bus. When the Commodore 64 brings this signal LOW, all other

devices on the bus start listening for the Commodore 64 to transmit an address.

The device addressed must respond in a preset period of time; otherwise, the

Commodore 64 will assume that the device addressed is not on the bus, and will

return an error in the STATUS WORD. (See Figure 6-4).

SERIAL BUS TIMING
Description Symbol Min. Typ. Max.

ATN RESPONSE (REQUIRED)1 TAT — — 1000µS

LISTENER HOLD-OFF TH 0 — ∞

NON-EOI RESPONSE TO RFD2 TNE — 40µS 200µS

BIT SET-UP TALKER4 TS 20µS 70µS —

DATA VALID TV 20µS 20µS —

FRAME HANDSHAKE3 TF 0 20 1000µS

FRAME TO RELEASE OF ATN TR 20µS — —

BETWEEN BYTES TIME TBB 100µS — —

EOI RESPONSE TIME TYE 200µS 250µS —

EOI RESPONSE HOLD TIME5 TEI 60µS — —

TALKER RESPONSE LIMIT TRY 0 30µS 60µS

BYTE-ACKNOWLEDGE4 TPR 20µS 30µS —

TALK-ATTENTION RELEASE TTK 20µS 30µS 100µS

TALK-ATTENTION ACKNOWLEDGE TDC 0 — —

TALK-ATTENTION ACK. HOLD TDA 80µS — —

EOI ACKNOWLEDGE TFR 60µS — —

Notes:
1. If maximum time exceeded, device not present error.
2. If maximum time exceeded, EOI response required.
3. If maximum time exceeded, frame error.
4. TV and TPR minimum must be 60µS for external device to be a talker.
5. TEI minimum must be 80µS for external device to be a listener.

BUS TIMING.

366 INPUT/OUTPUT GUIDE

SERIAL CLK IN/OUT: (SERIAL CLOCK IN/OUT)

This signal is used for timing the data sent on the serial bus (See Figure 6-4).

SERIAL DATA IN/OUT:

Data on the serial bus is transmitted one bit at a time on this line (See Figure 6-
4).

THE EXPANSION PORT

The expansion connector is a 44-pin (22/22) female edge connector on the back
of the Commodore 64. With the Commodore 64 facing you, the expansion
connector is on the far right of the back of the computer. To use the connector, a
44-pin (22/22) male edge connector is required.

This port is used for expansions of the Commodore 64 system which require
access to the address bus or the data bus of the computer. Caution is necessary
when using the expansion bus, because it's possible to damage the Commodore
64 by a malfunction of your equipment.

The expansion bus is arranged as follows:

The signals available on the connector are as follows:

NAME PIN DESCRIPTION

GND 1 System ground

+5 VDC 2 (Total USER PORT and CARTRIDGE devices can draw no

more than 450 mA.) +5 VDC 3

IRQ 4 Interrupt Request line to 6502 (active low)

R/ W 5 Read/Write

DOT

CLOCK
6 8.18 MHz video dot clock

I/O1 7 I/O block 1 @ $DE00–$DEFF (active low) unbuffered I/O

GAME 8 active low ls ttl input

EXROM 9 active low ls ttl input

I/O2 10 I/O block 2 @ $DF00–$DFFF (active low) buffered ls ttl output

INPUT/OUTPUT GUIDE 367

NAME PIN DESCRIPTION

ROML 11
8K decoded RAM/ROM block @ $8000 (active low)

buffered ls ttl output

BA 12 Bus available signal from the VIC-II chip

unbuffered 1 Is load max.

DMA 13
Direct memory access request line (active low input)

ls ttl input

D7 14 Data bus bit 7

Unbuffered, 1 Is ttl load max

D6 15 Data bus bit 6

D5 16 Data bus bit 5

D4 17 Data bus bit 4

D3 18 Data bus bit 3

D2 19 Data bus bit 2

D1 20 Data bus bit 1

D0 21 Data bus bit 0

GND 22 System ground

GND A

ROMH B 8K decoded RAM/ROM block @ $E000 buffered

RESET C 6502 RESET pin (active low) buff'ed ttl out/unbuff'ed in

NMI D
6502 Non Maskable Interrupt (active low) buff'ed ttl out,
unbuff'ed in

φ2 E Phase 2 system clock
A15 F Address bus bit 15

A14 H Address bus bit 14
A13 J Address bus bit 13
A12 K Address bus bit 12
A11 L Address bus bit 11
A10 M Address bus bit 10
A9 N Address bus bit 9
A8 P Address bus bit 8 Unbuffered, 1 Is ttl load max
A7 R Address bus bit 7
A6 S Address bus bit 6
A5 T Address bus bit 5
A4 U Address bus bit 4
A3 V Address bus bit 3
A2 W Address bus bit 2
A1 X Address bus bit 1
A0 Y Address bus bit 0
GND Z System ground
Overbar means active low

368 INPUT/OUTPUT GUIDE

Following is a description of some important lines on the expansion port:

Pins 1, 22, A, Z are connected to the system ground.

Pin 6 is the DOT CLOCK. This is the 8.18-MHz video dot clock. All system timing

is derived from this clock.

Pin 12 is the BA (BUS AVAILABLE) signal from the VIC-II chip. This line will go low

3 cycles before the VIC-II takes over the system busses, and remains low until the

VIC-II is finished fetching display information.

Pin 13 is the DMA (DIRECT MEMORY ACCESS) line. When this line is pulled low,

the address bus, the data bus, and the Read/Write line of the 6510 processor

chip enter high-impedance state mode. This allows an external processor to take

control of the system busses. This line should only be pulled low when the φ2 clock

is low. Also, since the VIC-II chip will continue to perform display DMA, the

external device must conform to the VIC-II timing. (See VIC-II timing diagram.)

This line is pulled up on the Commodore 64.

Z-80 MICROPROCESSOR CARTRIDGE

Reading this book and using your computer has shown you just how versatile your

Commodore 64 really is. But what makes this machine even more capable of

meeting your needs is the addition of peripheral equipment. Peripherals are

things like Datasette™ recorders, disk drives, printers, and modems. All these

items can be added to your Commodore 64 through the various ports and sockets

on the back of your machine. The thing that makes Commodore peripherals so

good is the fact that our peripherals are "intelligent." That means that they don't

take up valuable Random Access Memory space when they're in use. You're free

to use all 64K of memory in your Commodore 64.

Another advantage of your Commodore 64 is the fact most programs you write

on your Commodore 64 today will be upwardly compatible with any new

Commodore computer you buy in the future. This is partially because of the

qualities of the computer's Operating System (OS).

However, there is one thing that the Commodore OS can't do: make your

programs compatible with a computer made by another company.

INPUT/OUTPUT GUIDE 369

Most of the time you won't even have to think about using another company's

computer, because your Commodore 64 is so easy to use. But for the occasional

user who wants to take advantage of software that may not be available in

Commodore 64 format we have created a Commodore CP/M® cartridge.

CP/M® is not a "computer dependent" operating system. Instead it uses some of

the memory space normally available for programming to run its own operating

system. There are advantages and disadvantages to this. The disadvantages are

that the programs you write will have to be shorter than the programs you can

write using the Commodore 64's built-in operating system. In addition, you can

NOT use the Commodore 64's powerful screen editing capabilities. The

advantages are that you can now use a large amount of software that has been

specifically designed for CP/M® and the Z-80 microprocessor, and the programs

that you write using the CP/M® operating system can be transported and run on

any other computer that has CP/M® and a Z-80 card.

By the way, most computers that have a Z-80 microprocessor require that you

go inside the computer to actually install a Z-80 card. With this method you have

to be very careful not to disturb the delicate circuitry that runs the rest of the

computer. The Commodore CP/M® cartridge eliminates this hassle because our

Z-80 cartridge plugs into the back of your Commodore 64 quickly and easily,

without any messy wires that can cause problems later.

USING COMMODORE CP/M®

The Commodore Z-80 cartridge lets you run programs designed for a Z-80

microprocessor on your Commodore 64. The cartridge is provided with a diskette

containing the Commodore CP/M® operating system.

RUNNING COMMODORE CP/M®

To run CP/M®:

1. LOAD the CP/M® program from your disk drive.

2. Type RUN.

3. Hit the RETURN key.

370 INPUT/OUTPUT GUIDE

At this point the 64K bytes of RAM in the Commodore 64 are accessible by the

built-in 6510 central processor, OR 48K bytes of RAM are available for the Z-

80 central processor. You can shift back and forth between these two processors,

but you can NOT use them at the same time in a single program. This is possible

because of your Commodore 64's sophisticated timing mechanism.

Below is the memory address translation that is performed on the Z-80 cartridge.

You should notice that by adding 4096 bytes to the memory locations used in

CP/M® $1000 (hex) you equal the memory addresses of the normal Commodore

64 operating system. The correspondence between Z-80 and 6510 memory

addresses is as follows:

Z-80 ADDRESSES 6510 ADDRESSES

DECIMAL HEX DECIMAL HEX

0000–4095 0000–0FFF 4096–8191 1000–1FFF

4096–8191 1000–1FFF 8192–12287 2000–2FFF

8192–12287 2000–2FFF 12288–16383 3000–3FFF

12288–16383 3000–3FFF 16384–20479 4000–4FFF

16384–20479 4000–4FFF 20480–24575 5000–5FFF

20480–24575 5000–5FFF 24576–28671 6000–6FFF

24576–28671 6000–6FFF 28672–32767 7000–7FFF

28672–32767 7000–7FFF 32768–36863 8000–SFFF

32768–36863 8000–8FFF 36864–40959 9000–9FFF

36864–40959 9000–9FFF 40960–45055 A000–AFFF

40960–45055 A000–AFFF 45056–49151 B000–BFFF

45056–49151 B000–BFFF 49152–53247 C000–CFFF

49152–53247 C000–CFFF 53248–57343 D000–DFFF

53248–57343 D000–DFFF 57344–61439 E000–EFFF

57344–61439 E000–EFFF 61440–65535 F000–FFFF

61440–65535 F000–FFFF 0000–4095 0000–0FFF

INPUT/OUTPUT GUIDE 371

To TURN ON the Z-80 and TURN OFF the 6510 chip, type in the following

program:

10 REM THIS PROGRAM IS TO BE USED WITH THE Z80 CARD

20 REM IT FIRST STORES Z80 DATA AT $1000 (Z80=$0000)

30 REM THEN IT TURNS OFF THE 6510 IRQ'S AND ENABLES

40 REM THE Z80 CARD. THE Z80 CARD MUST BE TURNED OFF

50 REM TO REENABLE THE 6510 SYSTEM.

100 REM STORE Z80 DATA

110 READ B: REM GET SIZE OF Z80 CODE TO BE MOVED

120 FOR I=4096 TO 4096+B-1:REM MOVE CODE

130 READ A:POKE I,A

140 NEXT I

200 REM RUN Z80 CODE

210 POKE 56333,127: REM TURN OFF 6510 IRQ'S

220 POKE 56832,00 : REM TURN ON Z80 CARD

230 POKE 56333,129: REM TURN ON 6510 IRQ'S WHEN Z80 DONE

240 END

1000 REM Z80 MACHINE LANGUAGE CODE DATA SECTION

1010 DATA 18 : REM SIZE OF DATA TO BE PASSED

1100 REM Z80 TURN ON CODE

1110 DATA 00,00,00 : REM OUR Z80 CARD REQUIRES TURN ON TIME

AT $0000

1200 REM Z80 TASK DATA HERE

1210 DATA 33,02,245: REM LD HL,NN (LOCATION ON SCREEN)

1220 DATA 52 : REM INC HL (INCREMENT THAT LOCATION)

1300 REM Z80 SELF-TURN OFF DATA HERE

1310 DATA 62,01 : REM LD A,N

1320 DATA 50,00,206 : REM LD (NN),A :I/O LOCATION

1330 DATA 00,00,00 : REM NOP, NOP, NOP

1340 DATA 195,00,00 : REM JMP $0000

For more details about Commodore CP/M® and the Z-80 microprocessor look

for the cartridge and the Z-80 Reference Guide at your local Commodore

computer dealer.

372 INPUT/OUTPUT GUIDE

APPENDICES

374 APPENDIX A

APPENDIX A

ABBREVIATIONS FOR BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commodore 64 BASIC
allows the user to abbreviate most keywords. The abbreviation for PRINT is a
question mark. The abbreviations for other words are made by typing the first
one or two letters of the word, followed by the SHIFTed next letter of the word.
If the abbreviations are used in a program line, the keyword will LIST in the full
form.

Command Abbreviation
Looks like

this
on screen

 Command Abbreviation
Looks like

this
on screen

ABS A SHIFT B A  GOTO G SHIFT O G 

AND A SHIFT N A  IF NONE IF

ASC A SHIFT S A  INPUT NONE INPUT

ATN A SHIFT T A  INPUT# I SHIFT N I 

CHR$ C SHIFT H C  INT NONE INT

CLOSE CL SHIFT O CL  LEFT$ LE SHIFT F LE 

CLR C SHIFT L C  LEN NONE LEN

CMD C SHIFT M C  LET L SHIFT E L 

CONT C SHIFT O C  LIST L SHIFT I L 

COS NONE COS LOAD L SHIFT O L 

DATA D SHIFT A D  LOG NONE LOG

DEF D SHIFT E D  MID$ M SHIFT I M 

DIM D SHIFT I D  NEW NONE NEW

END E SHIFT N E  NEXT N SHIFT E N 

EXP E SHIFT X E  NOT N SHIFT O N 

FN NONE FN ON NONE ON

FOR F SHIFT O F  OPEN O SHIFT P O 

FRE F SHIFT R F  OR NONE OR

GET G SHIFT E G  PEEK P SHIFT E P 

GET# NONE GET# POKE P SHIFT O P 

GOSUB GO SHIFT S GO  POS NONE POS

APPENDIX A 375

Command Abbreviation
Looks like

this
on screen

Command Abbreviation
Looks like

this
on screen

PRINT ? ? STATUS ST ST

PRINT# P SHIFT R P  STEP ST SHIFT E ST 

READ R SHIFT E R  STOP S SHIFT T S 

REM NONE REM STR$ ST SHIFT R ST 

RESTORE RE SHIFT S RE  SYS S SHIFT Y S 

RETURN RE SHIFT T RE  TAB(T SHIFT A T 

RIGHT$ R SHIFT I R  TAN NONE TAN

RND R SHIFT N R  THEN T SHIFT H T 

RUN R SHIFT U R  TIME TI TI

SAVE S SHIFT A S  TIME$ TI$ TI$

SGN S SHIFT G S  USR U SHIFT S U 

SIN S SHIFT I S  VAL V SHIFT A V 

SPC(S SHIFT P S  VERIFY V SHIFT E V 

SQR S SHIFT Q S  WAIT W SHIFT A W 

376 APPENDIX B

APPENDIX B

SCREEN DISPLAY CODES

The following chart lists all of the characters built into the Commodore 64
character sets. It shows which numbers should be POKEd into screen memory
(locations 1024 – 2023) to get a desired character. Also shown is which
character corresponds to a number PEEKed from the screen.

Two character sets are available, but only one set at a time. This means that you
cannot have characters from one set on the screen at the same time you have
characters from the other set displayed. The sets are switched by holding down
the SHIFT and  keys simultaneously.

From BASIC, POKE 53272,21 will switch to upper case mode and POKE
53272,23 switches to lower case.

Any number on the chart may also be displayed in REVERSE. The reverse
character code may be obtained by adding 128 to the values shown.

If you want to display a solid circle at location 1504, POKE the code for the
circle (81) into location 1504: POKE 1504,81.

There is a corresponding memory location to control the color of each character
displayed on the screen (locations 55296–56295). To change the color of the
circle to yellow (color code 7) you would POKE the corresponding memory
location (55776) with the character color: POKE 55776,7.

Refer to Appendix D for the complete screen and color memory maps, along
with color codes.

NOTE: The following POKEs display the same symbol in set 1 and 2: 1, 27 to 64, 91 to 93, 96
to 104, 106 to 121, 123 to 127.

APPENDIX B 377

SCREEN CODES

SET1 SET2 POKE SET1 SET2 POKE SET1 SET2 POKE

@ 0 ! 33  B 66

A a 1 " 34  C 67

B b 2 # 35  D 68

C c 3 $ 36  E 69

D d 4 % 37  F 70

E e 5 & 38  G 71

F f 6 ‘ 39  H 72

G g 7 (40  I 73

H h 8) 41  J 74

I i 9 * 42  K 75

J j 10 + 43  L 76

K k 11 , 44  M 77

L l 12 – 45  N 78

M m 13 . 46  O 79

N n 14 / 47  P 80

O o 15 0 48  Q 81

P p 16 1 49  R 82

Q q 17 2 50  S 83

R r 18 3 51  T 84

S s 19 4 52  U 85

T t 20 5 53  V 86

U u 21 6 54  W 87

V v 22 7 55  X 88

W w 23 8 56  Y 89

X x 24 9 57  Z 90

Y y 25 : 58  91

Z z 26 ; 59  92

[27 < 60  93

£ 28 = 61   94

] 29 > 62   95

↑ 30 ? 63 SPACE 96

← 31  64  97

SPACE 32 A 65  98

378 APPENDIX B

SET1 SET2 POKE SET1 SET2 POKE SET1 SET2 POKE

 99  109  119

 100  110  120

 101  111  121

 102  112   122

 103  113  123

 104  114  124

  105  115  125

 106  116  126

 107  117  127

 108  118

Codes from 128 to 255 are reversed images of codes 0 to 127.

APPENDIX C 379

APPENDIX C

ASCII AND CHR$ CODES

This appendix shows you what characters will appear if you PRINT CHR$(X), for
all possible values of X. It will also show the values obtained by typing PRINT
ASC("x"), where x is any character you can type. This is useful in evaluating the
character received in a GET statement, converting upper/lower case, and
printing character based commands (like switch to upper/lower case) that could
not be enclosed in quotes.

