COMMODORE 64 X
PROGRAMMER'S
REFERENCE GUIDE

REPRODUCED - 2026

BASED ON ORIGINAL DOCUMENTATION:
FIRST PUBLISHED — 1982

THIS REVISION: R260110-01

TABLE OF CONTENTS

INTRODUCTION

What's Included?

1. BASIC PROGRAMMING RULES

Introduction

Expressions and Operators

Logical Operators

String Operations

String Expressions

Programming Techniques

Data Conversions

Introduction

ix

X

How To Use This Reference Guide xi
Commodore 64 Applications Guide xii
Commodore Information Network xvii
1

2

Screen Display Codes (BASIC Character Set) 2
The Operating System (OS) 2
Programming Numbers and Variables 4
Integer, Floating-Point and String Constant: 4
Integer, Floating-Point and String Variables 7
Integer, Floating-Point and String Arrays 8

9

Arithmetic Expressions 10
Arithmetic Operations 10
Relational Operators, 12

13

Hierarchy of Operations 15

16

17

18

18

Using the INPUT Statement 18
Using the GET Statement 22
How to Crunch BASIC Programs 24

2. BASIC LANGUAGE VOCABULARY 29
30

BASIC Keywords, Abbreviations, and Function Types 31
Description of BASIC Keywords 35
The Commodore 64 Keyboard and Features, 93
94

Screen Editor

3. PROGRAMMING GRAPHICS ON THE COMMODORE 64 99

Graphics Overview 100
Character Display Modes 100
Bitmap Modes 100
Sprites 100

Graphics Locations 101
Video Bank Selection 101
Screen Memory 102
Color Memory 103
Character Memory 103

Standard Character Mode 107
Character Definitions 107

Programmable Characters 108

Multicolor Mode Graphics 115
Multicolor Mode Bit. 115

Extended Background Color Mode 120

Bitmapped Graphics 121
Standard High-Resolution Bitmap Mode 122
How It Works 122

Multicolor Bitmap Mode 127

Smooth Scrolling 128

Sprites 131
Defining a Sprite 131
Sprite Pointers 133
Turning Sprites On 134
Turning Sprites Off 135
Colors 135
Multicolor Mode 135
Settng a Sprite to Multicolor Mode 136
Expanded Sprites 136
Sprite Positioning 137
Vertical Positioning 138
Horizontal Positioning 139
Sprite Positioning Summary 143
Sprite Display Priorities 144
Collision Detects 144
Sprite to Sprite Collisions 145
Sprite to Data Collisions 145

Other Graphics Features 150
Screen Blanking 150
Raster Register 150
Interrupt Status Register 151
Suggested Screen and Character Color Combinations 152

Programming Sprites — Another Look 153

Making Sprites in BASIC — A Short Program 153
Crunching Your Sprite Programs 156
Positioning Sprites on the Screen 157
Sprite Priorities 161
Drawing A Sprite 162
Creating A Sprite... Step by Step 163
Moving Your Sprite on the Screen 165
Vertical Scrolling 166
The Dancing Mouse — A Sprite Program Example 166
Easy Spritemaking Chart 176
Sprite Making Notes. 177

4. PROGRAMMING SOUND AND MUSIC ON YOUR COMMODORE 64 ..183
Introduction 184
Volume Control 186
Frequencies of Sound Waves 186
Using Multiple Voices 187
Controlling Multiple Voices 191
Changing Waveforms 192
Understanding Waveforms 194
The Envelope Generator 196
Filtering 199
Advanced Techniques 202
Synchronization and Ring Modulation 207
5. BASIC TO MACHINE LANGUAGE 209
What Is Machine Language? 210
What Does Machine Code Look Like? 211
Simple Memory Map of the Commodore 64 212
The Registers Inside the 6510 Microprocessor 213
How Do You Write Machine Language Programs? 214
64MON 215
Hexadecimal Notation 215
Your First Machine Language Instruction 218
Writing Your First Program 220
Addressing Modes 221
Zero Page 221
The Stack 222

Indexing

Indirect Indexed

Indexed Indirect

Branches And Testing

Subroutines

Useful Tips for the Beginner

Approaching a Large Task

MCS6510 Microprocessor Instruction Set — Alphabetic Sequence

Instruction Addressing Modes and Related Execution Times

Memory Management on the Commodore 64

The KERNAL

KERNAL Power-Up Activities

How to Use The KERNAL

User Callable KERNAL Routines

Error Codes

Using Machine Language From BASIC

Where to Put Machine Language Routines

How to Enter Machine Language

Commodore 64 Memory Map

Commodore 64 Input/Output Assignments

6. INPUT/OUTPUT GUIDE

Introduction

Output to the TV

Output to Other Devices

Output to Printer

Output to Modem

Working With Cassette Tape

Data Storage On Floppy Diskettes

The Game Ports

Paddles

Light Pen

RS-232 Interface Description

General Outline

Opening an RS-232 Channel

Getting Data from an RS-232 Channel

Sending Data to an RS-232 Channel

Closing an RS-232 Data Channel

Sample BASIC Programs.

vi

223
223
224
226
228
229
230
232
254
260
268
269
270
272
306
307
309
309
310
320
335
336
336
337
338
339
340
342
343
346
348
348
348
349

353
354
356

Receiver/Transmitter Buffer Base Location Pointers 357

Zero-Page Memory Locations and Usage 358
Nonzero-Page Memory Locations and Usage 358
The User Port 359
Port Pin Description 359
The Serial Bus 362
Serial Bus Pinouts 363
The Expansion Port 366
Z-80 Microprocessor Cartridge 368
Using Commodore CP/M®. 369
Running Commodore CP/M®. 369
APPENDICES 373
A. Abbreviations For BASIC Keywords 374
B. Screen Display Codes 376
C. ASCIl And CHR$ Codes. 379
D. Screen and Color Memory Maps 382
E. Music Note Values 384
F. Bibliography 388
G. VIC Chip Register Map 391
H. Deriving Mathematical Functions, 394
. Pinouts for Input/Output Devices 395
J. Converting Standard BASIC Programs to Commodore 64 BASIC 398
K. Error Messages 400
L. 6510 Microprocessor Chip Specifications 402
M. 6526 Complex Interface Adapter (CIA) Chip Specifications 419
N. 6566/6567 (VIC-Il) Chip Specifications 436
O. 6581 Sound Interface Device (SID) Chip Specifications 457
P. Glossary 482
INDEX 483

vii

INTRODUCTION

The COMMODORE 64 PROGRAMMER'S REFERENCE GUIDE has been
developed as a working tool and reference source for those of you who want to
maximize your use of the built-in capabilities of your COMMODORE 64. This
manual contains the information you need for your programs, from the simplest
example all the way to the most complex. The PROGRAMMER'S REFERENCE
GUIDE is designed so that everyone from the beginning BASIC programmer to
the professional experienced in 6502 machine language can get information to
develop his or her own creative programs. At the same time this book shows you
how clever your COMMODORE 64 really is.

This REFERENCE GUIDE is not designed to teach the BASIC programming
language or the 6502 machine language. There is, however, an extensive
glossary of terms and a "semi-tutorial" approach to many of the sections in the
book. If you don't already have a working knowledge of BASIC and how to use
it to program, we suggest that you study the COMMODORE 64 USER'S GUIDE
that came with your computer. The USER'S GUIDE gives you an easy to read
introduction to the BASIC programming language. If you still have difficulty
understanding how to use BASIC then turn to the back of this book (or Appendix
N in the USER'S GUIDE) and check out the Bibliography.

The COMMODORE 64 PROGRAMMER'S REFERENCE GUIDE is just that; a
reference. Like most reference books, your ability to apply the information
creatively really depends on how much knowledge you have about the subject.
In other words if you are a novice programmer you will not be able to use all
the facts and figures in this book until you expand your current programming
knowledge.

INTRODUCTION ix

What you can do with this book is to find a considerable amount of valuable

programming reference information written in easy to read, plain English with

the programmer's jargon explained. On the other hand the programming

professional will find all the information needed to use the capabilities of the
COMMODORE 64 effectively.

WHAT'S INCLUDED?

Our complete "BASIC dictionary" includes Commodore BASIC language
commands, statements and functions listed in alphabetical order. We've
created a "quicklist" which contains all the words and their
abbreviations. This is followed by a section containing a more detailed
definition of each word along with sample BASIC programs to illustrate
how they work.

If you need an introduction to using machine language with BASIC
programs our layman's overview will get you started.

A powerful feature of all Commodore computers is called the
KERNAL. It helps ensure that the programs you write today can
also be used on your Commodore computer of tomorrow.

The Input/Output Programming section gives you the opportunity
to use your computer to the limit. It describes how to hook-up and
use everything from light pens and joysticks to disk drives,
printers, and telecommunication devices called modems.

You can explore the world of SPRITES, programmable characters, and
high resolution graphics for the most detailed and advanced animated
pictures in the microcomputer industry.

You can also enter the world of music synthesis and create your
own songs and sound effects with the best built-in synthesizer
available in any personal computer.

If you're an experienced programmer, the soft load language section
gives you information about the COMMODORE 64's ability to run
CP/M ™ and high level languages.

This is in addition to BASIC. Think of your COMMODORE 64 PROGRAMMER'S
REFERENCE GUIDE as a useful tool to help you and you will enjoy the hours of
programming ahead of you.

“CP/M is a registered trademark of Digital Research, Inc.

X

INTRODUCTION

HOW TO USE THIS REFERENCE GUIDE

Throughout this manual certain conventional notations are used to describe the
syntax (programming sentence structure) of BASIC commands or statements and
to show both the required and optional parts of each BASIC keyword. The rules
to use for interpreting statement syntax are as follows:

1. BASIC keywords are shown in capital letters. They must appear where
shown in the statement, entered and spelled exactly as shown.

2. ltems shown within quotation marks (" ") indicate variable data which
you must put in. Both the quotation marks and the data inside the quotes
must appear where shown in each statement.

3. ltems inside the square brackets ([]) indicate an optional statement
parameter. A parameter is a limitation or additional qualifier for your
statements. If you use an optional parameter you must supply the data
for that optional parameter. In addition, ellipses (. . .) show that an
optional item can be repeated as many times as a programming line
allows.

4. If an item in the square brackets ([]) is UNDERLINED, that means that
you MUST use those certain characters in the optional parameters, and
they also have to be spelled exactly as shown.

5. Items inside angle brackets (<>) indicate variable data which you
provide. While the slash (/) indicates that you must make a choice
between two mutually exclusive options.

EXAMPLE OF SYNTAX FORMAT:

OPEN<file-number>,<device> [,<address>], ["'<drive>: <file-name>]
[,<mode>]"

EXAMPLES OF ACTUAL STATEMENTS:

10 OPEN 2,8,6,"0:STOCK FOLIO,S,uW"
20 OPEN 1,1,2, "CHECKBOOK"
30 OPEN 3,4

When you actually apply the syntax conventions in a practical situation, the
sequence of parameters in your statements might not be exactly the same as the
sequence shown in syntax examples. The examples are not meant to show every
possible sequence. They are intended to present all required and optional
parameters.

INTRODUCTION «xi

Programming examples in this book are shown with blanks separating words and
operators for the sake of readability. Normally though, BASIC doesn't require
blanks between words unless leaving them out would give you an ambiguous or
incorrect syntax.

Shown below are some examples and descriptions of the symbols used for
various statement parameters in the following chapters. The list is not meant to
show every possibility, but to give you a better understanding as to how syntax
examples are presented.

SYMBOL EXAMPLE DESCRIPTION

<file-number> 50 A logical file number

<device> 4 A hardware device number

<address> 15 A serial bus secondary device address

<drive> (o] A physical disk drive number

<file-name> "TEST.DATA" The name of a data or program file

<constant> "ABCDEFG" Literal data supplied by the
programmer

<variable> X145 Any BASIC data variable name or
constant

<string> ABS Use of a string type variable required

<number> 12345 Use of a numeric type variable
required

<line-number> 1000 An actual program line number

<numeric> 1.5E4 An integer or floating-point variable

COMMODORE 64 APPLICATIONS GUIDE

When you first thought about buying a computer you probably asked yourself,
"Now that | can afford to buy a computer, what can | do with it once | get one?"

The great thing about your COMMODORE 64 is that you can make it do what
YOU want it to do! You can make it calculate and keep track of home and
business budget needs. You can use it for word processing. You can make it play
arcade-style action games. You can make it sing. You can even create your own
animated cartoons, and more. The best part of owning a COMMODORE 64 is
that even if it did only one of the things listed below it would be well worth the
price you paid for it. But the 64 is a complete computer and it does do
EVERYTHING listed and then some!

xii INTRODUCTION

By the way, in addition to everything here you can pick up a lot of other creative
and practical ideas by signing up with a local Commodore User's Club,
subscribing to the COMMODORE and POWER/PLAY magazines, and joining the
COMMODORE INFORMATION NETWORK on CompuServe ™.

APPLICATION COMMENT/REQUIREMENTS
ACTION PACKED You can get real Bally Midway arcade games
GAMES like Omega Race, Gorf, Wizard of Wor, as well

as "play and learn" games like Math Teacher 1,
Home Babysitter and Commodore Artist.

ADVERTISING & Hook your COMMODORE 64 to a TV, put it in a

MERCHANDISING store window with a flashing, animated, and
musical message and you've got a great point of
purchase store display.

ANIMATION Commodore's Sprite Graphics allow you to
create real cartoons with 8 different levels so
that shapes can move in front of or behind each
other.

BABYSITTING The COMMODORE 64 HOME BABYSITTER
cartridge can keep your youngest child occupied
for hours and teach alphabet/keyboard
recognition at the same time. It also teaches
special learning concepts and relationships.

BASIC PROGRAMMING Your COMMODORE 64 USER'S GUIDE and the
TEACH YOURSELF PROGRAMMING series of
books and tapes offer an excellent starting
point.

BUSINESS SPREADSHEET The COMMODORE 64 offers the "Easy" series
of business aids including the most powerful word
processor and largest spreadsheet available for
any personal computer.

COMMUNICATION Enter the fascinating world of computer
"networking." If you hook a VICMODEM to your
COMMODORE 64 you can communicate with
other computer owners all around the world.

INTRODUCTION xiii

COMPOSING SONGS

cP/M*

DEXTERITY TRAINING

EDUCATION

FOREIGN LANGUAGE

GRAPHICS AND ART

Not only that, if you join the COMMODORE
INFORMATION NETWORK on CompuServe™
you can get the latest news and updates on all
Commodore products, financial information, shop
at home services, you can even play games with
the friends you make through the information
systems you join.

The COMMODORE 64 is equipped with the most
sophisticated built-in music synthesiser available
on any computer. It has three completely
programmable voices, nine full music octaves,
and four controllable waveforms. Look for
Commodore Music Cartridges and Commodore
Music books to help you create or reproduce all
kinds of music and sound effects.

Commodore offers a CP/M* add-on and access
to software through an easy-to-load cartridge.

Hand/Eye coordination and manual dexterity
are aided by several Commodore games...
including "Jupiter Lander" and night driving
simulation.

While working with a computer is an education
in itself, the COMMODORE Educational Resource
Book contains general information on the
educational uses of computers. We also have a
variety of learning cartridges designed to teach
everything from music to math and art to
astronomy.

The COMMODORE 64 programmable character
set lets you replace the standard character set
with user defined foreign language characters.

In addition to the Sprite Graphics mentioned
above, the COMMODORE 64 offers high-
resolution, multicolor graphics plotting,
programmable characters, and combinations of

* CP/M is a registered trademark of Digital Research, Inc.

Xiv

INTRODUCTION

all the different graphics and character display
modes.

INSTRUMENT CONTROL Your COMMODORE 64 has a serial port, RS-
232 port and a user port for use with a variety
of special industrial applications. An |EEE/488
cartridge is also available as an optional extra.

JOURNALS AND The COMMODORE 64 will soon offer an

CREATIVE WRITING exceptional word-processing system that
matches or exceeds the qualities and flexibilities
of most "high priced" word-processors available.
Of course you can save the information on either
a 1541 Disk Drive or a Datasette™ recorder
and have it printed out using a VIC-PRINTER or
PLOTTER.

LIGHTPEN CONTROL Applications requiring the use of a lightpen can
be performed by any lightpen that will fit the
COMMODORE 64 game port connector.

MACHINE CODE Your COMMODORE 64 PROGRAMMER'S
PROGRAMMING REFERENCE GUIDE includes a machine
language section, as well as a BASIC to machine
code interface section. There's even «a
bibliography available for more in-depth study.

PAYROLL & FORMS The COMMODORE 64 can be programmed to

PRINTOUT handle a variety of entry-type business
applications. Upper/lower case letters combined
with €64 "business form" graphics make it easy
for you to design forms which can then be printed
on your printer.

PRINTING The COMMODORE 64 interfaces with a variety
of dot matrix and letter quality printers as well
as plotters.

RECIPES You can store your favourite recipes on your

COMMODORE 64 and its disk or cassette
storage unit, and end the need for messy recipe
cards that often get lost when you need them
most.

INTRODUCTION xv

SIMULATIONS Computer simulations let you conduct dangerous
or expensive experiments at minimum risk and
cost.

SPORTS DATA The Source™ and CompuServe™ both offer
sports information which you can get using your
COMMODORE 64 and a VICMODEM.

STOCK QUOTES With a VICMODEM and a subscription to any of
the appropriate network services, your
COMMODORE 64 becomes your own private
stock ticker.

These are just a few of the many applications for you and your COMMODORE
64. As you can see, for work or play, at home, in school or the office, your
COMMODORE 64 gives you a practical solution for just about any need.

Commodore wants you to know that our support for users only STARTS with your
purchase of a Commodore computer. That's why we've created two publications
with Commodore information from around the world, and a "two-way" computer
information network with valuable input for users in the U.S. and Canada from
coast to coast.

In addition, we wholeheartedly encourage and support the growth of
Commodore Users' Clubs around the world. They are an excellent source of
information for every Commodore computer owner from the beginner to the most
advanced. The magazines and network, which are more fully described below,
have the most up-to-date information about how to get involved with the Users'
Club in your area.

Finally, your local Commodore dealer is a useful source of Commodore support
and information.

POWER/PLAY
The Home Computer Magazine

When it comes to entertainment, learning at home and practical home
applications, POWER/PLAY is THE prime source of information for Commodore
home users. Find out where your nearest user clubs are and what they're doing,
learn about software, games, programming techniques, telecommunications, and
new products. POWER/PLAY is your personal connection to other Commodore
users, outside software and hardware developers, and to Commodore itself.
Published quarterly. Only $10.00 for a year of home computing excitement.

xvi INTRODUCTION

COMMODORE
The Microcomputer Magazine

Widely read by educators, businessmen and students, as well as home
computerists, COMMODORE Magazine is our main vehicle for sharing exclusive
information on the more technical use of Commodore systems. Regular
departments cover business, science and education, programming tips, "excerpts
from a technical notebook," and many other features of interest to anyone who
uses or is thinking about purchasing Commodore equipment for business, scientific
or educational applications. COMMODORE is the ideal complement to
POWER/PLAY. Published bi-monthly. Subscription price: $15.00 per year.

AND FOR EVEN MORE INFORMATION...
... DIAL UP OUR PAPERLESS USER MAGAZINE

COMMODORE INFORMATION NETWORK

The magazine of the future is here. To supplement and enhance your subscription
to POWER/PLAY and COMMODORE magazines, the COMMODORE
INFORMATION NETWORK - our "paperless magazine" — is available now over
the telephone using your Commodore computer and modem.

Join our computer club, get help with a computing problem, "talk" to other
Commodore friends, or get up-to-the-minute information on new products,
software and educational resources. Soon you will even be able to save yourself
the trouble of typing in the program listings you find in POWER/PLAY or
COMMODORE by downloading direct from the Information Network (a new
user service planned for early 1983). The best part is that most of the answers
are there before you even ask the questions. (How's that for service?)

To call our electronic magazine you need only a modem and a subscription to
CompuServe™, one of the nation's largest telecommunications networks. (To
make it easy for you Commodore includes a FREE year's subscription to

™

CompuServe ™ in each VICMODEM package.) Just dial your local number for

the CompuServe™ data bank and connect your phone to the modem. When the
CompuServe™ video text appears on your screen type G CBM on your
computer keyboard. When the COMMODORE INFORMATION NETWORK'S
table of contents, or "menu," appears on your screen choose from one of our
sixteen departments, make yourself comfortable, and enjoy the paperless

magazine other magazines are writing about.

INTRODUCTION xvii

For more information, visit your Commodore dealer or contact CompuServe

customer service at 800-848-8990 (in Ohio, 614-457-8600).

COMMODORE INFORMATION NETWORK

™

Main Menu Description
Direct Access Codes
Special Commands

User Questions

Public Bulletin Board
Magazines and Newsletters
Products Announced
Commodore News Direct

Commodore Dealers
Educational Resources
User Groups
Descriptions

Questions and Answers
Software Tips
Technical Tips
Directory Descriptions

xviii INTRODUCTION

CHAPTER]

BASIC
PROGRAMMING
RULES

Introduction

Screen Display Codes (BASIC
Character Set)

Programming Numbers and
Variables

Expressions and Operators
Programming Techniques

INTRODUCTION

This chapter talks about how BASIC stores and manipulates data. The topics

include:

1.