PRINT CHR$ PRINT CHR$ PRINT CHR$ PRINT CHR$

 0 CRSR↓ 17 " 34 3 51

 1
RVS
ON 18 # 35 4 52

 2
CLR

HOME 19 $ 36 5 53

 3
INST
DEL 20 % 37 6 54

 4 21 & 38 7 55

WHT 5 22 ‘ 39 8 56

 6 23 (40 9 57

 7 24) 41 : 58

DISABLES SHIFT  8 25 * 42 ; 59

ENABLES SHIFT  9 26 + 43 < 60

 10 27 , 44 = 61

 11 RED 28 – 45 > 62

 12 CRSR→ 29 . 46 ? 63

RETURN 13 GRN 30 / 47 @ 64

SWITCH TO
LOWER CASE 14 BLU 31 0 48 A 65

 15 SPACE 32 1 49 B 66

 16 ! 33 2 50 C 67

380 APPENDIX C

PRINT CHR$ PRINT CHR$ PRINT CHR$ PRINT CHR$

D 68  97  126 Gray 3 155

E 69  98  127 PUR 156

F 70  99 128 ←CRSR 157

G 71  100 Orange 129 YEL 158

H 72  101 130 CYN 159

I 73  102 131 SPACE 160

J 74  103 132  161

K 75  104 f1 133  162

L 76  105 f3 134  163

M 77  106 f5 135  164

N 78  107 f7 136  165

O 79  108 f2 137  166

P 80  109 f4 138  167

Q 81  110 f6 139  168

R 82  111 f8 140  169

S 83  112 SHIFT RETURN 141  170

T 84  113 SWITCH TO
UPPER CASE 142  171

U 85  114 143  172

V 86  115 BLK 144  173

W 87  116 CRSR↑ 145  174

X 88  117
RVS
OFF 146  175

Y 89  118
CLR

HOME 147  176

Z 90  119
INST
DEL 148  177

[91  120 Brown 149  178

£ 92  121 Lt Red 150  179

] 93  122 Gray 1 151  180

↑ 94  123 Gray 2 152  181

← 95  124 Lt Green 153  182

 96  125 Lt Blue 154  183

APPENDIX C 381

PRINT CHR$ PRINT CHR$ PRINT CHR$ PRINT CHR$

 184  186  188  190

 185  187  189  191

CODES 192 to 223 SAME AS 96 to 127

CODES 224 to 254 SAME AS 160 to 190

CODE 225 SAME AS 126

382 APPENDIX D

APPENDIX D

SCREEN AND COLOR MEMORY MAPS

The following charts list which memory locations control placing characters on the
screen, and the locations used to change individual character colors, as well as
showing character color codes.

SCREEN MEMORY MAP

0 10 20 30 39

↓

1024 → 0

1064

1104

1144

1184

1224

1264

1304

1344

1384

1424 10

1464

1504

1544

1584

1624

1664

1704

1744

1784

1824 20

1864

1904

1944

1984 24

↑

1063

2023

COLUMN

R
O

W

APPENDIX D 383

The actual values to POKE into a color memory location to change a character's
color are:

0 BLACK 8 ORANGE
1 WHITE 9 BROWN
2 RED 10 Light RED
3 CYAN 11 GRAY 1
4 PURPLE 12 GRAY 2
5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE
7 YELLOW 15 GRAY 3

For example, to change the color of a character located at the upper left-hand
corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

0 10 20 30 39

↓

55296 → 0

55336

55376

55416

55456

55496

55536

55576

55616

55656

55696 10

55736

55776

55816

55856

55896

55936

55976

56016

56056

56096 20

56136

56176

56216

56256 24

↑

55335

56295

COLUMN

R
O

W

384 APPENDIX E

APPENDIX E

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, and the values
to be POKED into the HI FREQ and LOW FREQ registers of the sound chip to
produce the indicated note. The table shows values based on both a φ2 clock of
1.02 MHz (shown as NTSC) and 0.985 MHz (shown as PAL).

MUSICAL NOTE OSCILLATOR FREQ (NTSC) OSCILLATOR FREQ (PAL)

NOTE OCTAVE DECIMAL HI LOW DECIMAL HI LOW

0 C-0 268 1 12 278 1 22

1 C#-0 284 1 28 294 1 38

2 D-0 301 1 45 312 1 56

3 D#-0 318 1 62 331 1 75

4 E-0 337 1 81 350 1 94

5 F-0 358 1 102 371 1 115

6 F#-0 379 1 123 393 1 137

7 G-0 401 1 145 417 1 161

8 G#-0 425 1 169 441 1 185

9 A-0 451 1 195 468 1 212

10 A#-0 477 1 221 496 1 240

11 B-0 506 1 250 525 2 13

16 C-1 536 2 24 556 2 44

17 C#-1 568 2 56 589 2 77

18 D-1 602 2 90 625 2 113

19 D#-1 637 2 125 662 2 150

20 E-1 675 2 163 701 2 189

21 F-1 716 2 204 743 2 231

22 F#-1 758 2 246 787 3 19

23 G-1 803 3 35 834 3 66

24 G#-1 851 3 83 883 3 115

25 A-1 902 3 134 936 3 168

26 A#-1 955 3 187 992 3 224

27 B-1 1012 3 244 1051 4 27

32 C-2 1072 4 48 1113 4 89

APPENDIX E 385

MUSICAL NOTE OSCILLATOR FREQ (NTSC) OSCILLATOR FREQ (PAL)

NOTE OCTAVE DECIMAL HI LOW DECIMAL HI LOW

33 C#-2 1136 4 112 1179 4 155

34 D-2 1204 4 180 1250 4 226

35 D#-2 1275 4 251 1324 5 44

36 E-2 1351 5 71 1403 5 123

37 F-2 1432 5 152 1486 5 206

38 F#-2 1517 5 237 1575 6 39

39 G-2 1607 6 71 1668 6 132

40 G#-2 1703 6 167 1767 6 231

41 A-2 1804 7 12 1873 7 81

42 A#-2 1911 7 119 1984 7 192

43 B-2 2025 7 233 2102 8 54

48 C-3 2145 8 97 2227 8 179

49 C#-3 2273 8 225 2359 9 55

50 D-3 2408 9 104 2500 9 196

51 D#-3 2551 9 247 2649 10 89

52 E-3 2703 10 143 2806 10 246

53 F-3 2864 11 48 2973 11 157

54 F#-3 3034 11 218 3150 12 78

55 G-3 3215 12 143 3337 13 9

56 G#-3 3406 13 78 3535 13 207

57 A-3 3608 14 24 3746 14 162

58 A#-3 3823 14 239 3969 15 129

59 B-3 4050 15 210 4205 16 109

64 C-4 4291 16 195 4455 17 103

65 C#-4 4547 17 195 4719 18 111

66 D-4 4817 18 209 5000 19 136

67 D#-4 5103 19 239 5298 20 178

68 E-4 5407 21 31 5613 21 237

69 F-4 5728 22 96 5946 23 58

70 F#-4 6069 23 181 6300 24 156

71 G-4 6430 25 30 6675 26 19

72 G#-4 6812 26 156 7071 27 159

73 A-4 7217 28 49 7492 29 68

74 A#-4 7647 29 223 7938 31 2

75 B-4 8101 31 165 8410 32 218

80 C-5 8583 33 135 8910 34 206

81 C#-5 9094 35 134 9439 36 223

386 APPENDIX E

MUSICAL NOTE OSCILLATOR FREQ (NTSC) OSCILLATOR FREQ (PAL)

NOTE OCTAVE DECIMAL HI LOW DECIMAL HI LOW

82 D-5 9634 37 162 10001 39 17

83 D#-5 10207 39 223 10596 41 100

84 E-5 10814 42 62 11226 43 218

85 F-5 11457 44 193 11893 46 117

86 F#-5 12139 47 107 12600 49 56

87 G-5 12860 50 60 13350 52 38

88 G#-5 13625 53 57 14143 55 63

89 A-5 14435 56 99 14985 58 137

90 A#-5 15294 59 190 15876 62 4

91 B-5 16203 63 75 16820 65 180

96 C-6 17167 67 15 17820 69 156

97 C#-6 18188 71 12 18879 73 191

98 D-6 19269 75 69 20002 78 34

99 D#-6 20415 79 191 21192 82 200

100 E-6 21629 84 125 22452 87 180

101 F-6 22915 89 131 23787 92 235

102 F#-6 24278 94 214 25201 98 113

103 G-6 25721 100 121 26700 104 76

104 G#-6 27251 106 115 28287 110 127

105 A-6 28871 112 199 29970 117 18

106 A#-6 30588 119 124 31752 124 8

107 B-6 32407 126 151 33640 131 104

112 C-7 34334 134 30 35640 139 56

113 C#-7 36376 142 24 37759 147 127

114 D-7 38539 150 139 40005 156 69

115 D#-7 40830 159 126 42384 165 144

116 E-7 43258 168 250 44904 175 104

117 F-7 45830 179 6 47574 185 214

118 F#-7 48556 189 172 50403 196 227

119 G-7 51443 200 243 53400 208 152

120 G#-7 54502 212 230 56575 220 255

121 A-7 57743 225 143 59940 234 36

122 A#-7 61176 238 248 63504 248 16

123 B-7 64814 253 46 – – –

APPENDIX E 387

FILTER SETTINGS

Location Contents

54293 Low cutoff frequency (0 – 7)

54294 High cutoff frequency (0 – 255)

54295 Resonance (bits 4 – 7)
Filter Voice 3 (bit 2)
Filter Voice 2 (bit 1)
Filter Voice 1 (bit 0)

54296 High Pass (bit 6)
Bandpass (bit 5)
Low pass (bit 4)
Volume (bits 0 – 3)

388 APPENDIX F

APPENDIX F

BIBLIOGRAPHY

ISBN TITLE AUTHOR

Publisher: Addison-Wesley

9780201015898 BASIC and the Personal
Computer

Dwyer, Thomas A.;
Critchfield, Margot

Publisher: Compute! Books

9780942386011 Compute!'s First Book Of
PET/CBM

Lock, Robert

9780942386042 Programming the PET/CBM West, Raeto C.

Publisher: Cow Bay Computing

 Feed Me, I'm Your PET
Computer

Alexander, Carole

 Looking Good with Your PET Alexander, Carole

 Teacher's PET – Plans,
Quizzes, and Answers

Publisher: Creative Computing

9780916688288 Getting Acquainted With Your
VIC-20

Hartnell, Tim

Publisher: Dilithium Press

9780918398253 32 BASIC Programs for the
PET Computer

Rugg, Tom;
Feldman, Phil

Publisher: Hayden Books

9780810455344 BASIC Conversions
Handbook for Apple TRS-80
and PET Users

Brain, David A.;
Oviate, Philip R.;
Paquin, Paul J.A.;
Stone Jr, Chandler
D.

9780810457607 BASIC From The Ground Up Simon, David E

9780810410503 Library of PET Subroutines Hampshire, Nick

APPENDIX F 389

Publisher: Little, Brown

9780876261477 The Computer Tutor: Learning
Activities For Homes and
Schools

Orwig, Gary W.;
Hodges, W.

Publisher: McGraw-Hill Osborne Media

9780931988752 CBM Professional Computer
Guide

Osborne, Adam

9780070491571 Hands-On BASIC with a PET Peckham, Herbert
D.

9780931988820 Osborne CP/M User Guide Hogan, Thom

9780931988318 PET and the IEEE 488 Bus
(GPIB)

E. R Fisher; C W
Jensen

9780931988707 PET Fun And Games Jeffries, Ron;
Fisher, Glen

9780931988554 PET/CBM Personal Computer
Guide

Osborne, Adam

9780931988400 Some Common BASIC
Programs: Commodore
PET/CBM Edition

Poole, Lon

9780931988295 The 8086 Book Rector, Russell

9780931988509 VisiCalc: Home and Office
Companion

Castlewitz, D.M.

Publisher: MOS Technology Inc.

 MCS6500 Microcomputer
Family Hardware Manual

MOS Technology
Inc.

Publisher: Prentice Hall

9780136617693 PET/CBM BASIC Haskell, Richard E

9780136618355 The PET Personal Computer
for Beginners

Dunn, Seamus

9780835983839 VIC Games and Recreations Camora, Dorothy

Publisher: Reston Publishing

9780835955256 PET BASIC: Training Your PET
Computer

Zamora, Ramon

390 APPENDIX F

9780835955300 PET Games and Recreations Oglesby, Mac.;
Lindsay, Len.;
Kunkin, Dorothy B.

Publisher: Sams Publishing

9780672219856 The Howard W. Sams Crash
Course In Microcomputers

Frenzel, Louis E.

9780810461864 I Speak BASIC To My PET Jones, A

9780672217906 Mostly BASIC: Applications
for your PET

Berenbon, Howard

9780810410510 PET Graphics Hampshire, Nick

9780672217951 PET Interfacing Downey, James M

9780672219481 VIC 20 Programmer's
Reference Guide

Finkel, A;
Higginbottom, P;
Harris, N; Tomczyk,
M

Publisher: Tab Books

9780830615216 Basic, BASIC-English
Dictionary for the Apple, PET,
and TRS-80

Noonan, Larry

Publisher: Total Information Services

 Understanding Your PET/CBM

 Understanding Your VIC Schultz, David

Publisher: Winthrop Publishers

9780876261668 Computer Games for
Businesses, Schools, and
Homes

Nahigian, J. Victor

Commodore Magazines provide you with the most up-to-date information for
your Commodore 64. Two of the most popular publications that you should
seriously consider subscribing to are:

COMMODORE – The Microcomputer Magazine is published bimonthly and is
available by subscription ($15.00 per year, U.S., and $25.00 per year,
worldwide).

POWER/PLAY – The Home Computer Magazine is, published quarterly and is
available by subscription ($10.00 per year, U.S., and $15.00 per year
worldwide).

APPENDIX G 391

APPENDIX G

VIC CHIP REGISTER MAP

53248 ($D000) Starting (Base) Address

Register #
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Dec Hex

0 0 S0X7 S0X0
SPRITE 0 X
Component

1 1 S0Y7 S0Y0
SPRITE 0 Y
Component

2 2 S1X7 S1X0 SPRITE 1 X

3 3 S1Y7 S1Y0 SPRITE 1 Y

4 4 S2X7 S2X0 SPRITE 2 X

5 5 S2Y7 S2Y0 SPRITE 2 Y

6 6 S3X7 S3X0 SPRITE 3 X

7 7 S3Y7 S3Y0 SPRITE 3 Y

8 8 S4X7 S4X0 SPRITE 4 X

9 9 S4Y7 S4Y0 SPRITE 4 Y

10 A S5X7 S5X0 SPRITE 5 X

11 B S5Y7 S5Y0 SPRITE 5 Y

12 C S6X7 S6X0 SPRITE 6 X

13 D S6Y7 S6Y0 SPRITE 6 Y

14 E S7X7 S7X0
SPRITE 7 X
Component

15 F S7Y7 S7Y0
SPRITE 7 Y
Component

16 10 S7X8 S6X8 S5X8 S4X8 S3X8 S2X8 S1X8 S0X8
MSB of X
COORD.

17 11 RC8 ECM BMM BLNK RSEL YSCL2 YSCL1 YSCL0
Y SCROLL
MODE

18 12 RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 RASTER

19 13 LPX7 LPX0
LIGHT PEN
X

20 14 LPY7 LPY0
LIGHT PEN
Y

392 APPENDIX G

Register #
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Dec Hex

21 15 SE7 SE0
SPRITE
ENABLE
ON/OFF

22 16 N.C. N.C. RST MCM CSEL XSCL2 XSCL1 XSCL0
X SCROLL
MODE

23 17 SEXY7 SEXY0
SPRITE
EXPAND Y

24 18 VS13 VS12 VS11 VS10 CB13 CB12 CB11 N.C.
SCREEN
Character
Memory

25 19 IRQ N.C. N.C. N.C. LPIRQ ISSC ISBC RIRQ
Interrupt
Requests

26 1A N.C. N.C. N.C. N.C. MLPI MISSC MISBC MRIRQ
Interrupt
Requests
MASKS

27 1B BSP7 BSP0
Background
Sprite
Priority

28 1C SCM7 SCM0
Multicolor
Sprite Select

29 1D SEXX7 SEXX0
SPRITE
EXPAND X

30 1E SSC7 SSC0
Sprite-Sprite
Collision

31 1F SBC7 SBC0
Sprite-
Background
COLLISION

APPENDIX G 393

REGISTER # REGISTER #
DEC HEX COLOR DEC HEX COLOR
32 20 BORDER COLOR 39 27 SPRITE 0 COLOR
33 21 BACKROUND COLOR 0 40 28 SPRITE 1 COLOR
34 22 BACKROUND COLOR 1 41 29 SPRITE 2 COLOR
35 23 BACKROUND COLOR 2 42 2A SPRITE 3 COLOR
36 24 BACKROUND COLOR 3 43 2B SPRITE 4 COLOR
37 25 SPRITE MULTICOLOR 0 44 2C SPRITE 5 COLOR
38 26 SPRITE MULTICOLOR 1 45 2D SPRITE 6 COLOR
 46 2E SPRITE 7 COLOR

COLOR CODES

DEC HEX COLOR DEC HEX COLOR
0 0 BLACK 8 8 ORANGE
1 1 WHITE 9 9 BROWN
2 2 RED 10 A LIGHT RED
3 3 CYAN 11 B GRAY 1
4 4 PURPLE 12 C GRAY 2
5 5 GREEN 13 D LIGHT GREEN
6 6 BLUE 14 E LIGHT BLUE
7 7 YELLOW 15 F GRAY 3

LEGEND:
ONLY COLORS 0 to 7 MAY BE USED IN MULTICOLOR CHARACTER MODE.

394 APPENDIX H

APPENDIX H

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to Commodore 64 BASIC may be calculated as
follows:

FUNCTION BASIC EQUIVALENT

SECANT SEC(X)=1/COS(X)

COSECANT CSC(X)=1/SIN(X)

COTANGENT COT(X)=1/TAN(X)

INVERSE SINE ARCSIN(X)=ATN(X/SQR(–X*X+1))

INVERSE COSINE ARCCOS(X)=–ATN(X/SQR

(–X*X+1))+ππππ/2

INVERSE SECANT ARCSEC(X)= ATN(SQR(X*X–

1))+(SGN(X)–1)*ππππ/2

INVERSE COSECANT ARCSEC(X)= ATN(1/SQR(X*X–

1))+(SGN(X)–1)*ππππ/2

INVERSE COTANGENT ARCOT(X)=ATN(–X)+ππππ/2

HYPERBOLIC SINE SINH(X)=(EXP(X)–EXP(–X))/2

HYPERBOLIC COSINE COSH(X)=(EXP(X)+EXP(–X))/2

HYPERBOLIC TANGENT TANH(X)=(EXP(X)–EXP(–
X))/(EXP(X)+EXP(–X))

HYPERBOLIC SECANT SECH(X)=2/(EXP(X)+EXP(–X))

HYPERBOLIC COSECANT CSCH(X)=2/(EXP(X)–EXP(–X))

HYPERBOLIC COTANGENT COTH(X)=EXP(–X)/(EXP(X)
–EXP(–X))*2+1

INVERSE HYPERBOLIC SINE ARCSINH(X)=LOG(X+SQR(X*X+1))

INVERSE HYPERBOLIC COSINE ARCCOSH(X)=LOG(X+SQR(X*X–1))

INVERSE HYPERBOLIC TANGENT ARCTANH(X)=LOG((1+X)/(1–X))/2

INVERSE HYPERBOLIC SECANT ARCSECH(X)= LOG((1+SQR(1–
X*X))/X)

INVERSE HYPERBOLIC COSECANT ARCCSCH(X)=LOG((SGN(X)+SQR(
X*X+1))/X)

INVERSE HYPERBOIC COTANGENT ARCCOTH(X)= LOG((SQR(X*X–
1))/(X–1))

APPENDIX I 395

APPENDIX I

PINOUTS FOR INPUT/OUTPUT DEVICES

This appendix is designed to show you what connections may be made to the
Commodore 64.

1) Game I/O 5) Modulator Output

2) Cartridge Slot 6) Cassette

3) Audio/Video 7) User Port

4) Serial I/O (Disk/Printer)

Control Port 1

Pin Type Note

1 JOYA0

2 JOYA1

3 JOYA2

4 JOYA3

5 POT AY

6 BUTTON A/LP

7 +5V MAX. 50mA

8 GND

9 POT AX

Control Port 2

Pin Type Note

1 JOYB0

2 JOYB1

3 JOYB2

4 JOYB3

5 POT BY

6 BUTTON B

7 +5V MAX. 50mA

8 GND

9 POT BX

396 APPENDIX I

Cartridge Expansion Slot

Pin Type Pin Type Pin Type Pin Type
1 GND 12 BA A GND N A9
2 +5V 13 DMA B ROMH P A8
3 +5V 14 D7 C RESET R A7
4 IRQ 15 D6 D NMI S A6
5 R/W 16 D5 E S02 T A5
6 Dot Clock 17 D4 F A15 U A4
7 I/O 1 18 D3 H A14 V A3
8 GAME 19 D2 J A13 W A2
9 EXROM 20 D1 K A12 X A1
10 I/O 2 21 D0 L A11 Y A0
11 ROML 22 GND M A10 Z GND

Audio/Video

Pin Type

1 LUMINANCE

2 GND

3 AUDIO OUT

4 VIDEO OUT

5 AUDIO IN

Serial I/O

Pin Type

1 SERIAL SRQIN

2 GND

3 SERIAL ATN IN/OUT

4 SERIAL CLK IN/OUT

5 SERIAL DATA IN/OUT

6 RESET

APPENDIX I 397

Cassette

Pin Type

A-1 GND

B-2 +5V

C-3 Cassette Motor

D-4 Cassette Read

E-5 Cassette Write

F-6 Cassette Sense

User I/O

Pin Type Note
1 GND
2 +5V MAX. 100mA
3 RESET
4 CNTI
5 SP1
6 CNT2
7 SP2
8 PC2
9 SER. ATN IN

10 9 VAC MAX. 100mA
11 9 VAC MAX. 100mA
12 GND

Pin Type Note
A GND
B FLAG2
C PB0
D PB1
E PB2
F PB3
H PB4
J PB5
K PB6
L PB7
M PA2
N GND

398 APPENDIX J

APPENDIX J

CONVERTING STANDARD BASIC PROGRAMS TO
COMMODORE 64 BASIC

If you have programs written in a BASIC other than Commodore BASIC, some
minor adjustments may be necessary before running them on the Commodore
64. We've included some hints to make the conversion easier.

String Dimensions

Delete all statements that are used to declare the length of strings. A statement
such as DIM A$(I,J), which dimensions a string array for J elements of length
I, should be converted to the Commodore BASIC statement DIM A$(J).

Some BASICs use a comma or an ampersand for string concatenation. Each of
these must be changed to a plus sign, which is the Commodore BASIC operator
for string concatenation.

In Commodore-64 BASIC, the MID$, RIGHT$, and LEFT$ functions are used
to take substrings of strings. Forms such as A$(I) to access the Ith character in
A$, or A$(I,J) to take a substring of A$ from position I to J, must be changed
as follows:

Other BASIC Commodore 64 BASIC

A$(I) = X$ A$ = LEFT$(A$,I–1)+X$+MID$(A$,I+1)
A$(I,J)=X$ A$=LEFT$(A$,I–1)+X$+MID$(A$,J+1)

Multiple Assignments

To set B and C equal to zero, some BASICs allow statements of the form:

10 LET B=C=0

Commodore 64 BASIC would interpret the second equal sign as a logical
operator and set B = –1 if C = 0. Instead, convert this statement to:

10 C=0 : B=0

APPENDIX J 399

Multiple Statements

Some BASICs use a backslash (\) to separate multiple statements on a line. With
Commodore 64 BASIC, separate all statements by a colon (:).

MAT Functions

Programs using the MAT functions available on some BASICs must be rewritten
using FOR… NEXT loops to execute properly.

400 APPENDIX K

APPENDIX K

ERROR MESSAGES

This appendix contains a complete list of the error messages generated by
the Commodore 64, with a description of causes.

BAD DATA String data was received from an open file, but the
program was expecting numeric data.

BAD SUBSCRIPT The program was trying to reference an element of
an array whose number is outside of the range
specified in the DIM statement.

BREAK Program execution was stopped because you hit
the RUN/STOP key.

CAN'T CONTINUE The CONT command will not work, either because
the program was never RUN, there has been an
error, or a line has been edited.

DEVICE NOT
PRESENT

The required I/O device was not available for an
OPEN, CLOSE, CMD, PRINT#, INPUT#, or GET#.

DIVISION BY ZERO Division by zero is a mathematical oddity and not
allowed.

EXTRA IGNORED Too many items of data were typed in response to
an INPUT statement. Only the first few items were
accepted.

FILE NOT FOUND If you were looking for a file on tape, and END-OF-
TAPE marker was found. If you were looking on disk,
no file with that name exists.

FILE NOT OPEN The file specified in a CLOSE, CMD, PRINT#,
INPUT#, or GET#, must first be OPENed.

FILE OPEN An attempt was made to open a file using the
number of an already open file.

FORMULA TOO
COMPLEX

The string expression being evaluated should be
split into at least two parts for the system to work
with, or a formula has too many parentheses.

ILLEGAL DIRECT The INPUT statement can only be used within a
program, and not in direct mode.

ILLEGAL QUANTITY A number used as the argument of a function or
statement is out of the allowable range.

APPENDIX K 401

LOAD There is a problem with the program on tape.

NEXT WITHOUT FOR This is caused by either incorrectly nesting loops or
having a variable name in a NEXT statement that
doesn't correspond with one in a FOR statement.

NOT INPUT FILE An attempt was made to INPUT or GET data from a
file which was specified to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT data to a file which
was specified as input only.

OUT OF DATA A READ statement was executed but there is no data
left unREAD in a DATA statement.

OUT OF MEMORY There is no more RAM available for program or
variables. This may also occur when too many FOR
loops have been nested, or when there are too many
GOSUBs in effect.

OVERFLOW The result of a computation is larger than the largest
number allowed, which is 1.70141183E+38.

REDIM'D ARRAY An array may only be DIMensioned once. If an
array variable is used before that array is DIM'd,
an automatic DIM operation is performed on that
array setting the number of elements to ten, and
any subsequent DIMs will cause this error.

REDO FROM START Character data was typed in during an INPUT
statement when numeric data was expected. Just
re-type the entry so that it is correct, and the
program will continue by itself.

RETURN WITHOUT
GOSUB

A RETURN statement was encountered, and no
GOSUB command has been issued.

STRING TOO LONG A string can contain up to 255 characters.

?SYNTAX ERROR A statement is unrecognizable by the Commodore
64. A missing or extra parenthesis, misspelled
keywords, etc.

TYPE MISMATCH This error occurs when a number is used in place of
a string, or vice-versa.

UNDEF'D FUNCTION A user defined function was referenced, but it has
never been defined using the DEF FN statement.

UNDEF'D
STATEMENT

An attempt was made to GOTO or GOSUB or RUN
a line number that doesn't exist.

VERIFY The program on tape or disk does not match the
program currently in memory.

402 APPENDIX L

APPENDIX L

6510 MICROPROCESSOR CHIP

SPECIFICATIONS

DESCRIPTION

The 6510 is a low-cost microcomputer system capable of solving a broad range
of small-systems and peripheral-control problems at minimum cost to the user.

An 8-bit Bi-Directional I/O Port is located on-chip with the Output Register at
Address $0000 and the Data-Direction Register at Address $0001. The I/O Port
is bit-by-bit programmable.

The Three-State sixteen-bit Address Bus allows Direct Memory Accessing (DMA)
and multiprocessor systems sharing a common memory.

The internal processor architecture is identical to the MOS Technology 6502 to
provide software compatibility.

FEATURES OF THE 6510…

 Eight-Bit Bi-Directional I/O Port
 Single +5 volt supply
 N-channel, silicon gate, depletion load technology
 Eight-bit parallel processing
 56 Instructions
 Decimal and binary arithmetic
 Thirteen addressing modes
 True indexing capability
 Programmable stack pointer
 Variable length stack
 Interrupt capability
 Eight-Bit Bi-Directional Data Bus
 Addressable memory range of up to 65K bytes
 Direct memory access capability
 Bus compatible with M6800
 Pipeline architecture
 1-MHz and 2-MHz operation
 Use with any type or speed memory

APPENDIX L 403

404 APPENDIX L

6510 BLOCK DIAGRAM

APPENDIX L 405

6510 CHARACTERISTICS

MAXIMUM RATINGS

RATING SYMBOL VALUE UNIT

SUPPLY VOLTAGE VCC –0.3 to +7.0 VDC

INPUT VOLTAGE Vin –0.3 to +7.0 VDC

OPERATING TEMPERATURE TA 0 to +70 °C

STORAGE TEMPERATURE TSTG –55 to +150 °C

NOTE: This device contains input protection against damage due to high static voltages or electric
fields; however, precautions should be taken to avoid application of voltages higher than the
maximum rating.

ELECTRICAL CHARACTERISTICS

(VCC = 5.0 V ±5%, VSS = 0, TA = 0° to +70°C)

CHARACTERISTIC
SYM-
BOL

MIN. TYP. MAX. UNIT

Input High Voltage
φ1, φ2(in)

VIH VCC – 0.2 — VCC + 1.0V VDC

Input High Voltage

RES , P0–P7, IRQ , Data

VSS + 2.0 — — VDC

Input Low Voltage
φ1, φ2(in) VIL VSS – 0.3 — VSS + 0.2 VDC

RES , P0–P7, IRQ , Data — — VSS + 0.8 VDC

Input Leakage Current

(Vin = 0 to 5.25V, VCC = 5.25V)
Logic Iin — — 2.5 µA
φ1, φ2(in) — — 100 µA

Three State (Off State) Input Current

(Vin = 0.4 to 2.4V, VCC = 5.25V)
Data Lines ITSI — — 10 µA

Output High Voltage
(IOH = –100µADC, VCC = 4.75V)
Data, A0–A15, R/W, P0–P7 VOH VSS + 2.4 — — VDC

406 APPENDIX L

CHARACTERISTIC
SYM-
BOL

MIN. TYP. MAX. UNIT

Out Low Voltage
(IOL = 1.6mADC, VCC = 4.75V)
Data, A0–A15, R/W, P0–P7 VOL — — VSS + 0.4 VDC

Power Supply Current ICC — 125 mA

Capacitance C pF
(Vin = 0, TA = 25°C, f = 1 MHz)
Logic, P0–P7

Cin — — 10

Data — — 15
A0–A15, R/W Cout — 12
φ1 Cφ1 — 30 50
φ2 Cφ2 — 50 80

APPENDIX L 407

408 APPENDIX L

APPENDIX L 409

410 APPENDIX L

SIGNAL DESCRIPTION

Clocks (φ1, φ2)

The 6510 requires a two-phase non-overlapping clock that runs at the Vcc
voltage level.

Address Bus (A0 – A15)

These outputs are TTL compatible, capable of driving one standard TTL load and
130 pf.

Data Bus (D0 – D7)

Eight pins are used for the data bus. This is a Bi-Directional bus, transferring data
to and from the device and peripherals. The outputs are tri-state buffers capable
of driving one standard TTL load and 130 pf.

Reset

This input is used to reset or start the microprocessor from a power down
condition. During the time that this line is held low, writing to or from the
microprocessor is inhibited. When a positive edge is detected on the input, the
microprocessor will immediately begin the reset sequence.

After a system initialization time of six clock cycles, the mask interrupt flag will
be set and the microprocessor will load the program counter from the memory
vector locations $FFFC and $FFFD. This is the start location for program control.

After VCC reaches 4.75 volts in a power-up routine, reset must be held low for
at least two clock cycles. At this time the R/W signal will become valid.

When the reset signal goes high following these two clock cycles, the
microprocessor will proceed with the normal reset procedure detailed above.

Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence begin within the

microprocessor. The microprocessor will complete the current instruction being

executed before recognizing the request. At that time, the interrupt mask bit in

the Status Code Register will be examined. If the interrupt mask flag is not set,

the microprocessor will begin an interrupt sequence. The Program Counter and

Processor Status Register are stored in the stack. The microprocessor will then set

the interrupt mask flag high so that no further interrupts may occur. At the end

APPENDIX L 411

of this cycle, the program counter low will be loaded from address $FFFE, and

program counter high from location $FFFF, therefore transferring program

control to the memory vector located at these addresses.

Address Enable Control (AEC)

The Address Bus is valid only when the Address Enable Control line is high. When

low, the Address Bus is in a high-impedance state. This feature allows easy DMA

and multiprocessor systems.

I/O Port (P0 – P7)

Six pins are used for the peripheral port, which can transfer data to or from

peripheral devices. The Output Register is located in RAM at Address $0001,

and the Data Direction Register is at Address $0000. The outputs are capable

at driving one standard TTL load and 130 pf.

Read/Write (R/W)

This signal is generated by the microprocessor to control the direction of data

transfers on the Data. Bus. This line is high except when the microprocessor is

writing to memory or a peripheral device.

ADDRESSING MODES

ACCUMULATOR ADDRESSING — This form of addressing is represented with a

one byte instruction, implying an operation on the accumulator.

IMMEDIATE ADDRESSING — In immediate addressing, the operand is contained

in the second byte of the instruction, with no further memory addressing required.

ABSOLUTE ADDRESSING — In absolute addressing, the second byte of the

instruction specifies the eight low order bits of the effective address while the

third byte specifies the eight high order bits. Thus, the absolute addressing mode

allows access to the entire 65K bytes of addressable memory.

ZERO PAGE ADDRESSING — The zero page instructions allow for shorter code

and execution times by only fetching the second byte of the instruction and

assuming a zero high address byte. Careful use of the zero page can result in

significant increase in code efficiency.

412 APPENDIX L

INDEXED ZERO PAGE ADDRESSING — (X, Y indexing) – This form of addressing

is used in conjunction with the index register and is referred to as "Zero Page,

X" or "Zero Page, Y". The effective address is calculated by adding the second

byte to the contents of the index register. Since this is a form of "Zero Page"

addressing, the content of the second byte references a location in page zero.

Additionally, due to the "Zero Page" addressing nature of this mode, no carry is

added to the high order 8 bits of memory and crossing of page boundaries does

not occur.

INDEXED ABSOLUTE ADDRESSING — (X, Y indexing) – This form of addressing is

used in conjunction with X and Y index register and is referred to as "Absolute,

X" and "Absolute, Y". The effective address is formed by adding the contents of

X and Y to the address contained in the second and third bytes of the instruction.

This mode allows the index register to contain the index or count value and the

instruction to contain the base address. This type of indexing allows any location

referencing and the index to modify multiple fields resulting in reduced coding

and execution time.

IMPLIED ADDRESSING — In the implied addressing mode, the address containing

the operand is implicitly stated in the operation code of the instruction.

RELATIVE ADDRESSING — Relative addressing is used only with branch

instructions and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand which is an "Offset"

added to the contents of the lower eight bits of the program counter when the

counter is set at the next instruction. The range of the offset is –128 to +127

bytes from the next instruction.

INDEXED INDIRECT ADDRESSING — In indexed indirect addressing (referred to

as [Indirect, X]), the second byte of the instruction is added to the contents of the

X index register, discarding the carry. The result of this addition points to a

memory location on page zero whose contents is the low order eight bits of the

effective address. The next memory location in page zero contains the high order

eight bits of the effective address. Both memory locations specifying the high

and low order bytes of the effective address must be in page zero.

INDIRECT INDEXED ADDRESSING — In indirect indexed addressing (referred to

as [Indirect], Y), the second byte of the instruction points to a memory location in

page zero. The contents of this memory location is added to the contents of the

Y index register, the result being the low order eight bits of the effective address.

APPENDIX L 413

The carry from this addition is added to the contents of the next page zero

memory location, the result being the high order eight bits of the effective

address.

ABSOLUTE INDIRECT — The second byte of the instruction contains the low order
eight bits of a memory location. The high order eight bits of that memory location
is contained in the third byte of the instruction. The contents of the fully specified
memory location is the low order byte of the effective address. The next memory
location contains the high order byte of the effective address which is loaded
into the sixteen bits of the program counter.

INSTRUCTION SET — ALPHABETIC SEQUENCE

ADC Add Memory to Accumulator with Carry

AND "AND" Memory with Accumulator

ASL Shift Left One Bit (Memory or Accumulator)

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator

BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and Accumulator

CPX Compare Memory and Index X

CPY Compare Memory and Index Y

414 APPENDIX L

DEC Decrement Memory by One

DEX Decrement Index X by One

DEY Decrement Index Y by One

EOR "Exclusive-OR" Memory with Accumulator

INC Increment Memory by One

INX Increment Index X by One

INY Increment Index Y by One

JMP Jump to New Location

JSR Jump to New Location Saving Return Address

LDA Load Accumulator with Memory

LDX Load Index X with Memory

LDY Load Index Y with Memory

LSR Shift One Bit Right (Memory or Accumulator)

NOP No Operation

ORA "OR" Memory with Accumulator

PHA Push Accumulator on Stack

PHP Push Processor Status on Stack

PLA Pull Accumulator from Stack

PLP Pull Processor Status from Stack

ROL Rotate One Bit Left (Memory or Accumulator)

ROR Rotate One Bit Right (Memory or Accumulator)

RTI Return from Interrupt

RTS Return from Subroutine

SBC Subtract Memory from Accumulator with Borrow

SEC Set Carry Flag

SED Set Decimal Mode

SEI Set Interrupt Disable Status

STA Store Accumulator in Memory

STX Store Index X in Memory

STY Store Index Y in Memory

APPENDIX L 415

TAX Transfer Accumulator to Index X

TAY Transfer Accumulator to Index Y

TSX Transfer Stack Pointer to Index X

TXA Transfer Index X to Accumulator

TXS Transfer Index X to Stack Register

TYA Transfer Index Y to Accumulator

PROGRAMMING MODEL

416 APPENDIX L

INSTRUCTION SET — OP CODES, EXECUTION

APPENDIX L 417

TIME, MEMORY REQUIREMENTS

418 APPENDIX L

6510 MEMORY MAP

APPLICATIONS NOTES

Locating the Output Register at the internal I/O Port in Page Zero enhances the
powerful Zero Page Addressing instructions of the 6510.

By assigning the I/O Pins as inputs (using the Data Direction Register) the user
has the ability to change the contents of address $0001 (the Output Register)
using peripheral devices. The ability to change these contents using peripheral
inputs, together with Zero Page Indirect Addressing instructions, allows novel and
versatile programming techniques not possible earlier.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products
herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR
GROUP does not assume any liability arising out of the application or use of any product or
circuit described herein; neither does it convey any license under its patent rights nor the rights
of others.