A brief mention of the operating system components and functions as
well as the character set used in the Commodore 64.

The formation of constants and variables. What types of variables
there are, and how constants and variables are stored in memory.

The rules for arithmetic calculations, relationship tests, string handling,
and logical operations. Also included are the rules for forming
expressions, and the data conversions necessary when you're using
BASIC with mixed data types.

SCREEN DISPLAY CODES (BASIC CHARACTER SET)

THE OPERATING SYSTEM (OS)

The Operating System is contained in the Read Only Memory (ROM) chips and

is a combination of three separate, but interrelated, program modules:

1. The BASIC Interpreter
2. The KERNAL
3. The Screen Editor

2

The BASIC Interpreter is responsible for analyzing BASIC statement
syntax and for performing the required calculations and/or data
manipulation. The BASIC Interpreter has a vocabulary of 65
"keywords" which have special meanings. The upper and lower case
alphabet and the digits 0-9 are used to make both keywords and
variable names. Certain punctuation characters and special symbols
also have meanings for the Interpreter. Table1-1 lists the special
characters and their uses.

The KERNAL handles most of the interrupt level processing in the system
(for details on interrupt level processing, see Chapter 5). The KERNAL
also does the actual input and output of data.

The Screen Editor controls the output to the video screen (television set)
and the editing of BASIC program text. In addition, the Screen Editor
intercepts keyboard input so that it can decide whether the characters

BASIC PROGRAMMING RULES

TABLE 1-1. CBM BASIC CHARACTER SET

CHARACTER NAME and DESCRIPTION

BLANK — separates keywords and variable names

; SEMI-COLON — used in variable lists to format output

= EQUAL SIGN — value assignment and relationship testing

+ PLUS SIGN - arithmetic addition or string concatenation
(concatenation: linking together in a chain)

- MINUS SIGN — arithmetic subtraction, unary minus (-1)

* ASTERISK — arithmetic multiplication

/ SLASH - arithmetic division

1t UP ARROW - arithmetic exponentiation

(LEFT PARENTHESIS — expression evaluation and functions

) RIGHT PARENTHESIS — expression evaluation and functions

% PERCENT — declares variable name as an integer

NUMBER — comes before logical file number in input/output
statements

$ DOLLAR SIGN — declares variable name as a string

’ COMMA — used in variable lists to format output; also
separates command parameters

. PERIOD — decimal point in floating-point constants

" QUOTATION MARK — encloses string constants

: COLON - separates multiple BASIC statements in a line

? QUESTION MARK — abbreviation for the keyword PRINT

< LESS THAN — used in relationship tests

> GREATER THAN — used in relationship tests

T Pl — the number constant 3.141592654

put in should be acted upon immediately or passed on to the BASIC Interpreter.

The Operating System gives you two modes of BASIC operation:

1. DIRECT Mode

2. PROGRAM Mode

When you're using the DIRECT mode, BASIC statements don't have line
numbers in front of the statement. They are executed whenever the

NN key is pressed.

BASIC PROGRAMMING RULES 3

2. The PROGRAM mode is the one you use for running programs. When
using the PROGRAM mode, all of your BASIC statements must have line
numbers in front of them. You can have more than one BASIC statement
in a line of your program, but the number of statements is limited by
the fact that you can only put 80 characters on a logical screen line.
This means that if you are going to go over the 80 character limit you
have to put the entire BASIC statement that doesn't fit on a new line
with a new line number.

NOTE: Always type NEW and hit before starting a new program.

The Commodore 64 has two complete character sets that you can use, either
from the keyboard or in your programs.

In SET 1, the upper case alphabet and the numbers 0-9 are available without
pressing the key. If you hold down the key while typing, the
graphics characters on the RIGHT side of the front of the keys are used. If you
hold down the [§ key while typing, the graphics characters on the LEFT side of
the front of the key are used. Holding down the key while typing any
character that doesn't have graphic symbols on the front of the key gives you
the symbol on the top most part of the key.

In SET 2, the lower case alphabet and the numbers 0-9 are available without
pressing the key. The upper case alphabet is available when you hold
down the key while typing. Again, the graphic symbols on the LEFT side
of the front of the keys are displayed by pressing the [€ key, while the symbols
on the top most part of any key, without graphics characters, are selected when
you hold down the key while typing.

To switch from one character set to the other press the [and the [Slal keys
together.

PROGRAMMING NUMBERS AND VARIABLES

INTEGER, FLOATING-POINT AND STRING CONSTANTS

Constants are the data values that you put in your BASIC statements. BASIC uses
these values to represent data during statement execution. CBM BASIC can
recognize and manipulate three types of constants:

1. INTEGER NUMBERS

2. FLOATING-POINT NUMBERS
3. STRINGS

4 BASIC PROGRAMMING RULES

Integer constants are whole numbers (numbers without decimal points). Integer
constants must be between -32768 and +32767. Integer constants do not have
decimal points or commas between digits. If the plus (+) sign is left out, the constant
is assumed to be a positive number. Zeros coming before a constant are ignored
and shouldn't be used since they waste memory and slow down your program.
However, they won't cause an error. Integers are stored in memory as two-byte
binary numbers. Some examples of integer constants are:

-12
8765
-32768
+44

0
-32767

NOTE: Do NOT put commas inside any number. For example, always type 32,000 as 32000. If
you put a comma in the middle of a number you will get the BASIC error message: 2SYNTAX
ERROR.

Floating-point constants are positive or negative numbers and can contain
fractions. Fractional parts of a number may be shown using a decimal point.
Once again remember that commas are NOT used between numbers. If the plus
sign (+) is left off the front of a number, the Commodore 64 assumes that the
number is positive. If you leave off the decimal point the computer will assume
that it follows the last digit of the number. And as with integers, zeros that come
before a constant are ignored. Floating-point constants can be used in two ways:

1. SIMPLE NUMBER
2. SCIENTIFIC NOTATION

Floating-point constants will show you up to nine digits on your screen. These
digits can represent values between -999999999 and +999999999. If you
enter more than nine digits the number will be rounded based on the tenth digit.
If the tenth digit is greater than or equal to 5 the number will be rounded
upward. Less than 5 the number will be rounded downward. This could be
important to the final totals of some numbers you may want to work with.

Floating-point numbers are stored (using five bytes of memory) and are
manipulated in calculations with ten places of accuracy. However, the numbers
are rounded to nine digits when results are printed. Some examples of simple
floating-point numbers are:

BASIC PROGRAMMING RULES 5

1.23
-.998877
+3.1459
J777777
-333.

.01

Numbers smaller than .01 or larger than 999999999 will be printed in scientific
notation. In scientific notation a floating-point constant is made up of three parts:

1. THE MANTISSA
2. THE LETTER E
3. THE EXPONENT

The mantissa is a simple floating-point number. The letter E is used to tell you that
you're seeing the number in exponential form. In other words E represents *10
(eg., 3E3=3*1013=3000). And the exponent is what multiplication power of
10 the number is raised to.

Both the mantissa and the exponent are signed (+ or =) numbers. The exponent's
range is from —39 to +38 and it indicates the number of places that the actual
decimal point in the mantissa would be moved to the left (-) or right (+) if the
value of the constant were represented as a simple number.

There is a limit to the size of floating-point numbers that BASIC can handle, even
in scientific notation: the largest number is +1.70141183E+38 and calculations
which would result in a larger number will display the BASIC error message
20VERFLOW ERROR. The smallest floating-point number is +2.93873588E-39
and calculations which result in a smaller value give you zero as an answer and
NO error message. Some examples of floating-point numbers in scientific
notation (and their decimal values) are:

235.988E-3 (.235988)
2359E6 (2359000000.)
—7.09E-12 (-~.00000000000709)
—3.14159E+5 (—314159.)

String constants are groups of alphanumeric information like letters, numbers
and symbols. When you enter a string from the keyboard, it can have any length

6 BASIC PROGRAMMING RULES

up to the space available in an 80-character line (that is, any character spaces
NOT taken up by the line number and other required parts of the statement).

A string constant can contain blanks, letters, numbers, punctuation and color or
cursor control characters in any combination. You can even put commas between
numbers. The only character which cannot be included in a string is the double quote
mark ("). This is because the double quote mark is used to define the beginning
and end of the string.

A string can also have a null value — which means that it can contain no character
data. You can leave the ending quote mark off of a string if it's the last item on
a line or if it's followed by a colon (:). Some examples of string constants are:

"HELLO"
"$25,000.00"
"NUMBER OF EMPLOYEES"

(a null string)

NOTE: use CHR$(34) to include quotes (") in strings.

INTEGER, FLOATING-POINT AND STRING VARIABLES

Variables are names that represent data values used in your BASIC statements.
The value represented by a variable can be assigned by setting it equal to a
constant, or it can be the result of calculations in the program. Variable data,
like constants, can be integers, floating-point numbers, or strings. If you refer to
a variable name in a program before a value has been assigned, the BASIC
Interpreter will automatically create the variable with a value of zero if it's an
integer or floating-point number. Or it will create a variable with a null value if
you're using strings.

Variable names can be any length but only the first two characters are
considered significant in CBM BASIC. This means that all names used for variables
must NOT have the same first two characters. Variable names may NOT be the
same as BASIC keywords and they may NOT contain keywords in the middle of
variable names. Keywords include all BASIC commands, statements, function
names and logical operator names. If you accidentally use a key word in the
middle of a variable name, the BASIC error message ?SYNTAX ERROR will
show up on your screen.

BASIC PROGRAMMING RULES 7

The characters used to form variable names are the alphabet and the numbers
0-9. The first character of the name must be a letter. Data type declaration
characters (%) and ($) can be used as the last character of the name. The percent
sign (%) declares the variable to be an integer and the dollar sign ($) declares
a string variable. If no type declaration character is used the Interpreter will
assume that the variable is a floating-point. Some examples of variable names,
value assignments and data types are:

A$="GROSS SALES" (string variable)
MTH$="JAN"+AS$ (string variable)

K%=5 (integer variable)
CNT%=CNT%+1 (integer variable)
FP=12.5 (floating-point variable)
SUM=FP*CNT% (floating-point variable)

INTEGER, FLOATING-POINT AND STRING ARRAYS

An array is a table (or list) of associated data items referred to by a single
variable name. In other words, an array is a sequence of related variables. A
table of numbers can be seen as an array, for example. The individual numbers
within the table become "elements" of the array.

Arrays are a useful shorthand way of describing a large number of related
variables. Take a table of numbers for instance. Let's say that the table has 10
rows of numbers with 20 numbers in each row. That makes a total of 200 numbers
in the table. Without a single array name to call on you would have to assign a
unique name to each value in the table. But because you can use arrays you only
need one name for the array and all the elements in the array are identified by
their individual locations within the array.