APPENDIX M 419

APPENDIX M

6526 COMPLEX INTERFACE ADAPTER (CIA) CHIP

SPECIFICATIONS

DESCRIPTION

The 6526 Complex Interface Adapter (CIA) is a 65XX bus compatible peripheral

interface device with extremely flexible timing and I/O capabilities.

FEATURES

 16 individually programmable I/O lines

 8 or 16-Bit handshaking on read or write

 2 independent, linkable 16-Bit interval timers

 24-hour (AM/PM) time of day clock with programmable alarm

 8-Bit shift register for serial I/O

 2 TTL Load capability

 CMOS compatible I/O lines

 1 or 2 MHz operation available

420 APPENDIX M

APPENDIX M 421

6526
BLOCK DIAGRAM

422 APPENDIX M

MAXIMUM RATINGS

Supply Voltage, VCC –0.3V to +7.0V
Input/Output Voltage, VIN –0.3V to +7.0V
Operating Temperature, TOP 0°C to 70°C
Storage Temperature, TSTG –55°C to 150°C

All inputs contain protection circuitry to prevent damage due to high static
discharges. Care should be exercised to prevent unnecessary application of
voltages in excess of the allowable limits.

COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause
permanent damage to the device. These are stress ratings only. Functional
operation of this device at these or any other conditions above those indicated
in the operational sections of this specification is not implied and exposure to
absolute maximum rating conditions for extended periods may affect device
reliability.

ELECTRICAL CHARACTERISTICS (VCC ± 5%, VSS = 0 V, TA = 0–70°C)

CHARACTERISTIC SYMBOL MIN. TYP. MAX. UNIT

Input High Voltage VIH +2.4 — VCC V

Input Low Voltage VIL –0.3 — — V

Input Leakage Current;
VIN=VSS + 5V

(TOD, R/W, FLAG , φ2,

RES , RS0–RS3, CS

IIN — 1.0 2.5 µA

APPENDIX M 423

CHARACTERISTIC SYMBOL MIN. TYP. MAX. UNIT

Port Input Pull-up Resistance RPI 3.1 5.0 — KΩ

Output Leakage Current for
High Impedance State (Three
State); VIN = 4V to 2.4V;

(DB0—DB7, SP, CNT, IRQ)

ITSI — ±1.0 ±10.0 µA

Output High Voltage
VCC = MIN, ILOAD <

–200 µA (PA0—PA7, PC

PB0—PB7, DB0—DB7)

VOH +2.4 — VCC V

Output Low Voltage
VCC = MIN, ILOAD, < 3.2 mA

VOL — — +0.40 V

Output High Current (Sourcing);
VOH > 2.4V (PA0–PA7,

PB0—PB7, PC , DB0—DB7)

IOH –200 –1000 — µA

Output Low Current (Sinking);

VOL < .4V (PA0—PA7, PC ,

PB0—PB7, DB0—DB7)

IOL 3.2 — — mA

Input Capacitance CIN — 7 10 pf

Output Capacitance COUT — 7 10 pf

Power Supply Current ICC — 70 100 mA

424 APPENDIX M

APPENDIX M 425

426 APPENDIX M

6526 INTERFACE SIGNALS

φ2 — Clock Input

The φ2 clock is a TTL compatible input used for internal device operation and as

a timing reference for communicating with the system data bus.

CS — Chip Select Input

The CS input controls the activity of the 6526. A low level on CS while φ2 is high

causes the device to respond to signals on the R/W and address (RS) lines. A

high on CS prevents these lines from controlling the 6526. The CS line is normally

activated (low) at φ2 by the appropriate address combination.

R/W — Read/Write Input

The R/W signal is normally supplied by the microprocessor and controls the

direction of data transfers of the 6526. A high on R/W indicates a read (data

transfer out of the 6526), while a low indicates a write (data transfer into the

6526).

RS3 to RS0 — Address Inputs

The address inputs select the internal registers as described by the Register Map.

DB7 to BD0 — Data Bus Inputs/Outputs

The eight data bus pins transfer information between the 6526 and the system

data bus. These pins are high impedance inputs unless CS is low and R/W and

φ2 are high to read the device. During this read, the data bus output buffers are

enabled, driving the data from the selected register onto the system data bus.

IRQ — Interrupt Request Output

IRQ is an open drain output normally connected to the processor interrupt input.

An external pull up resistor holds the signal high, allowing multiple IRQ outputs

to be connected together. The IRQ output is normally off (high impedance) and

is activated low as indicated in the functional description.

APPENDIX M 427

RES — Reset Input

A low on the RES pin resets all internal registers. The port pins are set as inputs
and port registers to zero (although a read of the ports will return all highs
because of passive pullups). The timer control registers are set to zero and the
timer latches to all ones. All other registers are reset to zero.

6526 TIMING CHARACTERISTICS

Symbol Characteristic
1 MHz 2 MHz

Unit MIN MAX MIN MAX
 φ2 Clock

TCYC Cycle Time 1000 20,000 500 20,000 ns

TR, TF Rise and Fall Time — 25 — 25 ns

TCHW Clock Pulse Width
(High)

420 10,000 200 10,000 ns

TCLW Clock Pulse Width
(Low)

420 10,000 200 10,000 ns

 Write Cycle

TPD Output Delay from φ2 — 1000 — 500 ns

TWCS CS low while φ2 high 420 — 200 — ns

TADS Address Setup Time 0 — 0 — ns

TADH Address Hold Time 10 — 5 — ns

TRWS R/W Setup Time 0 — 0 — ns

TRWH R/W Hold Time 0 — 0 — ns

TDS Data Bus Setup Time 150 — 75 — ns

TDH Data Bus Hold Time 0 — 0 — ns

 Read Cycle

TPS Port Setup Time 300 — 150 — ns

TWCS (2) CS low while φ2 high 420 — 20 — ns

TADS Address Setup Time 0 — 0 — ns

TADH Address Hold Time 10 — 5 — ns

TRWS R/W Setup Time 0 — 0 — ns

TRWH R/W Hold Time 0 — 0 — ns

428 APPENDIX M

Symbol Characteristic
1 MHz 2 MHz

Unit MIN MAX MIN MAX
TACC Data Access from

RS3-RS0
— 550 — 275 ns

TCO(3) Data Access from
CS

— 320 — 150 ns

TDR Data Release Time 50 — 25 — ns

NOTES:

1 — All timings are referenced from VIL max and VIH min on inputs and VOL max and VOH min
 on outputs.

2 — TWCS is measured from the later of φ2 high or CS low. CS must be low at least until the
 end of φ2 high.

3 — TCO is measured from the later of φ2 high or CS low. Valid data is available only after

 the later of TACC or TCO.

REGISTER MAP

RS3 RS2 RS1 RSO REG NAME

0 0 0 0 0 PRA PERIPHERAL DATA REG A

0 0 0 1 1 PRB PERIPHERAL DATA REG B

0 0 1 0 2 DDRA DATA DIRECTION REG A

0 0 1 1 3 DDRB DATA DIRECTION REG B

0 1 0 0 4 TA LO TIMER A LOW REGISTER

0 1 0 1 5 TA HI TIMER A HIGH REGISTER

0 1 1 0 6 TB LO TIMER B LOW REGISTER

0 1 1 1 7 TB HI TIMER B HIGH REGISTER

1 0 0 0 8 TOD 10THS 10THS OF SECONDS REGISTER

1 0 0 1 9 TOD SEC SECONDS REGISTER

1 0 1 0 A TOD MIN MINUTES REGISTER

1 0 1 1 B TOD HR HOURS – AM/PM REGISTER

1 1 0 0 C SDR SERIAL DATA REGISTER

1 1 0 1 D ICR INTERRUPT CONTROL REGISTER

1 1 1 0 E CRA CONTROL REG A

1 1 1 1 F CRB CONTROL REG B

APPENDIX M 429

6526 FUNCTIONAL DESCRIPTION

I/O Ports (PRA, PRB, DDRA, DDRB).

Ports A and B each consist of an 8-bit Peripheral Data Register (PR) and an 8-

bit Data Direction Register (DDR). If a bit in the DDR is set to a one, the

corresponding bit in the PR is an output; if a DDR bit is set to a zero, the

corresponding PR bit is defined as an input. On a READ, the PR reflects the

information present on the actual port pins (PA0 – PA7, PB0 – PB7) for both input

and output bits. Port A and Port B have passive pull-up devices as well as active

pull-ups, providing both CMOS and TTL compatibility. Both ports have two TTL

load drive capability. In addition to normal I/O operation, PB6 and PB7 also

provide timer output functions.

Handshaking

Handshaking on data transfers can be accomplished using the PC output pin and

the FLAG input pin. PC will go low for one cycle following a read or write of

PORT B. This signal can be used to indicate "data ready" at PORT B or "data

accepted" from PORT B. Handshaking on 16-bit data transfers (using both PORT

A and PORT B) is possible by always reading or writing PORT A first. FLAG is a

negative edge sensitive input which can be used for receiving the PC output from

another 6526, or as a general purpose interrupt input. Any negative transition

of FLAG will set the FLAG interrupt bit.

REG NAME D7 D6 D5 D4 D3 D2 D1 D0

0 PRA PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

1 PRB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

2 DDRA DPA7 DPA6 DPA5 DPA4 DPA3 DPA2 DPA1 DPA0

3 DDRB DPB7 DPB6 DPB5 DPB4 DPB3 DPB2 DPB1 DPB0

Interval Timers (Timer A, Timer B)

Each interval timer consists of a 16-bit read-only Timer Counter and a 16-bit

write-only Timer Latch. Data written to the timer are latched in the Timer Latch,

while data read from the timer are the present contents of the Time Counter. The

timers can be used independently or linked for extended operations. The various

timer modes allow generation of long time delays, variable width pulses, pulse

trains and variable frequency waveforms. Utilizing the CNT input, the timers can

430 APPENDIX M

count external pulses or measure frequency, pulse width and delay times of

external signals. Each timer has an associated control register, providing

independent control of the following functions:

Start/Stop

A control bit allows the timer to be started or stopped by the microprocessor at
any time.

PB On/Off:

A control bit allows the timer output to appear on a PORT B output line (PB6 for
TIMER A and PB7 for TIMER B). This function overrides the DDRB control bit and
forces the appropriate PB line to an output.

Toggle/Pulse

A control bit selects the output applied to PORT B. On every timer underflow the
output can either toggle or generate a single positive pulse of one-cycle
duration. The Toggle output is set high whenever the timer is started – and is set
low by RES.

One-Shot/Continuous

A control bit selects either timer mode. In one-shot mode, the timer will count
down from the latched value to zero, generate an interrupt, reload the latched
value, then stop. In continuous mode, the timer will count from the latched value
to zero, generate an interrupt, reload the latched value and repeat the
procedure continuously.

Force Load

A strobe bit allows the timer latch to be loaded into the timer counter at any
time, whether the timer is running or not.

Input Mode:

Control bits allow selection of the clock used to decrement the timer. TIMER A can
count φ2 clock pulses or external pulses applied to the CNT pin. TIMER B can
count φ2 pulses, external CNT pulses, TIMER A under-flow pulses or TIMER A
underflow pulses while the CNT pin is held high.

The timer latch is loaded into the timer on any timer underflow, on a force load
or following a write to the high byte of the prescaler while the timer is stopped.
If the timer is running, a write to the high byte will load the timer latch, but not
reload the counter.

APPENDIX M 431

READ (TIMER)

REG NAME

4 TA LO TAL7 TAL6 TAL5 TAL4 TAL3 TAL2 TAL1 TAL0

5 TA HI TAH7 TAH6 TAH5 TAH4 TAH3 TAH2 TAH1 TAH0

6 TB LO TBL7 TBL6 TBL5 TBL4 TBL3 TBL2 TBL1 TBL0

7 TB HI TBH7 TBH6 TBH5 TBH4 TBH3 TBH2 TBH1 TBH0

WRITE (PRESCALER)

REG NAME

4 TA LO PAL7 PAL6 PAL5 PAL4 PAL3 PAL2 PAL1 PAL0

5 TA HI PAH7 PAH6 PAH5 PAH4 PAH3 PAH2 PAH1 PAH0

6 TB LO PBL7 PBL6 PBL5 PBL4 PBL3 PBL2 PBL1 PBL0

7 TB HI PBH7 PBH6 PBH5 PBH4 PBH3 PBH2 PBH1 PBH0

Time of Day Clock (TOD)

The TOD clock is a special purpose timer for real-time applications. TOD consists
of a 24-hour (AM/PM) clock with 1/10th second resolution. It is organized into
4 registers: 10ths of seconds, Seconds, Minutes and Hours. The AM/PM flag is in
the MSB of the Hours register for easy bit testing. Each register reads out in BCD
format to simplify conversion for driving displays, etc. The clock requires an
external 60 Hz or 50 Hz (programmable) TTL level input on the TOD pin for
accurate time-keeping. In addition to time-keeping, a programmable ALARM is
provided for generating an interrupt at a desired time. The ALARM registers are
located at the same addresses as the corresponding TOD registers. Access to the
ALARM is governed by a Control Register bit. The ALARM is write-only; any read
of a TOD address will read time regardless of the state of the ALARM access
bit.

A specific sequence of events must be followed for proper setting and reading
of TOD. TOD is automatically stopped whenever a write to the Hours register
occurs. The clock will not start again until after a write to the 10ths of seconds
register. This assures TOD will always start at the desired time. Since a carry
from one stage to the next can occur at any time with respect to a read
operation, a latching function is included to keep all Time Of Day information
constant during a read sequence. All four TOD registers latch on a read of Hours
and remain latched until after a read of 10ths of seconds. The TOD clock
continues to count when the output registers are latched. If only one register is to

432 APPENDIX M

be read, there is no carry problem and the register can be read "on the fly,"
provided that any read: of Hours is followed by a read of 10ths of seconds to
disable the latching.

READ

REG NAME

8 TOD 10THS 0 0 0 0 T8 T4 T2 T1

9 TOD SEC 0 SH4 SH2 SH1 SL8 SL4 SL2 SL1

A TOD MIN 0 MH4 MH2 MH1 ML8 ML4 ML2 ML1

B TOD HR PM 0 0 HH HL8 HL4 HL2 HL1

WRITE

CRB7 = 0 TOD
CRB7 = 1 ALARM
(SAME FORMAT AS READ)

Serial Port (SDR)

The serial port is a buffered, 8-bit synchronous shift register system. A control bit

selects input or output mode. In input mode, data on the SP pin is shifted into the

shift register on the rising edge of the signal applied to the CNT pin. After 8

CNT pulses, the data in the shift register is dumped into the Serial Data Register

and an interrupt is generated. In the output mode, TIMER A is used for the baud

rate generator. Data is shifted out on the SP pin at ½ the underflow rate of

TIMER A. The maximum baud rate possible is φ2 divided by 4, but the maximum

useable baud rate will be determined by line loading and the speed at which

the receiver responds to input data. Transmission will start following a write to

the Serial Data Register (provided TIMER A is running and in continuous mode).

The clock signal derived from TIMER A appears as an output on the CNT pin. The

data in the Serial Data Register will be loaded into the shift register then shift

out to the SP pin when a CNT pulse occurs. Data shifted out becomes valid on

the falling edge of CNT and remains valid until the next falling edge. After 8

CNT pulses, an interrupt is generated to indicate more data can be sent. If the

Serial Data Register was loaded with new information prior to this interrupt, the

new data will automatically be loaded into the shift register and transmission

will continue. If the microprocessor stays one byte ahead of the shift register,

transmission will be continuous. If no further data is to be transmitted, after the

APPENDIX M 433

8th CNT pulse, CNT will return high and SP will remain at the level of the last

data bit transmitted. SDR data is shifted out MSB first and serial input data

should also appear in this format.

The bidirectional capability of the Serial Port and CNT clock allows many 6526
devices to be connected to a common serial communication bus on which one
6526 acts as a master, sourcing data and shift clock, while all other 6526 chips
act as slaves. Both CNT and SP outputs are open drain to allow such a common
bus. Protocol for master/slave selection can be transmitted over the serial bus,
or via dedicated hand-shaking lines.

REG NAME

C SDR S7 S6 S5 S4 S3 S2 S1 S0

Interrupt Control (ICR)

There are five sources of interrupts on the 6526: underflow from TIMER A,

underflow from TIMER B, TOD ALARM, Serial Port full/empty and FLAG. A single

register provides masking and interrupt information. The interrupt Control

Register consists of a write-only MASK register and a read-only DATA register.

Any interrupt will set the corresponding bit in the DATA register. Any interrupt

which is enabled by the MASK register will set the IR bit (MSB) of the DATA

register and bring the IRQ pin low.

In a multi-chip system, the IR bit can be polled to detect which chip has generated

an interrupt request. The interrupt DATA register is cleared and the IRQ line

returns high following a read of the DATA register. Since each interrupt sets an

interrupt bit regardless of the MASK, and each interrupt bit can be selectively

masked to prevent the generation of a process or interrupt, it is possible to

intermix polled interrupts with true interrupts. However, polling the IR bit will

cause the DATA register to clear, therefore, it is up to the user to preserve the

information contained in the DATA register if any polled interrupts were present.

The MASK register provides convenient control of individual mask bits. When

writing to the MASK register, if bit 7 (SET/CLEAR) of the data written is a ZERO,

any mask bit written with a one will be cleared, while those mask bits written

with a zero will be unaffected. If bit 7 of the data written is a ONE, any mask

bit written with a one will be set, while those mask bits written with a zero will

be unaffected. In order for an interrupt flag to set IR and generate an Interrupt

Request, the corresponding MASK bit must be set.

434 APPENDIX M

READ (INT DATA)

REG NAME

D ICR IR 0 0 FLG SP ALRM TB TA

WRITE (INT MASK)

REG NAME

D ICR S/C X X FLG SP ALRM TB TA

CONTROL REGISTERS

There are two control registers in the 6526, CRA and CRB. CRA is associated
with TIMER A and CRB is associated with TIMER B. The register format is as
follows:

CRA:

Bit Name Function

0 START 1=START TIMER A, 0=STOP TIMER A. This bit is
automatically reset when underflow occurs during one-
shot mode.

1 PBON 1=TIMER A output appears on PB6. 0=PB6 normal
operation.

2 OUTMODE 1=TOGGLE, 0=PULSE.

3 RUNMODE 1=ONE-SHOT, 0=CONTINUOUS.

4 LOAD 1=FORCE LOAD (this is a STROBE input, there is no
data storage, bit 4 will always read back a zero and
writing a zero has no effect).

5 INMODE 1=TIMER A counts positive CNT transitions, 0=TIMER A
counts φ2 pulses.

6 SPMODE 1=SERIAL PORT output (CNT sources shift clock),
0=SERIAL PORT input (external shift clock required).

7 TODIN 1=50 Hz clock required on TOD pin for accurate time,
0=60 Hz clock required on TOD pin for accurate time.

APPENDIX M 435

CRB:

Bit Name Function

 (Bits CRB0 – CRB4 are identical to CRA0 – CRA4 for
TIMER B with the exception that bit 1 controls the output
of TIMER B on PB7).