Array names can be integers, floating-points or string data types and all
elements in the array have the same data type as the array name. Arrays can
have a single dimension (as in a simple list) or they can have multiple dimensions
(imagine a grid marked in rows and columns or a Rubik's Cube®). Each element
of an array is uniquely identified and referred to by a subscript (or index
variable) following the array name, enclosed within parentheses ().

The maximum number of dimensions an array can have in theory is 255 and the
number of elements in each dimension is limited to 32767. But for practical
purposes array sizes are limited by the memory space available to hold their

8 BASIC PROGRAMMING RULES

data and/or the 80-character logical screen line. If an array has only one
dimension and its subscript value will never exceed 10 (11 items: O through 10)
then the array will be created by the Interpreter and filled with zeros (or nulls if
string type) the first time any element of the array is referred to, otherwise the
BASIC DIM statement must be used to define the shape and size of the array.
The amount of memory required to store an array can be determined as follows:

5 bytes for the array name
+ 2 bytes for each dimension of the array
+ 2 bytes per element for integers
OR + 5 bytes per element for floating-point
OR + 3 bytes per element for strings
AND + 1 byte per character in each string element

Subscripts can be integer constants, variables, or an arithmetic expression which
gives an integer result. Separate subscripts, with commas between them, are
required for each dimension of an array. Subscripts can have values from zero
up to the number of elements in the respective dimensions of the array. Values
outside that range will cause the BASIC error message ?BAD SUBSCRIPT. Some
examples of array names, value assignments and data types are:

A$(0)= "GROSS SALES" (string array)

MTH$(K%)="JAN" (string array)

G2%(X)=5 (integer array)
CNT%(G2%(X))=CNT%(1)-2 (integer array)

FP(12%K%)=24.8 (floating-point array)
SUM(CNT%(1))=FPTMK% (floating-point array)

A(5)=0 (sets the element in row position 5 in the 1 dimensional array

called "A" equal to zero)

B(5,6)=0 (sets the element in row position 5 and column position 6 in
the 2 dimensional array called "B" equal to zero)

C(1,2,3)=0 (sets the elements in row position 1, column position 2 and

depth position 3 in the 3 dimensional array called "C" equal
to zero)

EXPRESSIONS AND OPERATORS

Expressions are formed using constants, variables and/or arrays. An expression
can be a single constant, simple variable, or an array variable of any type. It

BASIC PROGRAMMING RULES 9

can also be a combination of constants and variables with arithmetic, relational
or logical operators designed to produce a single value. How operators work is
explained below. Expressions can be separated into two classes:

1. ARITHMETIC
2. STRING

Expressions are normally thought of as having two or more data items called
operands. Each operand is separated by a single operator to produce the
desired result. This is usually done by assigning the value of the expression to a
variable name. All of the examples of constants and variables that you've seen
so far, were also examples of expressions.

An operator is a special symbol the BASIC Interpreter in your Commodore 64
recognizes as representing an operation to be performed on the variables or
constant data. One or more operators, combined with one or more variables
and/or constants form an expression. Arithmetic, relational and logical operators
are recognized by Commodore 64 BASIC.

ARITHMETIC EXPRESSIONS

Arithmetic expressions, when solved, will give an integer or floating-point value.
The arithmetic operators (+,—, *, /, 1) are used to perform addition, subtraction,

multiplication, division and exponentiation operations respectively.

ARITHMETIC OPERATIONS

An arithmetic operator defines an arithmetic operation which is performed on
the two operands on either side of the operator. Arithmetic operations are
performed using floating-point numbers. Integers are converted to floating-point
numbers before an arithmetic operation is performed. The result is converted
back to an integer if it is assigned to an integer variable name.

ADDITION (+): the plus sign (+) specifies that the operand on the right is added
to the operand on the left.

10 BASIC PROGRAMMING RULES

EXAMPLES:

2+2
A+B+C
X%+1
BR+10E-2

SUBTRACTION (=): The minus sign (=) specifies that the operand on the right is
subtracted from the operand on the left.

EXAMPLES:

4-1
100-64
A-B
55-142

The minus can also be used as a unary minus. That means that it is the minus sign in
front of a negative number. This is equal to subtracting the number from zero (0).

EXAMPLES:

-5

—QE4

-B

4—(—2) same as 4+2

MULTIPLICATION (*): An asterisk (*) specifies that the operand on the left is
multiplied by the operand on the right.

EXAMPLES:

100%2
50*0
A*X1
R%*14

DIVISION (/): The slash (/) specifies that the operand on the left is divided by
the operand on the right.

EXAMPLES:

10/2
6400/4
A/B
AE2/XR

BASIC PROGRAMMING RULES 11

EXPONENTIATION (/): The up arrow (") specifies that the operand on the left
is raised to the power specified by the operand on the right (the exponent). If
the operand on the right is a 2, the number on the left is squared; if the exponent
is a 3, the number on the left is cubed, etc. The exponent can be any number so
long as the result of the operation gives a valid floating-point number.

EXAMPLES:

212 Equivalent to: 2*2
313 Equivalent to: 3*3*3
414 Equivalent to: 4*¥4%4%4
ABINCD

312 Equivalent to %* %

RELATIONAL OPERATORS

The relational operators (<, =, >, <=, >=, <>) are primarily used to compare
the values of two operands, but they also produce an arithmetic result. The
relational operators and the logical operators (AND, OR, and NOT), when used
in comparisons, actually produce an arithmetic true/false evaluation of an
expression. If the relationship stated in the expression is true the result is assigned
an integer value of —1 and if it's false a value of 0 is assigned. These are the
relational operators:

LESS THAN

EQUAL TO

GREATER THAN

<= LESS THAN OR EQUAL TO

>= GREATER THAN OR EQUAL TO
<> NOT EQUAL TO

VI A

EXAMPLES:

1=5-4 result true (—1)
14>66 result false (0)
15>=15 result true (—1)

Relational operators can be used to compare strings. For comparison purposes,
the letters of the alphabet have the order AKB<C<D, etc. Strings are compared
by evaluating the relationship between corresponding characters from left to
right (see String Operations).

12 BASIC PROGRAMMING RULES

EXAMPLES:

"A"< "B" result true (—1)
""="yy" result false (0)
BB$<>CC$

Numeric data items can only be compared (or assigned) to other numeric items.
The same is true when comparing strings, otherwise the BASIC error message
?2TYPE MISMATCH will occur. Numeric operands are compared by first
converting the values of either or both operands from integer to floating-point
form, as necessary. Then the relationship of the floating-point values is evaluated
to give a true/false result.

At the end of all comparisons, you get an integer no matter what data type the
operand is (even if both are strings). Because of this, a comparison of two
operands can be used as an operand in performing calculations. The result will
be —1 or 0 and can be used as anything but a divisor, since division by zero is
illegal.

LOGICAL OPERATORS

The logical operators (AND, OR, NOT) can be used to modify the meanings of
the relational operators or to produce an arithmetic result. Logical operators can
produce results other than =1 and 0, though any nonzero result is considered true
when testing for a true /false condition.

The logical operators (sometimes called Boolean operators) can also be used to
perform logic operations on individual binary digits (bits) in two operands. But
when you're using the NOT operator, the operation is performed only on the
single operand to the right. The operands must be in the integer range of values
(—32768 to +32767) (floating-point numbers are converted to integers) and
logical operations give an integer result.

Logical operations are performed bit-by-corresponding-bit on the two
operands. The logical AND produces a bit result of 1 only if both operand bits
are 1. The logical OR produces a bit result of 1 if either operand bit is 1. The
logical NOT is the opposite value of each bit as a single operand. In other words,
it's really saying, "If it's NOT 1 then it is O. If it's NOT O then it is 1."

The exclusive OR (XOR) doesn't have a logical operator but it is performed as
part of the WAIT statement. Exclusive OR means that if the bits of two operands

are equal then the result is O otherwise the result is 1.

Logical operations are defined by groups of statements which, taken together,
constitute a Boolean "truth table" as shown in Table 1-2.

BASIC PROGRAMMING RULES 13

TABLE 1-2. BOOLEAN TRUTH TABLE

The AND operation results in a 1 only if both bits are 1:

TAND 1 =1
OAND1 =0
1TANDO=0
OANDO=0

The OR operation results in a 1 if either bitis a 1:

1TOR1=1
OOR1=1
10RO =1
OORO=0

The NOT operation logically compliments each bit:

NOT1=0
NOTO =1

The exclusive OR (XOR) is part of the WAIT statement:

1XOR1=0
1 XORO0 =1
OXOR 1 =1
OXORO0=0

The logical operators AND, OR and NOT specify a Boolean arithmetic operation
to be performed on the two operand expressions on either side of the operator.
In the case of NOT, ONLY the operand on the RIGHT is considered. Logical
operations (or Boolean arithmetic) aren't performed until all arithmetic and
relational operations in an expression have been completed.

EXAMPLES:
IF A=100 AND B=100 THEN 10 (if both A and B have a value of
100 then the result is true)
A =96 AND 32: PRINT A (A =32)

14 BASIC PROGRAMMING RULES

IF A=100 OR B=100 THEN 20 (if A or B is 100 then the result is

true)
A=64 OR 32: PRINT A (A =96)
IF NOT X<Y THEN 30 (if X>=Y the result is true)
X = NOT 96 (result is =97 (two's complement))

HIERARCHY OF OPERATIONS

All expressions perform the different types of operations according to a fixed
hierarchy. In other words, certain operations are performed before other
operations. The normal order of operations can be modified by enclosing two or
more operands within parentheses (), creating a "subexpression." The parts of
an expression enclosed in parentheses will be reduced to a single value before
working on parts outside the parentheses.

When you use parentheses in expressions, they must be paired so that you
always have an equal number of left and right parentheses. Otherwise, the
BASIC error message 2SYNTAX ERROR will appear.

Expressions which have operands inside parentheses may themselves be
enclosed in parentheses, forming complex expressions of multiple levels. This is
called nesting. Parentheses can be nested in expressions to a maximum depth of
ten levels — ten matching sets of parentheses. The inner-most expression has its
operations performed first. Some examples of expressions are:

A+B

CMND+E)/2
((X=CMND+E)/2)*10)+1
GG$>HHS

JJ$+"MORE"

K%=1 AND M<>X

K%=2 OR (A=B AND M<X)
NOT (D=E)

The BASIC Interpreter will normally perform operations on expressions by
performing arithmetic operations first, then relational operations, and logical

BASIC PROGRAMMING RULES 15

operations last. Both arithmetic and logical operators have an order of
precedence (or hierarchy of operations) within themselves. On the other hand,
relational operators do not have an order of precedence and will be performed
as the expression is evaluated from left to right.

If all remaining operators in an expression have the same level of precedence
then operations happen from left to right. When performing operations on
expressions within parentheses, the normal order of precedence is maintained.
The hierarchy of arithmetic and logical operations is shown in Table 1-3 from
first to last, in order of precedence.

TABLE 1-3. HIERARCH OF OPERATIONS PERFORMED ON EXPRESSIONS

OPERATOR DESCRIPTION EXAMPLE
™ Exponentiation BASE 1 EXP
- Negation (Unary Minus) -A
. Multiplication AB * CD

Division EF / GH
+ Addition CNT + 2
Subtraction JK-PQ
>=< Relational Operations A<=B
Logical T
NOT ogical NOT NOT K%
(Integer Two's Complement)
AND Logical AND JK AND 128
OR Logical OR PQOR 15

STRING OPERATIONS

Strings are compared using the same relational operators (=, <>, <=, >=, <,
>) that are used for comparing numbers. String comparisons are made by taking
one character at a time (left-to-right) from each string and evaluating each
character code position from the PET/CBM character set. If the character codes
are the same, the characters are equal. If the character codes differ, the
character with the lower code number is lower in the character set. The
comparison stops when the end of either string is reached. All other things being

16 BASIC PROGRAMMING RULES

equal, the shorter string is considered less than the longer string. Leading or
trailing blanks ARE significant.

Regardless of the data types, at the end of all comparisons you get an integer
result. This is true even if both operands are strings. Because of this a comparison
of two string operands can be used as an operand in performing calculations.
The result will be —1 or O (true or false) and can be used as anything but a
divisor since division by zero is illegal.

STRING EXPRESSIONS

Expressions are treated as if an implied "<>0" follows them. This means that if
an expression is true then the next BASIC statements on the same program line
are executed. If the expression is false the rest of the line is ignored and the
next line in the program is executed.

Just as with numbers, you can also perform operations on string variables. The
only string arithmetic operator recognized by CBM BASIC is the plus sign (+)
which is used to perform concatenation of strings. When strings are concatenated,
the string on the right of the plus sign is appended to the string on the left,
forming a third string as a result. The result can be printed immediately, used in
a comparison, or assigned to a variable name. If a string data item is compared
with (or set equal to) a numeric item, or vice-versa, the BASIC error message
2TYPE MISMATCH will occur. Some examples of string expressions and
concatenation are:

10 A$="FILE": B$="NAME"
20 NAM$ = A% + BS (gives the string: FILENAME)
30 RES$ = "NEW " + A% + B$ (gives the string: NEW FILENAME)

T Note space here.

BASIC PROGRAMMING RULES 17

PROGRAMMING TECHNIQUES

DATA CONVERSIONS

When necessary, the CBM BASIC Interpreter will convert a numeric data item
from an integer to floating-point, or vice-versa, according to the following rules:

® All arithmetic and relational operations are performed in floating-point
format. Integers are converted to floating-point form for evaluation of
the expression, and the result is converted back to integer. Logical
operations convert their operands to integers and return an integer
result.

(] If a numeric variable name of one type is set equal to a numeric data
item of a different type, the number will be converted and stored as
the data type declared in the variable name.

(When a floating-point value is converted to an integer, the fractional
portion is truncated (eliminated) and a positive integer result is less than
or equal to the floating-point value. If the result is outside the range of
+32767 through —-32768, the BASIC error message Z2ILLEGAL
QUANTITY will occur.

USING THE INPUT STATEMENT

Now that you know what variables are, let's take that information and put it
together with the INPUT statement for some practical programming applications.

In our first example, you can think of a variable as a "storage compartment”
where the Commodore 64 stores the user's response to your prompt question. To
write a program which asks the user to type in a name, you might assign the
variable N$ to the name typed in. Now every time you PRINT N$ in your
program, the Commodore 64 will automatically PRINT the name that the user
typed in.

Type the word NEW on your Commodore 64. Hit the [{HI8IAM key, and try this
example:

10 PRINT "YOUR NAME": INPUT N$
20 PRINT "HELLO, " N$

18 BASIC PROGRAMMING RULES

In this example you used N to remind yourself that this variable stands for
"NAME." The dollar sign ($) is used to tell the computer that you're using a string
variable. It is important to differentiate between the two types of variables:

1. NUMERIC
2. STRING

You probably remember from the earlier sections that numeric variables are
used to store number values such as 1, 100, 4000, etc. A numeric variable can
be a single letter (A), any two letters (AB), a letter and a number (A1), or two
letters and a number (AB1). You can save memory space by using shorter
variables. Another helpful hint is to use letters and numbers for different
categories in the same program (A1, A2, A3). Also, if you want whole numbers
for an answer instead of numbers with decimal points, all you have to do is put
a percent sign (%) at the end of your variable name (AB%, A1%, etc.)

Now let's look at a few examples that use different types of variables and
expressions with the INPUT statement:

10 PRINT "ENTER A NUMBER": INPUT A
20 PRINT A

10 PRINT "ENTER A WORD": INPUT A$
20 PRINT A%

10 PRINT "ENTER A NUMBER": INPUT A
20 PRINT A "TIMES 5 EQUALS" AXS

NOTE: Example 3 shows that MESSAGES or PROMPTS are inside the quotation marks (" ") while
the variables are outside. Notice, too, that in line 20 the variable A was printed first, then the
message "TIMES 5 EQUALS", and then the calculation, multiply variable A by 5 (A*5).

Calculations are important in most programs. You have a choice of using "actual
numbers" or variables when doing calculations, but if you're working with
numbers supplied by a user you must use numeric variables. Begin by asking the
user to type in two numbers like this:

10 PRINT "TYPE 2 NUMBERS": INPUT A: INPUT B

BASIC PROGRAMMING RULES 19

INCOME/EXPENSE BUDGET EXAMPLE

SHIFT Jl CLR/HOME
S PRINT "D"A/-

10
20
30
40
S50
60
70
80
a0
100
110
120
130
140
150
160
170
180
190
200

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

"MONTHLY INCOME":
"EXPENSE
"EXPENSE

"EXPENSE
"EXPENSE

"EXPENSE

E=E1+E2+E3
EP=E/IN

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
210 PRINT
220 PRINT
INCOME"

"YOUR EXPENSES

CATEGORY
AMOUNT" :

CATEGORY 2":
AMOUNT" :

CATEGORY 3":
"EXPENSE AMOUNT" :

PRINT "Ll ENE

INPUT IN

1": INPUT E1$
INPUT E1

INPUT EZ2%
INPUT E2

INPUT E3%
INPUT E3

"MONTHLY INCOME: $"IN
"TOTAL EXPENSES: $"E
"BALANCE EQUALS: $"IN-E

E18"="(E1/E>X100"% OF TOTAL EXPENSES"
E2$"="(E2/E)>X100"% OF TOTAL EXPENSES"
E38"="(E3/E>X100"% OF TOTAL EXPENSES"

="EPX100"% OF YOUR TOTAL

230 FOR X=1T0S000:NEXT:PRINT

240 PRINT
250 PRINT "[J":END

"REPEAT? (Y/N)>":INPUT YS:IF Y§="y"

THEN 5

D 7l L/ Howie|

NOTE: IN can NOT = 0, and E1, E2, E3 can NOT all be 0 at the same time.

20 BASIC PROGRAMMING RULES

LINE-BY-LINE EXPLANATION OF
INCOME/EXPENSES BUDGET EXAMPLE

Line(s) Description
5 Clears the screen.

10 PRINT/INPUT statement.

20 Inserts blank line.

30 Expense Category 1 = E18$.
40 Expense Amount = E1.

50 Inserts blank line.

60 Expense Category 2 = E28.
70 Expense Amount = E2.

80 Inserts blank line.

90 Expense Category 3 = E3$.
100 Expense Amount = E3.

110 Clears the screen.

120 Add Expense Amounts = E.
130 Calculate Expense/Income%
140 Display Income.

150 Display Total Expenses.

160 Display Income — Expenses.
170 Inserts blank line.

180-200 | Calculate % each Expense Amount is of Total Expenses
210 Inserts blank line.

220 Display E / IN %

230 Time delay loop.

Now multiply those two numbers together to create a new variable C as shown
in line 20 below:

20 C=AXB
To PRINT the result as a message type:

30 PRINT A "TIMES" B "EQUALS" C

Enter these 3 lines and RUN the program. Notice that the messages are inside
the quotes while the variables are not.

BASIC PROGRAMMING RULES 21

Now let's say that you wanted a dollar sign ($) in front of the number
represented by variable C. The $ must be PRINTed inside quotes and in front of
variable C. To add the $ to your program hit the and keys.
Now type in line 40 as follows:

40 PRINT "8$" C

Now hit , type RUN and hit again.

The dollar sign goes in quotes because the variable C only represents a number
and can't contain a $. If the number represented by C was 100 then the
Commodore 64 screen would display $ 100. But, if you tried to PRINT $C without
using the quotes, you would get a 2SYNTAX ERROR message.

One last tip about $$3$: You can create a variable that represents a dollar sign
which you can then substitute for the $ when you want to use it with numeric
variables. For example:

10 Z2%$="%"

Now whenever you need a dollar sign you can use the string variable Z$. Try
this:

10 2%$="8":INPUT A
20 PRINT Z%A

Line 10 defines the $ as a string variable called Z$, and then INPUTs a number
called A. Line 20 PRINTs Z$ ($) next to A (number).

You'll probably find that it's easier to assign certain characters, like dollar signs,
to a string variable than to type "$" every time you want to calculate dollars or
other items which require " " like %.

USING THE GET STATEMENT

Most simple programs use the INPUT statement to get data from the person
operating the computer. When you're dealing with more complex needs, like
protection from typing errors, the GET statement gives you more flexibility and
your program more "intelligence." This section shows you how to use the GET
statement to add some special screen editing features to your programs.

22 BASIC PROGRAMMING RULES

The Commodore 64 has a keyboard buffer that holds up to 10 characters. This
means that if the computer is busy doing some operation and it's not reading the
keyboard, you can still type in up to 10 characters, which will be used as soon
as the Commodore 64 finishes what it was doing. To demonstrate this, type in
this program on your Commodore 64:

NEW
10 TI$="000000"
20 IF TI$ < "0O0O13" THEN 20

Now type RUN, hit and while the program is RUNning type in the word:
HELLO.

Notice that nothing happened for about 15 seconds when the program started.
Only then did the message HELLO appear on the screen.

Imagine standing in line for a movie. The first person in the line is the first to get
a ticket and leave the line. The last person in line is last for a ticket. The GET
statement acts like a ticket taker. First it looks to see if there are any characters
"in line." In other words, have any keys been typed? If the answer is yes then
that character gets placed in the appropriate variable. If no key was pressed
then an empty value is assigned to a variable.