5,6 INMODE Bits CRB5 and CRB6 select one of four input modes for
TIMER B as:

 CRB6 CRB5

 0 0 TIMER B Counts φ2 pulses.

 0 1 TIMER B counts positive CNT
transitions.

 1 0 TIMER B counts TIMER A underflow
pulses.

 1 1 TIMER B counts TIMER A underflow
pulses while CNT is high.

7 ALARM 1=writing to TOD registers sets ALARM, 0=writing to
TOD registers sets TOD clock.

REG NAME TOD IN
SP
MODE

IN
MODE

LOAD
RUN
MODE

OUT
MODE

PB ON START

E CRA 0=60Hz

1=50Hz

0=INPUT

1=OUTPUT

0=φ2

1=CNT

1=FORCE
LOAD
(STROBE)

0=CONT.

1=O.S.

0=PULSE

1=TOGGLE

0=PB6 OFF

1=PB6 ON

0=STOP

1=START

 TA

REG NAME ALARM IN MODE LOAD
RUN
MODE

OUT
MODE

PB ON START

F CRB 0=TOD

1=ALARM

0
1
1
1

0=φ2
1=CNT
0=TA
1=CNT–TA

1=FORCE
LOAD

(STROBE)

0=CONT.

1=O.S.

0=PULSE

1=TOGGLE

0=PB7 OFF

1=PB7 ON

0=STOP

1=START

 TB

All unused registers bits are unaffected by a write and are forced to zero on a
read.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products
herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR
GROUP does not assume any liability arising out of the application or use of any product or
circuit described herein; neither does it convey any license under its patent rights nor the rights
of others.

436 APPENDIX N

APPENDIX N

6566/6567 (VIC-II) CHIP SPECIFICATIONS

The 6566/6567 are multi-purpose color video controller devices for use in both

computer video terminals and video game applications. Both devices contain 47

control registers which are accessed via a standard 8-bit microprocessor bus

(65XX) and will access up to 16K of memory for display information. The various

operating modes and options within each mode are described.

CHARACTER DISPLAY MODE

In the character display mode, the 6566/6567 fetches CHARACTER POINTERs

from the VIDEO MATRIX area of memory and translates the pointers to character

dot location addresses in the 2048 byte CHARACTER BASE area of memory. The

video matrix is comprised of 1000 consecutive locations in memory which each

contain an eight-bit character pointer. The location of the video matrix within

memory is defined by VM13 – VM10 in register 24 ($18) which are used as the

4 MSB of the video matrix address. The lower order 10 bits are provided by an

internal counter (VC3 – VC1) which steps through the 1000 character locations.

Note that the 6566/6567 provides 14 address outputs; therefore, additional

system hardware may be required for complete system memory decodes.

CHARACTER POINTER ADDRESS

A13 A12 A11 A10 A09 A08 A07 A06 A05 A04 A03 A02 A01 A00

VM13 VM12 VM11 VM10 VC9 VC8 VC7 VC6 VC5 VC4 VC3 VC2 VC1 VC0

APPENDIX N 437

The eight-bit character pointer permits up to 256 different character definitions

to be available simultaneously. Each character is an 8 × 8 dot matrix stored in

the character base as eight consecutive bytes. The location of the character base

is defined by CB13 – CB11 also in register 24 ($18) which are used for the 3

most significant bits (MSB) of the character base address. The 11 lower order

addresses are formed by the 8-bit character pointer from the video matrix (D7

– D0) which selects a particular character, and a 3-bit raster counter (RC2 –

RC0) which selects one of the eight character bytes. The resulting characters are

formatted as 25 rows of 40 characters each. In addition to the 8-bit character

pointer, a 4-bit COLOR NYBBLE is associated with each video matrix location

(the video matrix memory must be 12 bits wide) which defines one of sixteen

colors for each character.

CHARACTER DATA ADDRESS

A13 A12 A11 A10 A09 A08 A07 A06 A05 A04 A03 A02 A01 A00

CB13 CB12 CB11 D7 D6 D5 D4 D3 D2 D1 D0 RC2 RC1 RC0

STANDARD CHARACTER MODE (MCM = BMM = ECM = 0)

In the standard character mode, the 8 sequential bytes from the character base

are displayed directly on the 8 lines in each character region. A "0" bit causes

the background #0 color (from register 33 ($21) to be displayed while the color

selected by the color nybble (foreground) is displayed for a "1" bit (see Color

Code Table).

FUNCTION
CHARACTER

BIT
COLOR DISPLAYED

Background 0 Background #0 color

(register 33 ($21))

Foreground 1 Color selected by 4-bit color nybble

Therefore, each character has a unique color determined by the 4-bit color

nybble (1 of 16) and all characters share the common background color.

438 APPENDIX N

MULTICOLOR CHARACTER MODE (MCM = 1, BMM = ECM = 0)

Multicolor mode provides additional color flexibility allowing up to four colors

within each character but with reduced resolution. The multicolor mode is selected

by setting the MCM bit in register 22 ($16) to "1," which causes the dot data

stored in the character base to be interpreted in a different manner. If the MSB

of the color nybble is a "0," the character will be displayed as described in

standard character mode, allowing the two modes to be inter-mixed (however,

only the lower order 8 colors are available). When the MSB of the color nybble

is a "1" (if MCM:MSB(CM) = 1) the character bits are interpreted in the multicolor

mode:

FUNCTION
CHARACTER

BIT
COLOR DISPLAYED

Background 00 Background #0 color

(register 33 ($21))

Background 01 Background #1 color

(register 34 ($22))

Foreground 10 Background #2 color

(register 35 ($23))

Foreground 11 Color specified by 3 LSB

of color nybble

Since two bits are required to specify one dot color, the character is now

displayed as a 4 × 8 matrix with each dot twice the horizontal size as in

standard mode. Note, however, that each character region can now contain 4

different colors, two as foreground and two as background (see MOB priority).

EXTENDED COLOR MODE (ECM = 1, BMM = MCM = 0)

The extended color mode allows the selection of individual back-ground colors

for each character region with the normal 8 × 8 character resolution. This mode

is selected by setting the ECM bit of register 17 ($11) to "1." The character dot

data is displayed as in the standard mode (foreground color determined by the

color nybble is displayed for a "1" data bit), but the 2 MSB of the character

APPENDIX N 439

pointer are used to select the background color for each character region as

follows:

CHAR. POINTER
MS BIT PAIR

BACKGROUND COLOR DISPLAYED FOR 0 BIT

00 Background #0 color (register 33 ($21))

01 Background #1 color (register 34 ($22))

10 Background #2 color (register 35 ($23))

11 Background #3 color (register 36 ($24))

Since the two MSB of the character pointers are used for color information, only

64 different character definitions are available. The 6566/6567 will force

CB10 and CB9 to "0" regardless of the original pointer values, so that only the

first 64 character definitions will be accessed. With extended color mode each

character has one of sixteen individually defined foreground colors and one of

the four available background colors.

NOTE: Extended color mode and multicolor mode should not be enabled simultaneously

BITMAP MODE

In bitmap mode, the 6566/6567 fetches data from memory in a different

fashion, so that a one-to-one correspondence exists between each displayed dot

and a memory bit. The bitmap mode provides a screen resolution of 320H ×

200V individually controlled display dots. Bitmap mode is selected by setting

the BMM bit in register 17 ($11) to a "1." The VIDEO MATRIX is still accessed as

in character mode, but the video matrix data is no longer interpreted as

character pointers, but rather as color data. The VIDEO MATRIX COUNTER is

then also used as an address to fetch the dot data for display from the 8000-

byte DISPLAY BASE. The display base address is formed as follows:

A13 A12 A11 A10 A09 A08 A07 A06 A05 A04 A03 A02 A01 A00

CB13 VC9 VC8 VC7 VC6 VC5 VC4 VC3 VC2 VC1 VC0 RC2 RC1 RC0

440 APPENDIX N

VCx denotes the video matrix counter outputs, RCx denotes the 3-bit raster line

counter and CB13 is from register 24 ($18). The video matrix counter steps

through the same 40 locations for eight raster lines, continuing to the next 40

locations every eighth line, while the raster counter increments once for each

horizontal video line (raster line). This addressing results in, each eight sequential

memory locations being formatted as an 8 × 8 dot block on the video display.

STANDARD BITMAP MODE (BMM =1, MCM = 0)

When standard bitmap mode is in use, the color information is derived only from

the data stored in the video matrix (the color nybble is disregarded). The 8 bits

are divided into two 4-bit nybbles which allow two colors to be independently

selected in each 8 × 8 dot block. When a bit in the display memory is a "0" the

color of the output dot is set by the least significant (lower) nybble (LSN).

Similarly, a display memory bit of "1" selects the output color determined by the

MSN (upper nybble).

BIT DISPLAY COLOR

0 Lower nybble of video matrix pointer

1 Upper nybble of video matrix pointer

MULTICOLOR BITMAP MODE (BMM = MCM = 1)

Multicolored bitmap mode is selected by setting the MCM bit in register 22 ($16)

to a "1" in conjunction with the BMM bit. Multicolor mode uses the same memory

access sequences as standard bitmap mode, but interprets the dot data as

follows:

BIT PAIR DISPLAY COLOR

00 Background #0 color (register 33 ($21))

01 Upper nybble of video matrix pointer

10 Lower nybble of video matrix pointer

11 Video matrix color nybble

Note that the color nybble (DB11 – DB8) is used for the multicolor bitmap mode.

Again, as two bits are used to select one dot color, the horizontal dot size is

doubled, resulting in a screen resolution of 160H × 200V. Utilizing multicolor

APPENDIX N 441

bitmap mode, three independently selected colors can be displayed in each 8

× 8 block in addition to the background color.

MOVABLE OBJECT BLOCKS

The movable object block (MOB) is a special type of character which can be

displayed at any one position on the screen without the block constraints inherent

in character and bitmap mode. Up to 8 unique MOBs can be displayed

simultaneously, each defined by 63 bytes in memory which are displayed as a

24 × 21 dot array (shown below). A number of special features make MOBs

especially suited for video graphics and game applications.

MOB DISPLAY BLOCK

BYTE BYTE BYTE

00 01 02

03 04 05

– – –

– – –

– – –

57 58 59

60 61 62

ENABLE

Each MOB can be selectively enabled for display by setting its corresponding

enable bit (MnE) to "1" in register 21 ($15). If the MnE bit is "0," no MOB

operations will occur involving the disabled MOB.

POSITION

Each MOB is positioned via its X and Y position register (see register map) with

a resolution of 512 horizontal and 256 vertical positions. The position of a MOB

is determined by the upper-left corner of the array. X locations 23 to 347 ($17

442 APPENDIX N

– $157) and Y locations 50 to 249 ($32 – $F9) are visible. Since not all

available MOB positions are entirely visible on the screen, MOBs may be moved

smoothly on and off the display screen.

COLOR

Each MOB has a separate 4-bit register to determine the MOB color. The two

MOB color modes are:

STANDARD MOB (MnMC = 0)

In the standard mode, a "0" bit of MOB data allows any background data to

show through (transparent) and a "1" bit is displayed as the MOB color

determined by the corresponding MOB Color register.

MULTICOLOR MOB (MnMC = 1)

Each MOB can be individually selected as a multicolor MOB via MnMC bits in

the MOB multicolor register 28 ($1C). When the MnMC bit is "1," the

corresponding MOB is displayed in the multicolor mode. In the multicolor mode,

the MOB data is interpreted in pairs (similar to the other multicolor modes) as

follows:

BIT PAIR COLOR DISPLAYED

00 Transparent

01 MOB Multicolor #0 (register 37 ($25))

10 MOB Color (registers 39–46 ($27–$2E))

11 MOB Multicolor #1 (register 38 ($26))

Since two bits of data are required for each color, the resolution of the MOB is

reduced to 12 × 21, with each horizontal dot expanded to twice standard size

so that the overall MOB size does not change. Note that up to 3 colors can be

displayed in each MOB (in addition to transparent) but that two of the colors

are shared among all the MOBs in the multicolor mode.

APPENDIX N 443

MAGNIFICATION

Each MOB can be selectively expanded (2X) in both the horizontal and vertical

directions. Two registers contain the control bits (MnXE, MnYE) for the

magnification control:

REGISTER FUNCTION

23 ($17) Horizontal expand MnXE — "1" = expand; "0" = normal

29 ($1D) Vertical expand MnYE — "1" = expand; "0" = normal

When MOBs are expanded, no increase in resolution is realized. The same 24

× 21 array (12 × 21 if multicolored) is displayed, but the overall MOB

dimension is doubled in the desired direction (the smallest MOB dot may be up

to 4X standard dot dimension if a MOB is both multicolored and expanded).

PRIORITY

The priority of each MOB may be individually controlled with respect to the other

displayed information from character or bitmap modes. The priority of each

MOB is set by the corresponding bit (MnDP) of register 27 ($1B) as follows:

REG BIT PRIORITY TO CHARACTER OR BITMAP DATA

0 Non-transparent MOB data will be displayed (MOB in front)

1 Non-transparent MOB data will be displayed only instead of
Background #0 or multicolor bit pair 01 (MOB behind)

MOB — DISPLAY DATA PRIORITY

MnDP = 1 MnDP = 0

MOBn Foreground

Foreground MOBn

Background Background

444 APPENDIX N

MOB data bits of "0" ("00" in multicolor mode) are transparent, always

permitting any other information to be displayed.

The MOBs have a fixed priority with respect to each other, with MOB 0 having

the highest priority and MOB 7 the lowest. When MOB data (except transparent

data) of two MOBs are coincident, the data from the lower number MOB will be

displayed. MOB vs. MOB data is prioritized before priority resolution with

character or bitmap data.

COLLISION DETECTION

Two types of MOB collision (coincidence) are detected, MOB to MOB collision

and MOB to display data collision:

1. A collision between two MOBs occurs when non-transparent output data

 of two MOBs are coincident. Coincidence of MOB transparent areas

 will not generate a collision. When a collision occurs, the MOB bits

 (MnM) in the MOB to MOB COLLISION register 30 ($1E) will be set to

 "1" for both colliding MOBs. As a collision between two (or more) MOBs

 occurs, the MOB to MOB collision bit for each collided MOB will be set.

 The collision bits remain set until a read of the collision register, when

 all bits are automatically cleared. MOBs collisions are detected even if

 positioned off-screen.

2. The second type of collision is a MOB to DATA collision between a MOB

 and foreground display data from the character or bitmap modes. The

 MOB to DATA COLLISION register 31 ($1F) has a bit (MnD) for each

 MOB which is set to "1" when both the MOB and non-background

 display data are coincident. Again, the coincidence of only transparent

 data does not generate a collision. For special applications, the display

 data from the 0 – 1 multicolor bit pair also does not cause a collision.

 This feature permits their use as background display data without

 interfering with true MOB collisions. A MOB to DATA collision can occur

 off-screen in the horizontal direction if actual display data has been

 scrolled to an off-screen position (see scrolling). The MOB to DATA

 COLLISION register also automatically clears when read.

APPENDIX N 445

The collision interrupt latches are set whenever the first bit of either register is

set to "1." Once any collision bit within a register is set high, subsequent collisions

will, not set the interrupt latch until that collision register has been cleared to all

"0s" by a read.

MOB MEMORY ACCESS

The data for each MOB is stored in 63 consecutive bytes of memory. Each block

of MOB data is defined by a MOB pointer, located at the end of the VIDEO

MATRIX. Only 1000 bytes of the video matrix are used in the normal display

modes, allowing the video matrix locations 1016 – 1023 (VM base + $3F8 to

VM base + $3FF) to be used for MOB pointers 0 to 7, respectively. The eight-

bit MOB pointer from the video matrix together with the six bits from the MOB

byte counter (to address 63 bytes) define the entire 14-bit address field:

A13 A12 A11 A10 A09 A08 A07 A06 A05 A04 A03 A02 A01 A00

MP7 MP6 MP5 MP4 MP3 MP2 MP1 MP0 MC5 MC4 MC3 MC2 MC1 MC0

Where MPx are the MOB pointer bits from the video matrix and MCx are the

internally generated MOB counter bits. The MOB pointers are read from the

video matrix at the end of every raster line. When the Y position register of a

MOB matches the current raster line count, the actual fetches of MOB data begin.

Internal counters automatically step through the 63 bytes of MOB data,

displaying three bytes on each raster line.

OTHER FEATURES

SCREEN BLANKING

The display screen may be blanked by setting the DEN bit in register 17 ($11)

to a "0." When the screen is blanked, the entire screen will be filled with the

exterior color as set in register 32 ($20). When blanking is active, only

transparent (Phase 1) memory accesses are required, permitting full processor

utilization of the system bus. MOB data, however, will be accessed if the MOBs

are not also disabled. The DEN bit must be set to "1" for normal video display.

446 APPENDIX N

ROW/COLUMN SELECT

The normal display consists of 25 rows of 40 characters (or character regions)

per row. For special display purposes, the display window may be reduced to

24 rows and 38 characters. There is no change in the format of the displayed

information, except that characters (bits) adjacent to the exterior border area

will now be covered by the border. The select bits operate as follows:

RSEL NUMBER OF ROWS CSEL NUMBER OF COLUMNS

0 24 rows 0 38 columns

1 25 rows 1 40 columns

The RSEL bit is in register 17 ($11) and the CSEL bit is in register 22 ($16). For

standard display the larger display window is normally used, while the smaller

display window is normally used in conjunction with scrolling.

SCROLLING

The display data may be scrolled up to one entire character space in both the

horizontal and vertical direction. When used in conjunction with the smaller

display window (above), scrolling can be used to create a smooth panning motion

of display data while updating the system memory only when a new character

row (or column) is required. Scrolling is also used to center a fixed display within

the display window.

BITS REGISTER FUNCTION

X2, X1, X0 22 ($16) Horizontal Position

Y2, Y1, Y0 17 ($11) Vertical Position

LIGHT PEN

The light pen input latches the current screen position into a pair of registers (LPX,

LPY) on a low-going edge. The X position register 19 ($13) will contain the 8

MSB of the X position at the time of transition. Since the X position is defined by

a 512-state counter (9 bits) resolution to 2 horizontal dots is provided. Similarly,

the Y position is latched to its register 20 ($14) but here 8 bits provide single

raster resolution within the visible display. The light pen latch maybe triggered

APPENDIX N 447

only once per frame, and subsequent triggers within the same frame will have

no effect. Therefore, you must take several samples before turning the light pen

to the screen (3 or more samples, average), depending upon the characteristics

of your light pen.

RASTER REGISTER

The raster register is a dual-function register. A read of the raster register 18

($12) returns the lower 8 bits of the current raster position (the MSB – RC8 is

located in register 17 ($11)). The raster register can be interrogated to

implement display changes outside the visible area to prevent display flicker.

The visible display window is from raster 51 through raster 251 ($033 – $0FB).