At this point it's important to note that if you try to put more than 10 characters
into the buffer at one time, all those over the 10th character will be lost.

Since the GET statement will keep going even when no character is typed, it is
often necessary to put the GET statement into a loop so that it will have to wait
until someone hits a key or until a character is received through your program.

Below is the recommended form for the GET statement. Type NEW to erase your
previous program.

10 GET A% : IF A%= "" THEN 10

Notice that there is NO SPACE between the quote marks (") on this line. This
indicates an empty value and sends the program back to the GET statement in
a continuous loop until someone hits a key on the computer. Once a key is hit the
program will continue with the line following line 10. Add this line to your

program:

100 PRINT AS$;: GOTO 10

BASIC PROGRAMMING RULES 23

Now RUN the program. Notice that no cursor ll appears on the screen, but any
character you type will be printed in the screen. This 2-line program can be
turned into part of a screen editor program as shown below.

There are many things you can do with a screen editor. You can have a flashing
cursor. You can keep certain keys like from accidentally erasing the
whole screen. You might even want to be able to use your function keys to
represent whole words or phrases. And speaking of function keys, the following
program lines give each function key a special purpose. Remember this is only
the beginning of a program that you can customize for your needs.

20 IF A% = CHR$(133> THEN POKE 53280,8 : GOTO 10
30 IF A%$ = CHR$(134> THEN POKE 53281,4 : GOTO 10
40 IF A$ = CHR$(135> THEN A% = "DEAR SIR:" + CHR$(13>
50 IF A% = CHR$(136> THEN A% = "SINCERELY," + CHR$(13>

The CHR$ numbers in parentheses come from the CHR$ code chart in Appendix
C. The chart lists a different number for each character. The four function keys
are set up to perform the tasks represented by the instructions that follow the
word THEN in each line. By changing the CHR$ number inside each set of
parentheses you can designate different keys. Different instructions would be
performed if you changed the information after the THEN statement.

HOW TO CRUNCH BASIC PROGRAMS

You can pack more instructions — and power — into your BASIC programs by
making each program as short as possible. This process of shortening programs
is called "crunching."

Crunching programs lets you squeeze the maximum possible number of
instructions into your program. It also helps you reduce the size of programs
which might not otherwise run in a given size; and if you're writing a program
which requires the input of data such as inventory items, numbers or text, a short
program will leave more memory space free to hold data.

24 BASIC PROGRAMMING RULES

ABBREVIATING KEYWORDS

A list of keyword abbreviations is given in Appendix A. This is helpful when you
program because you can actually crowd more information on each line using
abbreviations. The most frequently used abbreviation is the question mark (2)
which is the BASIC abbreviation for the PRINT command. However, if you LIST a
program that has abbreviations, the Commodore 64 will automatically print out
the listing with the full-length keywords. If any program line exceeds 80
characters (2 lines on the screen) with the keywords unabbreviated, and you
want to change it, you will have to re-enter that line with the abbreviations
before saving the program. SAVEing a program incorporates the keywords
without inflating any lines because BASIC keywords are tokenized by the
Commodore 64. Usually, abbreviations are added after a program is written
and it isn't going to be LISTed any more before SAVEing.

SHORTENING PROGRAM LINE NUMBERS

Most programmers start their programs at line 100 and number each line at
intervals of 10 (i.e.,, 100, 110, 120). This allows extra lines of instruction to be
added (111, 112, etc.) as the program is developed. One means of crunching
the program after it is completed is to change the line numbers to the lowest
numbers possible (i.e.,1, 2, 3) because longer line numbers take more memory
than shorter numbers when referenced by GOTO and GOSUB statements. For
instance, the number 100 uses 3 bytes of memory (one for each number) while
the number 1 uses only 1 byte.

PUTTING MULTIPLE INSTRUCTIONS ON EACH LINE

You can put more than one instruction on each numbered line in your program
by separating them by a colon. The only limitation is that all the instructions on
each line, including colons, should not exceed the standard 80-character line
length. Here is an example of two programs, before and after crunching:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 PRINT "HELLO..."; 10 PRINT"HELLO..."; :FOR
20 FOR T = 1 TO 500: NEXT T=1T0S00:NEXT:PRINT"HELL
30 PRINT "HELLO, AGAIN..." 0O, AGAIN...":GOTO 10

40 GOTO 10

REMOVING REM STATEMENTS

REM statements are helpful in reminding yourself — or showing other
programmers — what a particular section of a program is doing. However, when

BASIC PROGRAMMING RULES 25

the program is completed and ready to use, you probably won't need those REM
statements anymore and you can save quite a bit of space by removing the REM
statements. If you plan to revise or study the program structure in the future, it's
a good idea to keep a copy on file with the REM statements intact.

USING VARIABLES

If a number, word or sentence is used repeatedly in your program it's usually
best to define those long words or numbers with a one or two letter variable.
Numbers can be defined as single letters. Words and sentences can be defined
as string variables using a letter and dollar sign. Here's one example:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 POKE 54296, 15 10 V=354296:F=34273

20 POKE 54276,33 20 POKEV, 15:POKES4276, 33

30 POKE 54273,10 30 POKEF, 10:POKEF, 40:POKEF, 70
40 POKE 54273,40 40 POKEV,0

S0 POKE 54273,70
60 POKE 54296,0

USING READ AND DATA STATEMENTS

Large amounts of data can be typed in as one piece of data at a time, over
and over again... or you can print the instructional part of the program ONCE
and print all the data to be handled in a long running list called the DATA
statement. This is especially good for crowding large lists of numbers into a

program.
USING ARRAYS AND MATRICES

Arrays and matrices are similar to DATA statements in that long amounts of data
can be handled as a list, with the data handling portion of the program drawing
from that list, in sequence. Arrays differ in that the list can be multi-dimensional.

ELIMINATING SPACES
One of the easiest ways to reduce the size of your program is to eliminate all
the spaces. Although we often include spaces in sample programs to provide

clarity, you actually don't need any spaces in your program and will save space
if you eliminate them.

26 BASIC PROGRAMMING RULES

USING GOSUB ROUTINES

If you use a particular line or instruction over and over, it might be wise to
GOSUB to the line from several places in your program, rather than write the
whole line or instruction every time you use it.

USING TAB AND SPC
Instead of PRINTing several cursor commands to position a character on the

screen, it is often more economical to use the TAB and SPC instructions to position
words or characters on the screen.

BASIC PROGRAMMING RULES 27

28 BASIC PROGRAMMING RULES

CHAPTER 2

BASIC LANGUAGE
VOCABULARY

Introduction

BASIC Keywords, Abbreviations, and
Function Types

Description of BASIC Keywords
(Alphabetical)

The COMMODORE 64 Keyboard and
Features

Screen Editor

INTRODUCTION

This chapter explains CBM BASIC Language keywords. First we give you an
easy to read list of keywords, their abbreviations and what each letter looks like
on the screen. Then we explain how the syntax and operation of each keyword
works in detail, and examples are shown to give you an idea as to how to use
them in your programs.

As a convenience, Commodore 64 BASIC allows you to abbreviate most
keywords. Abbreviations are entered by typing enough letters of the keyword
to distinguish it from all other keywords, with the last letter or graphics entered
holding down the key.

Abbreviations do NOT save any memory when they're used in programs,
because all keywords are reduced to single-character "tokens" by the BASIC
Interpreter. When a program containing abbreviations is listed, all keywords
appear in their fully spelled form. You can use abbreviations to put more
statements onto a program line even if they won't fit onto the 80-character
logical screen line. The Screen Editor works on an 80-character line. This means
that if you use abbreviations on any line that goes over 80 characters, you will
NOT be able to edit that line when LISTed. Instead, what you'll have to do is (1)
retype the entire line including all abbreviations, or (2) break the single line of
code into two lines, each with its own line number, etc.

A complete list of keywords, abbreviations, and their appearance on the screen
is presented in Table 2—1. They are followed by an alphabetical description of
all the statements, commands, and functions available on your Commodore 64.

This chapter also explains the BASIC functions built into the BASIC Language
Interpreter. Built-in functions can be used in direct mode statements or in any
program, without having to define the function further. This is NOT the case with
user-defined functions. The results of built-in BASIC functions can be used as
immediate output or they can be assigned to a variable name of an appropriate
type. There are two types of BASIC functions:

1. NUMERIC
2. STRING

Arguments of built-in functions are always enclosed in parentheses (). The
parentheses always come directly after the function keyword and NO SPACES
between the last letter of the keyword and the left parenthesis (.

30 BASIC LANGUAGE VOCABULARY

The type of argument needed is generally decided by the data type in the
result. Functions which return a string value as their result are identified by having
a dollar sign ($) as the last character of the keyword. In some cases string
functions contain one or more numeric argument.

Numeric functions will convert between integer and floating-point format as
needed. In the descriptions that follow, the data type of the value returned is
shown with each function name. The types of arguments are also given with the
statement format.

TABLE 2-1. COMMODORE 64 BASIC KEYWORDS

COMMAND ABBREVIATION SCREEN FUNCTION TYPE
ABS A & s Al NUMERIC
AND A N AL
ASC A S AN NUMERIC
ATN A T Al NUMERIC
CHR$ c ©mE H cl STRING
CLOSE cL o} calb

CLR C L cbL

CMD C M M
CONT c HE o cl™

Cos NONE cos NUMERIC
DATA D & A D i

DEF D SHIF TS D™

DIM D SHIFT I Dmy

BASIC LANGUAGE VOCABULARY 31

COMMAND ABBREVIATION SCREEN FUNCTION TYPE
END E & N Es
EXP E SHIF TR E g NUMERIC
FN NONE FN
FOR F SHIFTJNe) FIT
FRE F SHIFT Y F i NUMERIC
GET ¢ HE = =
GET# NONE GET#
GOSUB co Bm s GOW
GOTO ¢ ME o clC
IF NONE IF
INPUT NONE INPUT
INPUT# I SHIFTIEEN "4
INT NONE INT NUMERIC
LEFT$ [S HIF T LE STRING
LEN NONE LEN NUMERIC
LET L SHIF TS L=
LIST L SHIFTI Ly
LOAD L SHIFTJNe) LI
LOG NONE LOG NUMERIC