A write to the raster bits (including RC8) is latched for use in an internal raster

compare. When the current raster matches the written value, the raster interrupt

latch is set.

INTERRUPT REGISTER

The interrupt register shows the status of the four sources of interrupt. An interrupt

latch in register 25 ($19) is set to "1" when an interrupt source has generated

an interrupt request. The four sources of interrupt are:

LATCH

BIT

ENABLE

BIT
WHEN SET

IRST ERST Set when (raster count) = (stored raster count)

IMDC EMDC Set by MOB — DATA collision register (first collision only)

IMMC EMMC Set by MOB — DATA collision register (first collision only)

ILP ELP Set by negative transition of LP input (once per frame)

IRQ Set high by latch set and enabled (invert of IRQ/ output)

To enable an interrupt request to set the IRQ/ output to "0," the corresponding

interrupt enable bit in register 26 ($1A) must be set to "1." Once an interrupt

latch has been set, the latch may be cleared only by writing a "1" to the desired

latch in the interrupt register. This feature allows selective handling of video

interrupts without software required to "remember" active interrupts.

448 APPENDIX N

DYNAMIC RAM REFRESH

A dynamic ram refresh controller is built in to the 6566/6567 devices. Five 8-

bit row addresses are refreshed every raster line. This rate guarantees a

maximum delay of 2.02 ms between the refresh of any single row address in a

128 refresh scheme. (The maximum delay is 3.66 ms in a 256 address refresh

scheme.) This refresh is totally transparent to the system, since the refresh occurs

during Phase 1 of the system clock. The 6567 generates both RAS/ and CAS/

which are normally connected directly to the dynamic rams. RAS/ and CAS/ are

generated for every Phase 2 and every video data access (including refresh) so

that external clock generation is not required.

THEORY OF OPERATION

SYSTEM INTERFACE

The 6566/6567 video controller devices interact with the system data bus in a

special way. A 65XX system requires the system buses only during the Phase 2

(clock high) portion of the cycle. The 6566/6567 devices take advantage of this

feature by normally accessing system memory during the Phase 1 (clock low)

portion of the clock cycle. Therefore, operations such as character data fetches

and memory refresh are totally transparent to the processor and do not reduce

the processor throughput. The video chips provide the interface control signals

required to maintain this bus sharing.

The video devices provide the signal AEC (address enable control) which is used

to disable the processor address bus drivers allowing the video device to access

the address bus. AEC is active low which permits direct connection to the AEC

input of the 65XX family. The AEC signal is normally activated during Phase 1

so that processor operation is not affected. Because of this bus "sharing," all

memory accesses must be completed in ½ cycle. Since the video chips provide a

1MHz clock (which must be used as system Phase 2), a memory cycle is 500 ns

including address setup, data access and data setup to the reading device.

Certain operations of the 6566/6567 require data at a faster rate than

available by reading only during the Phase 1 time; specifically, the access of

character pointers from the video matrix and the fetch of MOB data. Therefore,

the processor must be disabled and the data accessed during the Phase 2 clock.

This is accomplished via the BA (bus available) signal. The BA line is normally

high but is brought low during Phase 1 to indicate that the video chip will require

a Phase 2 data access. Three Phase 2 times are allowed after BA low for the

APPENDIX N 449

processor to complete any current memory accesses. On the fourth Phase 2 after

BA low, the AEC signal will remain low during Phase 2 as the video chip fetches

data. The BA line is normally connected to the RDY input of a 65XX processor.

The character pointer fetches occur every eighth raster line during the display

window and require 40 consecutive Phase 2 accesses to fetch the video matrix

pointers. The MOB data fetches require 4 memory accesses as follows:

PHASE DATA CONDITION

1 MOB Pointer Every raster

2 MOB Byte 1 Each raster while MOB is displayed

1 MOB Byte 2 Each raster while MOB is displayed

2 MOB Byte 3 Each raster while MOB is displayed

The MOB pointers are fetched every other Phase 1 at the end of each raster
line. As required, the additional cycles are used for MOB data fetches. Again,
all necessary bus control is provided by the 6566/6567 devices.

MEMORY INTERFACE

The two versions of the video interface chip, 6566 and 6567, differ in address

output configurations. The 6566 has thirteen fully decoded addresses for direct

connection to the system address bus. The 6567 has multiplexed addresses for

direct connection to 64K dynamic RAMs. The least significant address bits, A06

– A00, are present on A06 – A00 while RAS/ is brought low, while the most

significant bits, A13 – A08, are present on A05 – A00 while CAS/ is brought

low. The pins A11 – A07 on the 6567 are static address outputs to allow direct

connection of these bits to a conventional 16K (2Kx8) ROM. (The lower order

addresses require external latching.)

PROCESSOR INTERFACE

Aside from the special memory accesses described above, the 6566/6567

registers can be accessed similar to any other peripheral device. The following

processor interface signals are provided:

450 APPENDIX N

DATA BUS (DB7 – DB0)

The eight data bus pins are the bi-directional data port, controlled by CS/, RW,
and Phase 0. The data bus can only be accessed while AEC and Phase 0 are
high and CS/ is low.

CHIP SELECT (CS/)

The chip select pin, CS/, is brought low to enable access to the device registers
in conjunction with the address and RW pins. CS/ low is recognized only while
AEC and Phase 0 are high.

READ/WRITE (R/W)

The read/write input, R/W, is used to determine the direction of data transfer
on the data bus, in conjunction with CS/. When R/W is high ("1") data is
transferred from the selected register to the data bus output. When R/W is low
("0") data presented on the data bus pins is loaded into the selected register.

ADDRESS BUS (A05 – A00)

The lower six address pins, A5 – A0, are bi-directional. During a processor read
or write of the video device, these address pins are inputs. The data on the
address inputs selects the register for read or write as defined in the register
map.

CLOCK OUT (PH0)

The clock output, Phase 0, is the 1MHz clock used as the 65XX processor Phase
0 in. All system bus activity is referenced to this clock. The clock frequency is
generated by dividing the 8MHz video input clock by eight.

INTERRUPTS (IRQ/)

The interrupt output, IRQ/, is brought low when an enabled source of interrupt
occurs within the device. The IRQ/ output is open drain, requiring an external
pull-up resistor.

VIDEO INTERFACE

The video output signal from the 6566/6567 consists of two signals which must

be externally mixed together. SYNC/LUM output contains all the video data,

including horizontal and vertical syncs, as well as the luminance information of

APPENDIX N 451

the video display. SYNC/LUM is open drain, requiring an external pull-up of

500 ohms. The COLOR output contains all the chrominance information, including

the color reference burst and the color of all display data. The COLOR output is

open source and should be terminated with 1000 ohms to ground. After

appropriate mixing of these two signals, the resulting signal can directly drive a

video monitor or be fed to a modulator for use with a standard television.

SUMMARY OF 6566/6567 BUS ACTIVITY

AEC PH0 CS/ R/W ACTION

0 0 X X PHASE 1 FETCH, REFRESH

0 1 X X PHASE 2 FETCH (PROCESSOR OFF)

1 0 X X NO ACTION

1 1 0 0 WRITE TO SELECTED REGISTER

1 1 0 1 READ FROM SELECTED REGISTER

1 1 1 X NO ACTION

COLOR CODES

D4 D3 D1 D0 HEX DEC COLOR

0 0 0 0 0 0 BLACK

0 0 0 1 1 1 WHITE

0 0 1 0 2 2 RED

0 0 1 1 3 3 CYAN

0 1 0 0 4 4 PURPLE

0 1 0 1 5 5 GREEN

0 1 1 0 6 6 BLUE

0 1 1 1 7 7 YELLOW

1 0 0 0 8 8 ORANGE

1 0 0 1 9 9 BROWN

1 0 1 0 A 10 LT RED

1 0 1 1 B 11 DARK GREY

1 1 0 0 C 12 MED GREY

1 1 0 1 D 13 LT GREEN

1 1 1 0 E 14 LT BLUE

1 1 1 1 F 15 LT GREY

452 APPENDIX N

APPENDIX N 453

454 APPENDIX N

APPENDIX N 455

456 APPENDIX N

6567 TIMING LIMITS

SPEC
SPEC
MIN TYP

SPEC
MAX

Clock out hi 465 484 500

Clock out lo 475 494 510

Clock to RAS lo 150 171 190

Clock to RAS hi 20 35 50

RAS lo to CAS lo 25 46 65

Clock to CAS hi 15 25 35

Clock to AEC hi/lo 15 33 50

Data out from CAS 184 220

Data rel from Ph0 80 113 135

Add-in to RAS setup 25 14

Add-in to RAS hold 0 –15

Add-out/RAS setup 35 48

Add-out/RAS hold 30 36 45

Add-out from Ph0 85 97

Add-out/CAS↑ hold 20 37 50

BA from Ph0 100 230 300

Data in setup/Ph0 60 42

Data in hold/Ph0 45 24

Color data setup 45 30

Color data hold 0 –17

Ph in + pulse 50 43

Ph in – pulse 65 58

Vil 1.23 0.80

Vih 2.20 1.91

Vol 0.52 0.55

Voh 2.40 3.03

APPENDIX O 457

APPENDIX O

6581 SOUND INTERFACE DEVICE (SID) CHIP SPECIFICATIONS

CONCEPT

The 6581Sound Interface Device (SID) is a single-chip, 3-voice electronic music

synthesizer/sound effects generator compatible with the 65XX and similar

microprocessor families. SID provides wide-range, high-resolution control of pitch

(frequency), tone color (harmonic content), and dynamics (volume). Specialized

control circuitry minimizes software overhead, facilitating use in arcade/home

video games and low-cost musical instruments.

FEATURES

 3 TONE OSCILLATORS

 Range: 0 – 4 kHz

 4 WAVEFORMS PER OSCILLATOR

 Triangle, Sawtooth,

 Variable Pulse, Noise

 3 AMPLITUDE MODULATORS

 Range: 48 dB

 3 ENVELOPE GENERATORS

 Exponential response

 Attack Rate: 2ms – 8s

 Decay Rate: 6ms – 24s

 Sustain level: 0 – peak volume

 Release Rate: 6ms – 24s

 OSCILLATOR SYNCHRONIZATION

 RING MODULATION

458 APPENDIX O

 PROGRAMMABLE FILTER
 Cutoff range: 30 Hz – 12 kHz
 12dB/octave Rolloff
 Lowpass, Bandpass,
 Highpass, Notch outputs
 Variable Resonance
 MASTER VOLUME CONTROL
 2 A/D POT INTERFACES
 RANDOM NUMBER/MODULATION GENERATOR
 EXTERNAL AUDIO INPUT

APPENDIX O 459

460 APPENDIX O

DESCRIPTION

The 6581 consists of three synthesizer "voices" which can be used independently

or in conjunction with each other (or external audio sources) to create complex

sounds. Each voice consists of a Tone Oscillator/Waveform Generator, an

Envelope Generator and an Amplitude Modulator. The Tone Oscillator controls

the pitch of the voice over a wide range. The Oscillator produces four waveforms

at the selected frequency, with the unique harmonic content of each waveform

providing simple control of tone color. The volume dynamics of the oscillator are

controlled by the Amplitude Modulator under the direction of the Envelope

Generator. When triggered, the Envelope Generator creates an amplitude

envelope with programmable rates of increasing and decreasing volume. In

addition to the three voices, a programmable Filter is provided for generating

complex, dynamic tone colors via subtractive synthesis.

SID allows the microprocessor to read the changing output of the third Oscillator

and third Envelope Generator. These outputs can be used as a source of

modulation information for creating vibrato, frequency/filter sweeps and similar

effects. The third oscillator can also act as a random number generator for

games. Two A/D converters are provided for interfacing SID with

potentiometers. These can be used for "paddles" in a game environment or as

front panel controls in a music synthesizer. SID can process external audio signals,

allowing multiple SID chips to be daisy-chained or mixed in complex polyphonic

systems.

SID CONTROL REGISTERS

There are 29 eight-bit registers in SID which control the generation of sound.

These registers are either WRITE-only or READ-only and are listed below in

Table 1.

APPENDIX O 461

462 APPENDIX O

SID REGISTER DESCRIPTION

VOICE 1

FREQ LO/FREQ HI (Registers 00, 01)

Together these registers form a l6-bit number which linearly controls the

frequency of Oscillator 1. The frequency is determined by the following

equation:

Fout = (Fn × FCIK/16777216) Hz

Where Fn is the 16-bit number in the Frequency registers and FCIK is the system

clock applied to the φ2 input (pin 6). For a standard 1.0 MHz clock, the frequency

is given by:

Fout = (Fn × 0.059604645) Hz

A complete table of values for generating 8 octaves of the equally tempered

musical scale with concert A (440 Hz) tuning is provided in Appendix E. It should

be noted that the frequency resolution of SID is sufficient for any tuning scale

and allows sweeping from note to note (portamento) with no discernible

frequency steps.

PW LO/PW HI (Registers 02, 03)

Together these registers form a 12-bit number (bits 4 – 7 of PW HI are not used)

which linearly controls the Pulse Width (duty cycle) of the Pulse waveform on

Oscillator 1. The pulse width is determined by the following equation:

PWout = (PWn/40.95) %

Where PWn is the 12-bit number in the Pulse Width registers.

The pulse width resolution allows the width to be smoothly swept with no

discernible stepping. Note that the Pulse waveform on Oscillator 1 must be

selected in order for the Pulse Width registers to have any audible effect. A

value of 0 or 4095 ($FFF) in the Pulse Width registers will produce a constant

DC output, while a value of 2048 ($800) will produce a square wave.

APPENDIX O 463

CONTROL REGISTER (Register 04)

This register contains eight control bits which select various options on Oscillator
1.

GATE (Bit 0): The GATE bit controls the Envelope Generator for Voice 1. When
this bit is set to a one, the Envelope Generator is Gated (triggered) and the
ATTACK/DECAY/SUSTAIN cycle is initiated. When the bit is reset to a zero, the
RELEASE cycle begins. The Envelope Generator controls the amplitude of
Oscillator 1 appearing at the audio output, therefore, the GATE bit must be set
(along with suitable envelope parameters) for the selected output of Oscillator
1 to be audible. A detailed discussion of the Envelope Generator can be found
at the end of this Appendix.

SYNC (Bit 1): The SYNC bit, when set to a one, synchronizes the fundamental
frequency of Oscillator 1 with the fundamental frequency of Oscillator 3,
producing "Hard Sync" effects.

Varying the frequency of Oscillator 1 with respect to Oscillator 3 produces a
wide range of complex harmonic structures from Voice 1 at the frequency of
Oscillator 3. In order for sync to occur, Oscillator 3 must be set to some frequency
other than zero but preferably lower than the frequency of Oscillator 1. No
other parameters of Voice 3 have any effect on sync.

RING MOD (Bit 2): The RING MOD bit, when set to a one, replaces the Triangle
waveform output of Oscillator 1 with a "Ring Modulated" combination of
Oscillators 1 and 3. Varying the frequency of Oscillator 1 with respect to
Oscillator 3 produces a wide range of non-harmonic overtone structures for
creating bell or gong sounds and for special effects. In order for ring modulation
to be audible, the Triangle waveform of Oscillator 1 must be selected and
Oscillator 3 must be set to some frequency other than zero. No other parameters
of Voice 3 have any effect on ring modulation.

TEST (Bit 3): The TEST bit, when set to a one, resets and locks Oscillator 1 at zero
until the TEST bit is cleared. The Noise waveform output of Oscillator 1 is also
reset and the Pulse waveform output is held at a DC level. Normally this bit is
used for testing purposes, however, it can be used to synchronize Oscillator 1 to
external events, allowing the generation of highly complex waveforms under
real-time software control.

464 APPENDIX O

(Bit 4): When set to a one, the Triangle waveform output of Oscillator 1 is

selected. The Triangle waveform is low in harmonics and has a mellow, flute-like

quality.

(Bit 5): When set to a one, the Sawtooth waveform output of Oscillator 1 is

selected. The Sawtooth waveform is rich in even and odd harmonics and has a

bright, brassy quality.

(Bit 6): When set to a one, the Pulse waveform output of Oscillator 1 is selected.

The harmonic content of this waveform can be adjusted by the Pulse Width

registers, producing tone qualities ranging from a bright, hollow square wave to

a nasal, reedy pulse. Sweeping the pulse width in real-time produces a dynamic

"phasing" effect which adds a sense of motion to the sound. Rapidly jumping

between different pulse widths can produce interesting harmonic sequences.

NOISE (Bit 7): When set to a one, the Noise output waveform of Oscillator 1 is

selected. This output is a random signal which changes at the frequency of

Oscillator 1. The sound quality can be varied from a low rumbling to hissing

white noise via the Oscillator 1 Frequency registers. Noise is useful in creating

explosions, gunshots, jet engines, wind, surf and other unpitched sounds, as well

as snare drums and cymbals. Sweeping the oscillator frequency with Noise

selected produces a dramatic rushing effect.

One of the output waveforms must be selected for Oscillator 1 to be audible,

however, it is NOT necessary to de-select waveforms to silence the output of

Voice 1. The amplitude of Voice 1 at the final output is a function of the Envelope

Generator only.

NOTE: The oscillator output waveforms are NOT additive. If more than one output waveform is

selected simultaneously, the result will be a logical ANDing of the waveforms. Although this

technique can be used to generate additional waveforms beyond the four listed above, it must

be used with care. If any other waveform is selected while Noise is on, the Noise output can "lock

up." If this occurs, the Noise output will remain silent until reset by the TEST bit or by bringing RES

(pin 5) low.

APPENDIX O 465

ATTACK/DECAY (Register 05)

Bits 4 – 7 of this register (ATK0 – ATK3) select 1 of 16 ATTACK rates for the

Voice 1 Envelope Generator. The ATTACK rate determines how rapidly the

output of Voice 1 rises from zero to peak amplitude when the Envelope

Generator is Gated. The 16 ATTACK rates are listed in Table 2.

Bits 0 – 3 (DCY0 – DCY3) select 1 of 16 DECAY rates for the Envelope

Generator. The DECAY cycle follows the ATTACK cycle and the DECAY rate

determines how rapidly the output falls from the peak amplitude to the selected

SUSTAIN level. The 16 DECAY rates are listed in Table 2.

SUSTAIN/RELEASE (Register 06)

Bits 4 – 7 of this register (STN0 – STN3) select 1 of 16 SUSTAIN levels for the

Envelope Generator. The SUSTAIN cycle follows the DECAY cycle and the output

of Voice 1 will remain at the selected SUSTAIN amplitude as long as the Gate

bit remains set. The SUSTAIN levels range from zero to peak amplitude in 16

linear steps, with a SUSTAIN value of 0 selecting zero amplitude and a SUSTAIN

value of 15 ($F) selecting the peak amplitude. A SUSTAIN value of 8 would

cause Voice 1 to SUSTAIN at an amplitude one-half the peak amplitude reached

by the ATTACK cycle.

Bits 0 – 3 (RLS0 – RLS3) select 1 of 16 RELEASE rates for the Envelope Generator.