32 BASIC LANGUAGE VOCABULARY

COMMAND ABBREVIATION SCREEN FUNCTION TYPE
MID$ Y S H i TR Mey STRING
NEW NONE NEW
NEXT N HHE E N™=
NOT N HHl@ o©° NI

ON NONE ON
OPEN o H&E -r o™l
OR NONE OR
PEEK P SHIF T p= NUMERIC
POKE P E O P
POS NONE POS NUMERIC
PRINT 2 2
PRINT# P SHIFTE P
READ R SHIF TS R ™
REM NONE REM
RESTORE RE S RE W
RETURN RE SEE 7 REN
RIGHT$ R SHIFT! Rmy STRING
RND R N R NUMERIC
RUN R SHIFTIRV Rl #

BASIC LANGUAGE VOCABULARY

33

COMMAND ABBREVIATION SCREEN FUNCTION TYPE
SAVE S A ¥ 3
SGN S G sl NUMERIC
SIN S [Sk NUMERIC
SPC(S P s™M SPECIAL
SQR S Q S NUMERIC
STATUS ST ST NUMERIC
STEP ST E ST™
STOP S T sl
STR$ ST R ST STRING
SYS S Y sl
TAB(T NaE A Tl SPECIAL
TAN NONE TAN NUMERIC
THEN T SHIFTIRS T 1
TIME Tl Tl NUMERIC
TIMES$ TI$ TI$ STRING
TO NONE TO
USR U S U NUMERIC
VAL \% A V i NUMERIC
VERIFY v E v
WAIT w HE A W e

34

BASIC LANGUAGE VOCABULARY

DESCRIPTION OF BASIC KEYWORDS

ABS

TYPE: Function—-Numeric

FORMAT: ABS (<expression>)

Action: Returns the absolute value of the number, which is its value without any
signs. The absolute value of a negative number is that number multiplied by —1.
EXAMPLES of ABS Function:

10 X = ABS (Y

10 PRINT ABS (X X J)

10 IF X = ABS (X> THEN PRINT "POSITIVE"

AND

TYPE: Operator

FORMAT: <expression> AND <expression>

Action: AND is used in Boolean operations to test bits. It is also used in operations

to check the truth of both operands.

In Boolean algebra, the result of an AND operation is 1 only if both numbers
being ANDed are 1. The result is O if either or both is O (false).

EXAMPLES of 1-Bit AND Operation:

0] 1 0] 1
AND O AND O AND 1 AND 1
0 0] 0] 1

The Commodore 64 performs the AND operation on numbers in the range from
—32768 to +32767. Any fractional values are not used, and numbers beyond
the range will cause an ?ILLEGAL QUANTITY error message. When converted

BASIC LANGUAGE VOCABULARY 35

to binary format, the range allowed yields

16 bits for each number.

Corresponding bits are ANDed together, forming a 16-bit result in the same

range.

EXAMPLES of 16-Bit AND Operation:

17

AND 194
0000000000010001
AND 0000000011000010

(BINARY) 0000000000000000

(DECIMAL)

0

32007

AND 28761
0111110100000111
AND 0111000001011001

(BINARY) 0111000000000001

(DECIMAL) 28673
=241

AND 15359
1111111100001111

AND 0O011101111111111
(BINARY) 0011101100001111
(DECIMAL) 15119

36 BASIC LANGUAGE VOCABULARY

When evaluating a number for truth or falsehood, the computer assumes the
number is true as long as its value isn't 0. When evaluating a comparison, it
assigns a value of —1 if the result is true, while false has a value of 0. In binary
format, =1 is all 1's and O is all O's. Therefore, when ANDing true/false
evaluations, the result will be true if any bits in the result are true.

EXAMPLES of Using AND with True/False Evaluations:

S0 IF X=7 AND W=3 THEN GOTO 10: REM ONLY TRUE IF BOTH
X=7 AND W=3 ARE TRUE
60 IF A AND Q=7 THEN GOTO 10: REM TRUE IF A IS NON-
ZERO AND Q=7 IS TRUE

ASC

TYPE: Function—Numeric
FORMAT: ASC (<string>)

Action: ASC will return a number from O to 255 which corresponds to the
Commodore ASCIl value of the first character in the string. The table of
Commodore ASCII values is shown in Appendix C.

EXAMPLES OF ASC Function:
10 PRINT ASC("2")

20 X = ASC("ZEBRA")
30 J = ASCWI®

If there are no characters in the string, an ?2ILLEGAL QUANTITY error results. In
the third example above, if J$="", the ASC function will not work. The GET and
GET# statement read a CHR$(0) as a null string. To eliminate this problem, you
should add a CHR$(0) to the end of the string as shown below.

EXAMPLE of ASC Function Avoiding ILLEGAL QUANTITY ERROR:

30 J = ASC(J$ +CHR$CO>

BASIC LANGUAGE VOCABULARY 37

ATN

TYPE: Function—Numeric
FORMAT: ATN (<number>)

Action: This mathematical function returns the arctangent of the number. The
result is the angle (in radians) whose tangent is the number given. The result is

always in the range — 7T /2 to + Tt /2.
EXAMPLES of ATN Function:

10 PRINT ATN (0>
20 X=ATN (J> X 180 » m: REM CONVERT TO DEGREES

CHR$

TYPE: Function—String
FORMAT: CHR$ (<number>)

Action: This function converts a Commodore ASCIl code to its character
equivalent. See Appendix C for a list of characters and their codes. The number
must have a value between 0 and 255, or an 2ILLEGAL QUANTITY error
message results.

EXAMPLES of CHR$ Function:

10 PRINT CHR$¢(65)>: REM 65 = UPPER CASE A

20 A$=CHR$(13>: REM 13 = RETURN KEY

S0 A=ASC(A%> : AS=CHRS(A>: REM CONVERTS TO C64 ASCII CODE
AND BACK

38 BASIC LANGUAGE VOCABULARY

CLOSE

TYPE: 1/O Statement
FORMAT: CLOSE <file-number>

Action: This statement shuts off any data file or channel to a device. The file
number is the same as when the file or device was OPENed (see OPEN statement
and the section on INPUT/OUTPUT programming).

When working with storage devices like cassette tape and disks, the CLOSE
operation stores any incomplete buffers to the device. When this is not
performed, the file will be incomplete on the tape and unreadable on the disk.
The CLOSE operation isn't as necessary with other devices, but it does free up
memory for other files. See your external device manual for more details.

EXAMPLES of CLOSE Statement:

10 CLOSE 1
20 CLOSE X
30 CLOSE 9 x (1 + b

CLR

TYPE: Statement
FORMAT: CLR

Action: This statement makes available RAM memory that had been used but is
no longer needed. Any BASIC program in memory is untouched, but all variables,
arrays, GOSUB addresses, FOR... NEXT loops, user-defined functions, and files
are erased from memory, and their space is made available to new variables,
etc.

BASIC LANGUAGE VOCABULARY 39

In the case of files to the disk and cassette tape, they are not properly CLOSEd
by the CLR statement. The information about the files is lost to the computer,
including any incomplete buffers. The disk drive will still think the file is OPEN.
See the CLOSE statement for more information on this.

EXAMPLE of CLR Statement:
10 ¥ = 25

20 CLR

30 PRINT X

RUN
0]

READY

CMD

TYPE: 1/O Statement
FORMAT: CMD <file-number> [, string]

Action: This statement switches the primary output device from the TV screen to
the file specified. This file could be on disk, tape, printer, or an 1/O device like
the modem. The file number must be specified in a prior OPEN statement. The
string, when specified, is sent to the file. This is handy for titling printouts, etc.

When this command is in effect, any PRINT statements and LIST commands will
not display on the screen, but will send the text in the same format to the file.

To re-direct the output back to the screen, the PRINT# command should send a

blank line to the CMD device before CLOSEing, so it will stop expecting data
(called "un-listening" the device).

40 BASIC LANGUAGE VOCABULARY

Any system error (like 2SYNTAX ERROR) will cause output to return to the screen.
Devices aren't un-listened by this, so you should send a blank line after an error
condition. (See your printer or disk manual for more details.)

EXAMPLES of CMD Statement:

OPEN 4,4: CMD 4, "TITLE": LIST: REM LISTS PROGRAM ON
PRINTER
PRINT# 4: CLOSE 4: REM UN-LISTENS AND CLOSES PRINTER

10 OPEN 1, 1, 1, "TEST": REM CREATE SEQ FILE

20 CMD 1: REM OUTPUT TO TAPE FILE, NOT SCREEN

30 FORL =1 TO 100

40 PRINT L: REM PUTS NUMBER IN TAPE BUFFER

S0 NEXT

60 PRINT# 1: REM UNLISTEN

70 CLOSE 1: REM WRITE UNFINISHED BUFFER, PROPERLY
FINISH

CONT

TYPE: Command
FORMAT: CONT

Action: This command re-starts the execution of a program which was halted by
a STOP or END statement or the S NISII®ld key being pressed. The program
will re-start at the exact place from which it left off.

While the program is stopped, the user can inspect or change any variables or
look at the program. When de-bugging or examining a program, STOP
statements can be placed at strategic locations to allow examination of variables
and to check the flow of the program.

The error message ?CAN'T CONTINUE will result from editing the program
(even just hitting with the cursor on an unchanged line), or if the program
halted due to an error, or if you caused an error before typing CONT to re-start
the program.

EXAMPLE of CONT Command:

10 PI=0: C=1

20 PI=PI+4/C-4/(C+2)
30 PRINT PI

40 C=C+4: GOTO 20

BASIC LANGUAGE VOCABULARY 41

This program calculates the value of Pl. RUN this program, and after a short
while hit the [{S\IAYK0Id key. You will see the display:

BREAK IN 20 NOTE: Might be different number.

Type the command PRINT C to see how far the Commodore 64 has gotten. Then
use CONT to resume from where the Commodore 64 left off.

COs

TYPE: Function
FORMAT: COS (<number>)

Action: This mathematical function calculates the cosine of the number, where the
number is an angle in radians.

EXAMPLES of COS Function:

10 PRINT COS (0>
20 X=CO0S <Y X 7w~ 180>: REM CONVERT DEGREES TO RADIANS

DATA

TYPE: Statement
FORMAT: DATA <list of constants>

Action: DATA statements store information within a program. The program uses
the information by means of the READ statement, which pulls successive constants
from the DATA statements.

The DATA statements don't have to be executed by the program, they only have
to be present. Therefore, they are usually placed at the end of the program.

All data statements in a program are treated as a continuous list. Data is READ
from left to right, from the lowest numbered line to the highest. If the READ
statement encounters data that doesn't fit the type requested (if it needs a
number and finds a string) an error message occurs.

42 BASIC LANGUAGE VOCABULARY

Any characters can be included as data, but if certain ones are used the data

item must be enclosed by quote marks (" "

). These include punctuation like comma
,), colon (:), blank spaces, and shifted letters, graphics, and cursor control
P grap

characters.
EXAMPLES of DATA Statement:

10 DATA 1, 10, 35, 8

20 DATA JOHN, PAUL, GEORGE, RINGO

30 DATA "DEAR MARY, HOW ARE YOU, LOVE, BILL"
40 DATA -1.7E-9, 3.33

DEF FN

TYPE: Statement
FORMAT: DEF FN <name> (<variable>) = <expression>

Action: This sets up a user-defined function that can be used later in the program.
The function can consist of any mathematical formula.