The RELEASE cycle follows the SUSTAIN cycle when the Gate bit is reset to zero.

At this time, the output of Voice 1 will fall from the SUSTAIN amplitude to zero

amplitude at the selected RELEASE rate. The 16 RELEASE rates are identical to

the DECAY rates.

NOTE: The cycling of the Envelope Generator can be altered at any point via the Gate bit. The

Envelope Generator can be Gated and Released without restriction. For example, if the Gate

bit is reset before the envelope has finished the ATTACK cycle, the RELEASE cycle will immediately

begin, starting from whatever amplitude had been reached. If the envelope is then Gated again

(before the RELEASE cycle has reached zero amplitude), another ATTACK cycle will begin, starting

from whatever amplitude had been reached. This technique can be used to generate complex

amplitude envelopes via real-time software control.

466 APPENDIX O

Table 2. Envelope Rates

VALUE ATTACK RATE DECAY/RELEASE RATE

DEC HEX (Time Cycle) (Time Cycle)

0 0 2 ms 6 ms

1 1 8 ms 24 ms

2 2 16 ms 48 ms

3 3 24 ms 72 ms

4 4 38 ms 114 ms

5 5 56 ms 168 ms

6 6 68 ms 204 ms

7 7 80 ms 240 ms

8 8 100 ms 300 ms

9 9 250 ms 750 ms

10 A 500 ms 1.5 s

11 B 800 ms 2.4 s

12 C 1 s 3 s

13 D 3 s 9 s

14 E 5 s 15 s

15 F 8 s 24 s

NOTE: Envelope rates are based on a 1.00 MHz φ2 clock. For other φ2 frequencies, multiply the

given rate by 1 MHz/φ2. The rates refer to the amount of time per cycle. For example, given an

ATTACK value of 2, the ATTACK cycle would take16 ms to rise from zero to peak amplitude. The

DECAY/RELEASE rates refer to the amount of time these cycles would take to fall from peak

amplitude to zero.

VOICE 2

Registers $07 – $0D control Voice 2 and are functionally identical to registers

$00 – $06 with these exceptions:

1. When selected, SYNC synchronizes Oscillator 2 with Oscillator 1.

2. When selected, RING MOD replaces the Triangle output of Oscillator

 2 with the ring modulated combination of Oscillators 2 and 1.

APPENDIX O 467

VOICE 3

Registers $0E – $14 control Voice 3 and are functionally identical to registers
$00 – $06 with these exceptions:

1. When selected, SYNC synchronizes Oscillator 3 with Oscillator 2.

2. When selected, RING MOD replaces the Triangle output of Oscillator
 3 with the ring modulated combination of Oscillators 3 and 2.

Typical operation of a voice consists of selecting the desired parameters:

frequency, waveform, effects (SYNC, RING MOD) and envelope rates, then

gating the voice whenever the sound is desired. The sound can be sustained for

any length of time and terminated by clearing the Gate bit. Each voice can be

used separately, with independent parameters and gating, or in unison to create

a single, powerful voice. When used in unison, a slight detuning of each oscillator

or tuning to musical intervals creates a rich, animated sound.

FILTER

FC LO/FC HI (Registers $15, $16)

Together these registers form an 11-bit number (bits 3 to 7 of FC LO are not
used) which linearly controls the Cutoff (or Center) Frequency of the
programmable Filter. The approximate Cutoff Frequency ranges from 30 Hz to
12 KHz.

RES/FILT (Register $17)

Bits 4 – 7 of this register (RES0 – RES3) control the resonance of the filter.

Resonance is a peaking effect which emphasizes frequency components at the

Cutoff Frequency of the Filter, causing a sharper sound. There are16 resonance

settings ranging linearly from no resonance (0) to maximum resonance (15 or

$F). Bits 0 – 3 determine which signals will be routed through the Filter:

FILT1 (Bit 0): When set to a zero, Voice 1 appears directly at the audio output

and the Filter has no effect on it. When set to a one, Voice 1 will be processed

through the Filter and the harmonic content of Voice 1 will be altered according

to the selected Filter parameters.

FILT2 (Bit 1): Same as bit 0 for Voice 2.

FILT3 (Bit 2): Same as bit 0 for Voice 3.

FILTEX (Bit 3): Same as bit 0 for External audio input (pin 26).

468 APPENDIX O

MODE/VOL (Register $18)

Bits 4 – 7 of this register select various Filter mode and output options:

LP (Bit 4): When set to a one, the Low-Pass output of the Filter is selected and

sent to the audio output. For a given Filter input signal, all frequency components

below the Filter Cutoff Frequency are passed unaltered, while all frequency

components above the Cutoff are attenuated at a rate of 12 dB/Octave. The

Low-Pass mode produces full-bodied sounds.

BP (Bit 5): Same as bit 4 for the Bandpass output. All frequency components

above and below the Cutoff are attenuated at a rate of 6 dB/Octave. The

Bandpass mode produces thin, open sounds.

HP (Bit 6): Same as bit 4 for the High-Pass output. All frequency components

above the Cutoff are passed unaltered, while all frequency components below

the Cutoff are attenuated at a rate of 12 dB/Octave. The High-Pass mode

produces tinny, buzzy sounds.

3 OFF (Bit 7): When set to a one, the output of Voice 3 is disconnected from the

direct audio path. Setting Voice 3 to bypass the Filter (FILT 3 = 0) and setting 3

OFF to a one prevents Voice 3 from reaching the audio output. This allows Voice

3 to be used for modulation purposes without any undesirable output.

NOTE: The Filter output modes ARE additive and multiple Filter modes may be selected

simultaneously. For example, both LP and HP modes can be selected to produce a Notch (or Band

Reject) Filter response. In order for the Filter to have any audible effect, at least one Filter output

must be selected and at least one Voice must be routed through the Filter. The Filter is, perhaps,

the most important element in SID as it allows the generation of complex tone colors via

subtractive synthesis (the Filter is used to eliminate specific frequency components from a

harmonically rich input signal). The best results are achieved by varying the Cutoff Frequency in

real-time.

Bits 0-3 (VOL0 – VOL3) select 1 of 16 overall Volume levels for the final

composite audio output. The output volume levels range from no output (0) to

maximum volume (15 or $F) in 16 linear steps. This control can be used as a static

volume control for balancing levels in multi-chip systems or for creating dynamic

volume effects, such as Tremolo. Some Volume level other than zero must be

selected in order for SID to produce any sound.

APPENDIX O 469

MISCELLANEOUS

POTX (Register $19)

This register allows the microprocessor to read the position of the potentiometer

tied to POTX (pin 24), with values ranging from 0 at minimum resistance, to 255

($FF) at maximum resistance. The value is always valid and is updated every

512 φ2 clock cycles. See the Pin Description section for information on pot and

capacitor values.

POTY (Register $1A)

Same as POTX for the pot tied to POTY (pin 23).

OSC 3/RANDOM (Register $1B)

This register allows the microprocessor to read the upper 8 output bits of

Oscillator 3. The character of the numbers generated is directly related to the

waveform selected. If the Sawtooth waveform of Oscillator 3 is selected, this

register will present a series of numbers incrementing from 0 to 255 ($FF) at a

rate determined by the frequency of Oscillator 3. If the Triangle waveform is

selected, the output will increment from 0 up to 255, then decrement down to 0.

If the Pulse waveform is selected, the output will jump between 0 and 255.

Selecting the Noise waveform will produce a series of random numbers,

therefore, this register can be used as a random number generator for games.

There are numerous timing and sequencing applications for the OSC 3 register,

however, the chief function is probably that of a modulation generator. The

numbers generated by this register can be added, via software, to the Oscillator,

or Filter Frequency registers or the Pulse Width registers in real-time. Many

dynamic effects can be generated in this manner. Siren-like sounds can be

created by adding the OSC 3 Sawtooth output to the frequency control of

another oscillator. Synthesizer "Sample and Hold" effects can be produced by

adding the OSC 3 Noise output to the Filter Frequency control registers. Vibrato

can be produced by setting Oscillator 3 to a frequency around 7 Hz and adding

the OSC 3 Triangle output (with proper scaling) to the Frequency control of

another oscillator. An unlimited range of effects are available by altering the

frequency of Oscillator 3 and scaling the OSC 3 output. Normally, when

Oscillator3 is used for modulation, the audio output of Voice 3 should be

eliminated (3 OFF = 1).

470 APPENDIX O

ENV 3 (Register $1C)

Same as OSC 3, but this register allows the microprocessor to read the output of

the Voice 3 Envelope Generator. This output can be added to the Filter

Frequency to produce harmonic envelopes, WAH-WAH, and similar effects.

"Phaser" sounds can be created by adding this output to the frequency control

registers of an oscillator. The Voice 3 Envelope Generator must be Gated in

order to produce any output from this register. The OSC 3 register, however,

always reflects the changing output of the oscillator and is not affected in any

way by the Envelope Generator.

SID PIN DESCRIPTION

CAP1A, CAP1B (Pins 1, 2) / CAP2A, CAP2B (Pins 3, 4)

These pins are used to connect the two integrating capacitors required by the

programmable Filter. C1 connects between pins 1 and 2, C2 between pins 3

and 4. Both capacitors should be the same value. Normal operation of the Filter

over the audio range (approximately 30 Hz – 12 kHz) is accomplished with a

value of 2200 pF for C1 and C2. Polystyrene capacitors are preferred and in

complex polyphonic systems, where many SID chips must track each other,

matched capacitors are recommended.

The frequency range of the Filter can be tailored to specific applications by the

choice of capacitor values. For example, a low-cost game may not require full

high-frequency response. In this case, larger values for C1 and C2 could be

chosen to provide more control over the bass frequencies of the Filter. The

maximum Cutoff Frequency of the Filter is given by:

FCmax = 2.6E – 5 / C

Where C is the capacitor value. The range of the Filter extends 9 octaves below

the maximum Cutoff Frequency.

RES (Pin 5)

This TTL-level input is the reset control for SID. When brought low for at least ten

φ2 cycles, all internal registers are reset to zero and the audio output is silenced.

This pin is normally connected to the reset line of the microprocessor or a power-

on-clear circuit.

APPENDIX O 471

φ2 (Pin 6)

This TTL-Ievel input is the master clock for SID. All oscillator frequencies and

envelope rates are referenced to this clock. φ2 also controls data transfers

between SID and the microprocessor. Data can only be transferred when φ2 is

high. Essentially, φ2 acts as a high-active chip select as far as data transfers are

concerned. This pin is normally connected to the system clock, with a nominal

operating frequency of 1.0 MHz.

R/W (Pin 7)

This TTL-Ievel input controls the direction of data transfers between SID and the

microprocessor. If the chip select conditions have been met, a high on this line

allows the microprocessor to Read data from the selected SID register and a low

allows the microprocessor to Write data into the selected SID register. This pin is

normally connected to the system Read/Write line.

CS (Pin 8)

This TTL-Ievel input is a low active chip select which controls data transfers

between SID and the microprocessor. CS must be low for any transfer. A Read

from the selected SID register can only occur if CS is low, φ2 is high and R/W is

high. A Write to the selected SID register can only occur if CS is low, φ2 is high

and R/W is low. This pin is normally connected to address decoding circuitry,

allowing SID to reside in the memory map of a system.

A0 – A4 (Pins 9 – 13)

These TTL-Ievel inputs are used to select one of the 29 SID registers. Although

enough addresses are provided to select 1 of 32 registers, the remaining three

register locations are not used. A Write to any of these three locations is ignored

and a Read returns invalid data. These pins are normally connected to the

corresponding address lines of the microprocessor so that SID may be addressed

in the same manner as memory.

GND (Pin14)

For best results, the ground line between SID and the power supply should be

separate from ground lines to other digital circuitry. This will minimize digital

noise at the audio output.

472 APPENDIX O

D0 – D7 (Pins 15 – 22)

These bidirectional lines are used to transfer data between SID and the

microprocessor. They are TTL compatible in the input mode and capable of

driving 2 TTL loads in the output mode. The data buffers are usually in the high-

impedance off state. During a Write operation, the data buffers remain in the

off (input) state and the microprocessor supplies data to SID over these lines.

During a Read operation, the data buffers turn on and SID supplies data to the

microprocessor over these lines. The pins are normally connected to the

corresponding data lines of the microprocessor.

POTX, POTY (Pins 24, 23)

These pins are inputs to the A/D converters used to digitize the position of

potentiometers. The conversion process is based on the time constant of a

capacitor tied from the POT pin to ground, charged by a potentiometer tied

from the POT pin to +5 volts. The component values are determined by:

RC = 4.7E – 4

Where R is the maximum resistance of the pot and C is the capacitor.

The larger the capacitor, the smaller the POT value jitter. The recommended

values for R and C are 470 kΩ and 1000 pF. Note that a separate pot and cap

are required for each POT pin.

VCC (Pin 25)

As with the GND line, a separate +5V DC line should be run between SID VCC

and the power supply in order to minimize noise. A bypass capacitor should be

located close to the pin.

EXT IN (Pin 26)

This analog input allows external audio signals to be mixed with the audio output

of SID or processed through the Filter. Typical sources include voice, guitar, and

organ. The input impedance of this pin is on the order of 100 kΩ. Any signal

applied directly to the pin should ride at a DC level of 6 volts and should not

exceed 3 volts p–p. In order to pre vent any interference caused by DC level

differences. External signals should be AC-coupled to EXT IN by an electrolytic

capacitor in the 1 – 10 μF range. As the direct audio path (FILTEX = 0) has unity

APPENDIX O 473

gain, EXT IN can be used to mix outputs of many SID chips by daisy-chaining.

The number of chips that can be chained in this manner is determined by the

amount of noise and distortion allowable at the final output. Note that the output

Volume control will affect not only the three SID voices, but also any external

inputs.

AUDIO OUT (Pin 27)

This open-source buffer is the final audio output of SID, comprised of the three

SID voices, the Filter and any external input. The output level is set by the output

Volume control and reaches a maximum of 2 volts p–p at a DC level of 6 volts.

A source resistor from AUDIO OUT to ground is required for proper operation.

The recommended resistance is 1Ω for a standard output impedance.

As the output of SID rides at a 6 volt DC level, it should be AC-coupled to any

audio amplifier with an electrolytic capacitor in the 1–10 µF range.

VDD (Pin 28)

As with VCC, a separate + 12V DC line should be run to SID VDD and a bypass

capacitor should be used.

6581 SID CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

RATING SYMBOL VALUE UNITS

Supply Voltage VDD –0.3 to +17 VDC

Supply Voltage VCC –0.3 to +7 VDC

Input Voltage (analog) VINA –0.3 to +17 VDC

Input Voltage (digital) VIND –0.3 to +7 VDC

Operating Temperature TA 0 to +70 °C

Storage Temperature TSTG –55 to +150 °C

474 APPENDIX O

APPENDIX O 475

476 APPENDIX O

6581 SID TIMING

READ CYCLE

SYMBOL NAME MIN TYP MAX UNITS

TCYC Clock Cycle Time 1 — 20 µs

TC Clock High Pulse Width 450 500 10,000 ns

TR, TF Clock Rise/Fall Time — — 25 ns

TRS Read Set-up Time 0 — — ns

TRH Read Hold Time 0 — — ns

TACC Access Time — — 300 ns

TAH Address Hold Time 10 — — ns

TCH Chip Select Hold Time 0 — — ns

TDH Data Hold Time 20 — — ns

APPENDIX O 477

WRITE CYCLE

SYMBOL NAME MIN TYP MAX UNITS

TW Write Pulse Width 300 — — ns

TWH Write Hold Time 0 — — ns

TAWS Address Set-up Time 0 — — ns

TAH Address Hold Time 10 — — ns

TCH Chip Select Hold Time 0 — — ns

TVD Valid Data 80 — — ns

TDH Data Hold Time 10 — — ns

478 APPENDIX O

EQUAL-TEMPERED MUSICAL SCALE VALUES

The table in Appendix E lists the numerical values which must be stored in the SID

Oscillator frequency control registers to produce the notes of the equal-

tempered musical scale. The equal-tempered scale consists of an octave

containing 12 semitones (notes): C, D, E, F, G, A, B and C#, D#, F#, G#, A#. The

frequency of each semitone is exactly the 12th root of 2 (√2
��) times the

frequency of the previous semitone. The table shows values based on both a φ2

clock of 1.02 MHz (shown as NTSC) and 0.985 MHz (shown as PAL). Refer to the

equation given in the Register Description for use of other master clock

frequencies. The scale selected is concert pitch, in which A-4 = 440 Hz.

Transpositions of this scale and scales other than the equal-tempered scale are

also possible.

Although the table in Appendix E provides a simple and quick method for

generating the equal-tempered scale, it is very memory inefficient as it requires

192 bytes for the table alone. Memory efficiency can be improved by

determining the note value algorithmically. Using the fact that each note in an

octave is exactly half the frequency of that note in the next octave, the note

look-up table can be reduced from 96 entries to 12 entries, as there are 12

notes per octave. If the 12 entries (24 bytes) consist of the 16-bit values for the

eighth octave (C-7 through B-7), then notes in lower octaves can be derived by

choosing the appropriate note in the eighth octave and dividing the 16-bit value

by two for each octave of difference. As division by two is nothing more than a

right-shift of the value, the calculation can easily be accomplished by a simple

software routine. Although note B-7 is beyond the range of the oscillators, this

value should still be included in the table for calculation purposes (the MSB of B-

7 would require a special software case, such as generating this bit in the CARRY

before shifting). Each note must be specified in a form which indicates which of

the 12 semitones is desired, and which of the eight octaves the semitone is in.

Since four bits are necessary to select 1 of 12 semitones and three bits are

necessary to select 1 of 8 octaves, the information can fit in one byte, with the

lower nybble selecting the semitone (by addressing the look-up table) and the

upper nybble being used by the division routine to determine how many times

the table value must be right-shifted.

APPENDIX O 479

SID ENVELOPE GENERATORS

The four-part ADSR (ATTACK, DECAY, SUSTAIN, RELEASE) envelope generator

has been proven in electronic music to provide the optimum trade-off between

flexibility and ease of amplitude control. Appropriate selection of envelope

parameters allows the simulation of a wide range of percussion and sustained

instruments. The violin is a good example of a sustained instrument. The violinist

controls the volume by bowing the instrument. Typically, the volume builds slowly,

reaches a peak, then drops to an intermediate level. The violinist can maintain

this level for as long as desired, then the volume is allowed to slowly die away.

A "snapshot" of this envelope is shown below:

This volume envelope can be easily reproduced by the ADSR as shown below,

with typical envelope rates:

ATTACK: 10 ($A) 500 ms

DECAY: 8 300 ms

SUSTAIN: 10 ($A)

RELEASE: 9 750 ms

Note that the tone can be held at the intermediate SUSTAIN level for as long as

desired. The tone will not begin to die away until GATE is cleared. With minor

alterations, this basic envelope can be used for brass and woodwinds as well as

strings.

An entirely different form of envelope is produced by percussion instruments such

as drums, cymbals and gongs, as well as certain keyboards such as pianos and

harpsichords. The percussion envelope is characterized by a nearly instantaneous

attack, immediately followed by a decay to zero volume. Percussion instruments

cannot be sustained at a constant amplitude. For example, the instant a drum is

480 APPENDIX O

struck, the sound reaches full volume and decays rapidly regardless of how it

was struck. A typical cymbal envelope is shown below:

ATTACK: 0 2 ms

DECAY: 9 750 ms

SUSTAIN: 0

RELEASE: 9 750 ms

Note that the tone immediately begins to decay to zero amplitude after the
peak is reached, regardless of when GATE is cleared. The amplitude envelope
of pianos and harpsichords is somewhat more complicated, but can be
generated quite easily with the ADSR. These instruments reach full volume when
a key is first struck. The amplitude immediately begins to die away slowly as
long as the key remains depressed. If the key is released before the sound has
fully died away, the amplitude will immediately drop to zero. This envelope is
shown below:

ATTACK: 0 2 ms

DECAY: 9 750 ms

SUSTAIN: 0

RELEASE: 0 6 ms

Note that the tone decays slowly until GATE is cleared, at which point the
amplitude drops rapidly to zero.

The most simple envelope is that of the organ. When a key is pressed, the tone
immediately reaches full volume and remains there. When the key is released,
the tone drops immediately to zero volume. This envelope is shown below:

ATTACK: 0 2 ms

DECAY: 0 6 ms

SUSTAIN: 15 ($F)

RELEASE: 0 6 ms

The real power of SID lies in the ability to create original sounds rather than
simulations of acoustic instruments. The ADSR is capable of creating envelopes
which do not correspond to any "real" instruments. A good example would be
the "backwards" envelope. This envelope is characterized by a slow attack and

APPENDIX O 481

rapid decay which sounds very much like an instrument that has been recorded
on tape then played backwards. This envelope is shown below:

ATTACK: 10 ($A) 500 ms

DECAY: 0 6 ms

SUSTAIN: 15 ($F)

RELEASE: 3 72 ms

Many unique sounds can be created by applying the amplitude envelope of one

instrument to the harmonic structure of another. This produces sounds similar to

familiar acoustic instruments, yet notably different. In general, sound is quite

subjective and experimentation with various envelope rates and harmonic

contents will be necessary in order to achieve the desired sound.

TYPICAL 6581/SID APPLICATION

482 APPENDIX P

APPENDIX P

GLOSSARY

ADSR Attack/Decay/Sustain/Release envelope.

attack Rate at which musical note reaches peak volume.

binary Base-2 number system.

Boolean operators Logical operators.

byte Memory location.

CHROMA noise Color distortion.

CIA Complex Interface Adapter.

DDR Data Direction Register.

decay Rate at which musical note falls from peak volume to
sustain volume.

decimal Base-10 number system.

e Mathematical constant (approx. 2.71828183).

envelope Shape of the volume of a note over time.

FIFO First-In/First-Out.

hexadecimal Base-16 number system.

integer Whole number (without decimal point).

jiffy clock Hardware interval timer.

NMI Non-Maskable Interrupt.

octal Base-8 number system.

operand Parameter.

OS Operating System.

pixel Dot of resolution on the screen.

queue Single-file line.

register Special memory storage location.

release Rate at which a musical note fails from sustain volume to
no volume.

ROM Read-Only Memory.

SID Sound Interface Device

signed numbers Plus or minus numbers.

subscript Index variable.

sustain Volume level for sustain of musical note.

syntax Programming sentence structure.

truncated Cut off, eliminated (not rounded).

VIC-II Video Interface Chip.

video screen Television set

INDEX 483

INDEX

Abbreviations, BASIC Commands, Statements, and
Functions x, 29, 31, 374-375
ABS function 31, 35, 374
Accessories 335-371
Accumulator 213
ACPTR 272-274
ADC 232, 235, 254
Addition 3, 9-11, 16
Addressing 211, 215-217, 411-413
A/D/S/R 183-185, 189, 196-199
AND 232, 235, 254
AND operator 13-16, 31, 35-36, 374
Animation xiii, 153, 166
Applications xiii-xvi
Arithmetic expressions 10-12
Arithmetic operators 10-12, 16
Arrays 10-12, 44-45
ASC function 31, 37, 374
ASCII character code 31, 38, 340, 374
ASL 232, 236, 254
Assembler 215, 218, 227, 310
ArcTaNgent function 31, 38, 374
Attack (see A/D/S/R)

Bank selection 101-102, 133
BASIC abbreviations 29, 31, 374-375
BASIC commands 31, 41, 58-60, 62, 81-82, 91
BASIC miscellaneous functions 31, 43-44,
49, 56-57, 61, 69, 70, 80, 83-85, 89
BASIC numeric functions 31-35, 37-38, 42, 46-47,
49, 83-84, 88-89
BASIC operators 3, 9-15, 31-36, 63-64, 68, 92
BASIC statements 18-26, 31, 39-55, 57, 62-67,
69-79, 86-87, 92
BASIC string functions 31, 38, 56, 61, 79, 87, 89
BASIC variables 7-26
BCC 232, 236, 254
BCS 232, 236, 254
BEQ 226-227, 232, 237, 254
Bibliography 388-390
Binary 69, 92, 108, 112, 216-217
Bit 99-148, 290, 298, 300-301, 305, 343-
357, 359
BIT 232, 237, 254
Bitmap mode 121-130
Bitmap mode, multicolor 127-130
Bitmapping 121-130
BMI 232, 237, 254
BNE 226-227, 232, 238, 254
Boolean arithmetic 14
BPL 232, 238, 254
Branches and testing 226-227
BRK 232, 238, 254
Buffer, keyboard 93

Business aids xiii-xvi
BVC 232, 239, 254
BVS 232, 239, 254
Byte 3, 104, 108, 117-119, 124-127, 196,
213, 218-220, 222-227, 260-263, 274, 278-
279, 286, 292, 299, 307,357-359

Cassette port 337, 340-342
Cassette, tape recorder xiii, 39-41, 65-67, 81-82,
91, 187, 192, 283, 294, 297, 320-320, 337-
338, 340-342
Character PEEKs and POKES 104, 106, 109-
111, 115, 118, 120-122, 127-130, 134-137,
150, 154-155, 159-161, 165-166
CHAREN 260-261
CHKIN 272, 275
CHKOUT 272, 276
CHRGET 272, 307-308
CHRIN 272, 277-278
CHROUT 272, 278-279
CHR$ function 24, 31, 37-38, 45, 50, 55, 75-76,
93-94, 97, 120, 156, 336-342, 374, 379-381
CINT 272, 280
CIOUT 272, 279-280
CLALL 272, 281
CLC 232, 239, 254
CLD 232, 240, 254
CLI 232, 240, 254
Clock 80, 89, 314, 320-320, 366, 406-408,
421-427, 431, 451
Clock timing diagram 406-408
CLOSE 272, 281-282
CLOSE statement 31, 39-41, 348, 354, 374
CLR statement 31, 39-40, 81, 109, 374
CLRCHN 272, 282
CLR/HOME key 220
CLV 232, 240, 254
CMD statement 31, 40-41, 374
CMP 232, 241, 254
Collision detect 144-145, 180
Color adjustment 113
Color combinations chart 152
Color memory 103
Color register 117, 120, 128, 135-136,
179
Color screen, background, border 115-119,
128, 135-137, 176, 179-180
Commands, BASIC 31-92
Commodore magazine xvii-xviii, 390
Commodore 64 memory map 310
Complement, twos 63-64
Constants, floating-point, integer, string 4-7, 46,
77-78
CONTinue command 31, 41-42, 46, 81, 86, 374
ConTRoL key 58, 72, 93-97, 171
COSine function 31, 42, 374

484 INDEX

CP/M x, xiv, 368-371
CPX 227, 232, 241, 254
CPY 227, 232, 241, 254
Crunching BASIC programs 24-27, 156
CuRSoR keys 93-97, 336

Datasette™ recorder (see cassette, tape
recorder)
DATA statement 26, 31, 42-43, 76-77,
111-114, 164, 169, 174, 374
DEC 232, 242, 254
Decay (see A/D/S/R)
DEFine FuNction statement 31, 43-44,
374
DELete key 71-72, 95-96
DEX 226, 232, 242, 254
DEY 226, 232, 242, 254
DiMension statement 3, 31, 44-45, 374
Direct mode 3
Division 3, 10-11

Edit mode 93-97
Editor, screen 93-97
END statement 31, 46, 79, 93, 374
Envelope generator (see A/D/S/R)
EOR 232, 243, 254
Equal, not-equal-to signs 3, 9-12
Error messages 306, 400-401
Expansion port(s) (also user port, serial
port, RS-232 port), 335-371
EXPonent function 31, 46, 374
Exponentiation 5-6, 10, 12, 16

Files (cassette) 40, 50, 55, 59-60, 65-
66, 75, 84-85, 91, 337-338, 340-342
Files (disk) 40, 50, 55, 59-60, 65-66, 75, 84-
85, 91, 337-338, 342
Filtering 183, 189, 199-202
Fire button, joystick/paddle/lightpen
 320-320, 343-348
FOR statement 20-21, 31, 39, 47-48,
62-63, 77-78, 86, 110, 155-156, 165-166,
169-171, 198-199, 309, 374
Football 45
FREE function 31, 49, 109, 374
FuNction function 31, 47, 374
Functions 31, 35, 37-38, 42, 46-47, 49, 56-
57, 61, 69-70, 79-80, 83-85, 87-90, 374-375

Game controls and ports 343-348
GET statement 22-24, 31, 37, 49-50,
93, 374-375
GETIN 272, 283
GET# statement 31, 37, 50, 55, 65,
341-342, 348, 374
GOSUB statement 31, 39, 51-52, 77, 79,
85, 374
GOTO (GO TO) statement 31, 37, 48,
52-53, 64, 77, 81, 86, 374
Graphics keys xiv-xv, 70-74, 95-96,
108-114

Graphics mode xiv-xv, 99-183
Graphics mode, bitmapped 121-130
Graphics symbols (see graphics keys)
Greater than, equal to or 3, 12-13, 16

Hexadecimal notation 101, 209, 215-218
Hierarchy of operations 16

IEEE-488-interface (see serial port)
IF...THEN statement 31, 46-47, 49, 52-53,
64, 70, 86, 172-173, 180, 374
INC 232, 243, 254
Income/expense program 20-21
Indexed-indirect 224-225
Indexing 223-225
Indirect-indexed 223-224
INPUT statement 18-22, 31, 45, 53-55,
93, 374
INPUT# statement 31, 55, 75, 86, 88, 90,
374
INSerT key 72, 95-96
INTeger function 31, 56, 80, 374
Integer, arrays, constants, variables 4-5, 7-9
INX 226-227, 232, 243, 254
INY 226-227, 232, 244, 254
IOBASE 272, 284
I/O Guide 335-375
IOINIT 272, 285
I/O Pinouts 395-397
I/O Ports 214, 260, 335-375
I/O Registers 104-106, 212-214
I/O Statements 39, 50, 54-55, 65-67,
75
IRQ 308

Joysticks 343-345
JMP 228-230, 232, 244, 254, 270, 308
JSR 228-230, 232, 244, 255, 268, 270

KERNAL 2, 94, 209, 228-230, 308, 268-
306, 348-358
Keyboard 93-98
Keywords, BASIC 29-92

LDA 218-220, 232, 245, 255
LDX 232, 245, 255
LDY 232, 246, 255
LEFT$ function 31, 56, 375
LENgth function 31, 57, 375
Less than, equal to or 3, 12-13, 16
LET statement 31, 57, 375
LIST command 31, 58, 375
LISTEN 272, 285
LOAD 272, 286
LOAD command 31, 59-60, 370, 375
Loading programs from tape, disk 59-60, 337-
338, 340-342
LOGarithm function 31, 61, 375
Lower case characters 72-74, 105
LPX (LPY) 348
LSR 232, 246, 255

INDEX 485

Machine language 209-320, 411-413
Mask 92
Mathematics formulas 394
Mathematical symbols 3, 6-17, 394
MEMBOT 272, 287
Memory maps 212, 262-267, 272,
310-320
Memory map, abbreviated 212
Memory reallocation 101-103
MEMTOP 272, 288
MID$ function 31, 61, 375
Modem xiii-xviii, 339-340
Modulation 183, 207-208
Multiplication 3, 10-11
Music 183-208

NEW command 18, 31, 62, 111, 117,
185, 187, 375
NEXT command 20-21, 31, 39, 47-48,
62-63, 77-78, 86, 110, 155-156, 165-166,
169-171, 198-199, 309, 375
NOP 232, 246, 255
NOT operator 13-16, 31, 63-64, 375
Note types 190
Numeric variables 7-8, 26

ON (ON… GOTO/GOSUB) statement
 31, 64, 375
OPEN 272, 289
OPEN statement 31, 41, 65-67, 75-76,
85, 94, 337-339, 349-352, 375
Operating system 210-211
Operators, arithmetic 3, 9-12, 16
Operators, logical 13-16, 31-31, 35-37,
63-64, 68, 374-375
Operators, relational 3, 10-12, 16
OR operator 13-26, 31, 68, 101-
102, 104, 106, 115, 118, 120, 122, 126-127,
129, 134, 136-137, 375
ORA 232, 247, 255

Parentheses 3, 8, 30, 31, 83-84, 88, 375
PEEK function 31, 69, 93, 101-102,
104, 106, 108-111, 115, 118, 120-122, 126-
130, 134-137, 145, 150, 159-160, 176-177,
180, 185, 211, 361, 375
Peripherals (see I/O Guide)
PHA 232, 247, 255
PHP 232, 247, 255
Pinouts (also see I/O Pinouts), 363, 395-
397
PLA 232, 248, 255
PLOT 272, 290
PLP 232, 248, 255
POKE statement 25, 31, 69-70, 94, 101-
102, 104, 106, 109-111, 115-116, 118, 120-
123, 126-130, 134-137, 150, 153-161, 165-
166, 168-170, 172-173, 177-178, 180, 184-
186, 194, 198-199, 204-205, 211, 220, 309,
361, 375-376
Ports, I/O 214, 335-375, 395-397

POSition function 31, 70, 375
Power/Play xvi, 390
PRINT statement 13-15, 18-22, 25, 31-
54, 56-61, 63, 68-75, 79-80, 83-84, 87-89,
94-96, 109, 168, 171, 210, 213, 220, 375
PRINT# statement 31, 40-41, 75-76, 85,
94, 337, 340-341, 348, 353, 375
Printer xv, 338-339
Program counter 214
Program mode 3
Prompt 45

Quotation marks xi, 3, 23, 72, 95, 337
Quote mode 72-73, 95-96

RAM 49, 100-101, 104-105, 107-108,
110-111, 117, 122, 260-262, 269, 340
RAMTAS 272, 291
Random numbers 53, 80
RaNDom function 31, 43, 53, 80, 375
Raster-interrupt 131, 150-152
RDTIM 272, 291
READST 272, 292
READ statement 31, 42, 76-77, 111,
170, 309, 375
Release (see A/D/S/R)
Register map, CIA chip 428
Register map, SID chip 461
Register map, VIC chip 454-455
REMark statement 25-26, 31, 37-38, 41-
42, 45-46, 50, 77-78, 93-95, 101, 118, 198-
199, 338, 340, 356, 375
Reserved words (see Keywords, BASIC)
RESTOR 272, 293
RESTORE key 22, 92, 126, 353
RESTORE statement 31, 78, 375
RETURN key 3, 18, 22, 41, 50-51,
74, 93-97, 154-155, 166, 217, 220, 336-337,
370
RETURN statement 31, 51-52, 79, 85, 175,
375
ReVerSe ON, OFF keys 97
RIGHT$ function 31, 79, 375
ROL 232, 248, 255
ROM 261, 268-269
ROM, character generator 103-111,
134
ROR 232, 249, 255
RS-232C 335, 348-359
RTI 232, 249, 255, 308
RTS 232, 249, 255
RUN command 31, 40, 59, 81, 113,
154, 375
RUN/STOP key 22, 41-42, 52, 58, 86,
92, 126, 220, 353

SAVE 272, 294
SAVE command 31, 81-82, 375
SBC 232, 250, 255
SCNKEY 272, 295
SCREEN 272, 295-296

486 INDEX

Screen editor 2, 94-97, 211
Screen memory 102-103
Scrolling 128-130, 166
SEC 232, 250, 255
SECOND 272, 296
SED 232, 250, 255
SEI 232, 251, 255
Serial port (IEEE-488) 262, 320, 320, 362-
366, 432-433
SETLFS 272, 297
SETMSG 272, 298
SETNAM 272, 299
SETTIM 272, 299-300
SETTMO 272, 300-301
SGN function 31, 83, 109, 375
SHIFT key 4, 30, 72, 74, 94, 96-97, 168, 220
SID chip programming xiv, 183-208
SID chip specifications 457-481
SID chip memory map 223-320
SiNe function 31, 83, 375
Sound waves 186-187, 192-196
SPaCe function 27, 31, 83-84, 336,
375
Sprites x, xiv, 99-100, 131-148, 153-182
Sprite display priorities 144, 161, 179
Sprite positioning 137-143, 157-161, 177
SQuare Root function 31, 84, 375
STA 221, 232, 251, 255
Stack pointer 214, 222
STATUS function 31, 84-85, 354, 375
Status register 214, 354
STEP keyword, (see FOR...TO) 31, 86
STOP 272, 301-302
STOP command 31, 41, 86, 375
STOP key (see RUN/STOP key)
String arrays, constants, variables 4, 6-9
String expressions 3, 17
String operators 3, 16-17
STR$ function 31, 87, 375
STX 232, 251, 255
STY 232, 252, 255
Subroutines 222, 228-229, 270, 307

Subtraction 3, 10-11, 16
Sustain (see A/D/S/R)
SYS statement 31, 87, 121, 307, 375

TAB function 27, 31, 45, 88, 336,
375
TANgent function 31, 88, 375
TALK 272, 302
TAX 232, 252, 255
TAY 232, 252, 255
THEN keyword (see IF...THEN), 31
TIME function 31, 89, 375
TIME$ function 31, 89, 375
TKSA 272, 302-303
TO keyword (see FOR...TO), 31
TSX 232, 253, 255
TXA 229, 232, 253, 255
TXS 232, 253, 255
TYA 229, 232, 253, 255

UDTIM 272, 303
UNLSN 272, 304
UNTLK 272, 304
User port 355, 359-362
USR function 31, 90, 307, 375

VALue function 31, 90, 375
VECTOR 272, 305-306
VERIFY command 31, 91, 375
Vibrato 203
Voices 187-191
Volume control, SID 186

WAIT statement 13-14, 31, 92, 375

XOR, (see WAIT statement) 13-14
X-index register 213, 223-224

Y-index register 214, 223-224

Z-80 (see CP/M)
Zero page 221-222, 358-359