User-defined functions save space in programs where a long formula is used in
several places. The formula need only be specified once, in the definition
statement, and then it is abbreviated as a function name. It must be executed
once, but any subsequent executions are ignored.

The function name is the letters FN followed by any variable name.
This can be 1 or 2 characters, the first being a letter and the second a letter or
digit.

EXAMPLES of DEF FN Statement:
10 DEF FN A(X) = X + 7

20 DEF FN AA (X) = YXZ
30 DEF FN A9CQ@> = INT(RNDC(1>XQ+1>

The function is called later in the program by using the function name with a

variable in parentheses. This function name is used like any other variable, and
its value is automatically calculated.

BASIC LANGUAGE VOCABULARY 43

EXAMPLES of FN Use:

40 PRINT FN A (9
S50 R = FNAR (9O
60 G = G + FN A9 (1D

In line 50 above, the number 9 inside the parentheses does not affect the
outcome of the function, because the function definition in line 20 doesn't use the
variable in the parentheses. The result is Y times Z, regardless of the value of X.
In the other two functions, the value in parentheses does affect the result.

DIM

TYPE: Statement
FORMAT: DIM <variable> (<subscripts>) [,
<variable> (<subscripts>)...]

Action: This statement defines an array or matrix of variables. This allows you
to use the variable name with a subscript. The subscript points to the element
being used. The lowest element number in an array is zero, and the highest is the
number given in the DIM statement, which has a maximum of 32767.

The DIM statement must be executed once and only once for each array. A
?REDIM'D ARRAY error occurs if this line is re-executed. Therefore, most
programs perform all DIM operations at the very beginning.

There may be any number of dimensions and 255 subscripts in an array, limited
only by the amount of RAM memory which is available to hold the variables. The
array may be made up of normal numeric variables, as shown above, or of
strings or integer numbers. If the variables are other than normal numeric, use
the $ or % signs after the variable name to indicate string or integer variables.

44 BASIC LANGUAGE VOCABULARY

If an array referenced in a program was never DIMensioned, it is automatically

dimensioned to 11 elements in each dimension used in the first reference.
EXAMPLES of DIM Statement:

10 DIM A (100>

20 DIM Z (5, 7), Y(3,4,3)

30 DIM Y7~x <(Q)

40 DIM PH$ (1000>

50 F(4>=9: REM AUTOMATICALLY PERFORMS DIM F (10>

EXAMPLE of FOOTBALL SCORE-KEEPING Using DIM:

10 DIM S(C1,5)>, T$C1D

20 INPUT "TEAM NAMES"; T$CO)>, T$C(1)D
30 FOR Q@ =1 TO 5: FOR T= 0 TO 1

40 PRINT T$C(T>, "SCORE IN QUARTER" Q@
S0 INPUT S(T,Q@>: S(T,0>= S(T,0> + S(T,Q
60 NEXTT,Q

70 PRINT CHR$(147> "SCOREBOARD"

80 PRINT "QUARTER"

99 FOR @ =1 TO S

100 PRINT TABCQ%2 +9) Q;

110 NEXT: PRINT TABC(15> "TOTAL"

120 FOR T = 0 TO 1: PRINTTS(T);

130 FOR Q =1 TO 5

140 PRINT TABCQ%2 +9)> SCT,Q@;

150 NEXT: PRINT TAB(135) S(T,0)

160 NEXT

CALCULATING MEMORY USED BY DIM:

5 bytes for the array name

2 bytes for each dimension

2 bytes/element for integer variables

5 bytes/element for normal numeric variables
3 bytes/element for string variables

1 byte for each character in each string element

BASIC LANGUAGE VOCABULARY

45

END

TYPE: Statement
FORMAT: END

Action: This finishes a program's execution and displays the READY message,
returning control to the person operating the computer. There may be any
number of END statements within a program. While it is not necessary to include
any END statements at all, it is recommended that a program does conclude with
one, rather than just running out of lines.

The END statement is similar to the STOP statement. The only difference is that
STOP causes the computer to display the message BREAK IN XX and END just
displays READY. Both statements allow the computer to resume execution by
typing the CONT command.

EXAMPLES of END Statement:

10 PRINT "DO YOU REALLY WANT TO RUN THIS PROGRAM"
20 INPUT A%

30 IF A% = "NO" THEN END

40 REM REST OF PROGRAM. ..
999 END

EXP

TYPE: Function—Numeric
FORMAT: EXP (<number>)

Action: This mathematical function calculates the constant e (2.71828183) raised
to the power of the number given. A value greater than 88.0296919 causes an
20VERFIOW error to occur.

EXAMPLES of EXP Function:

10 PRINT EXP (1)
20 X=Y X EXP (Z X @

46 BASIC LANGUAGE VOCABULARY

FN

TYPE: Function—Numeric
FORMAT: FN <name> (<number>)

Action: This function references the previously DEFined formula specified by
name. The number is substituted into its place (if any) and the formula is
calculated. The result will be a numeric value.

This function can be used in direct mode, as long as the statement DEFining it has
been executed.

If an FN is executed before the DEF statement which defines it, an 2UNDEF'D
FUNCTION error occurs.

EXAMPLES of FN (User Defined) Function:
PRINT FN A (@

1160 J = FN J (7> + FN J (9
9990 IF FN B7 (I+1> = 6 THEN END

FOR... TO... [STEP...]

TYPE: Statement
FORMAT: FOR <variable> = <start> TO <limit> [STEP <increment>]

Action: This is a special BASIC statement that lets you easily use a variable as a
counter. You must specify certain parameters: the floating-point variable name,
its starting value, the limit of the count, and how much to add during each cycle.

Here is a simple BASIC program that counts from 1 to 10, PRINTing each number
and ENDing when complete, and using no FOR statements:

160 L =1

110 PRINT L

120 L =L + 1

130 IF L <= 10 THEN 110
140 END

BASIC LANGUAGE VOCABULARY 47

Using the FOR statement, here is the same program:

100 FOR L = 1 TO 10
110 PRINT L

120 NEXT L

130 END

As you can see, the program is shorter and easier to understand using the FOR
statement.

When the FOR statement is executed, several operations take place. The <start>
value is placed in the <variable> being used in the counter. In the example
above, a 1 is placed in L.

When the NEXT statement is reached, the <increment> value is added to the
<variable>. If a STEP was not included, the <increment> is set to + 1. The first
time the program above hits line 120, 1 is added to L, so the new value of L is

2.

Now the value in the <variable> is compared to the <limit>. If the <limit> has
not been reached yet, the program GOes TO the line after the original FOR
statement. In this case, the value of 2 in L is less than the limit of 10, so it GOes
TO line 110.

Eventually, the value of <limit> is exceeded by the <variable>. At that time,
the loop is concluded and the program continues with the line following the NEXT
statement. In our example, the value of L reaches 11, which exceeds the limit of
10, and the program goes on with line 130.

When the value of <increment> is positive, the <variable> must exceed the
<limit>, and when it is negative it must become less than the <limit>.

NOTE: A loop always executes at least once.

EXAMPLES of FOR... TO... STEP... Statement:

100 FOR L 160 TO 0 STEP -1

100 FOR L = PI TO 6% & STEP .01
100 FOR AA = 3 TO 3

48 BASIC LANGUAGE VOCABULARY

FRE

TYPE: Function
FORMAT: FRE (<variable>)

Action: This function tells you how much RAM is available for your program and
its variables. If a program tries to use more space than is available, the 20UT
OF MEMORY error results.

The number in parentheses can have any value, and it is not used in the
calculation.

NOTE: If the result of FRE is negative, add 65536 to the FRE number to get the number of bytes
available in memory.

EXAMPLES of FRE Function:

PRINT FRE <0>
10 X = (FREC(K>-1060> » 7
950 IF FRE (0> < 100 THEN PRINT "NOT ENOUGH ROOM"

NOTE: The following always tells you the current available RAM:

PRINT FRE(O)~(FRE(0)<0) * 65536

GET

TYPE: Statement
FORMAT: GET <variable list>

Action: This statement reads each key typed by the user. As the user is typing,
the characters are stored in the Commodore 64's keyboard buffer. Up to 10
characters are stored here, and any keys struck after the 10th are lost. Reading
one of the characters with the GET statement makes room for another character.

If the GET statement specifies numeric data, and the user types a key other than

a number, the message 2SYNTAX ERROR appears. To be safe, read the keys
as strings and convert them to numbers later.

BASIC LANGUAGE VOCABULARY 49

The GET statement can be used to avoid some of the limitations of the INPUT
statement. For more on this, see the section on Using the GET Statement in the
Programming Techniques section.

EXAMPLES of GET Statement:

10 GET A%$: IF A$ = "" THEN 10: REM LOOPS IN 10 UNTIL
ANY KEY HIT

20 GET A%, B%, C%, D%, ES: REM READS 5 KEYS

30 GET A, AS

GET#

TYPE: 1/O Statement
FORMAT: GET# <file-number>, <variable list>

Action: This statement reads characters one-at-a-time from the device or file
specified. It works the same as the GET statement, except that the data comes
from a different place than the keyboard. If no character is received, the
variable is set to an empty string (equal to ") or to O for numeric variables.
Characters used to separate data in files, like the comma (,) or key

code (ASC code of 13), are received like any other character.

When used with device #3 (TV screen), this statement will read characters one
by one from the screen. Each use of GET# moves the cursor 1 position to the
right. The character at the end of the logical line is changed to a CHR$(13),

the AR key code.

EXAMPLES of GET# Statement:
S GET#1, A%

10 OPEN 1, 3: GET# 1, 27$
20 GET# 1, A, B, C$, D$

50 BASIC LANGUAGE VOCABULARY

GOSuUB

TYPE: Statement
FORMAT: GOSUB <line-number>

Action: This is a specialized form of the GOTO statement, with one important
difference: GOSUB remembers where it came from. When the RETURN statement
(different from the key on the keyboard) is reached in the program,
the program jumps back to the statement immediately following the original
GOSUB statement.

The major use of a subroutine (GOSUB really means GO to a SUB-routine) is
when a small section of program is used by different sections of the program.
By using subroutines rather than repeating the same lines over and over at
different places in the program, you can save lots of program space. In this way,
GOSUB is similar to DEF FN. DEF FN lets you save space when using a formula,
while GOSUB saves space when using a several-line routine. Here is an inefficient
program that doesn't use GOSUB:

100 PRINT "THIS PROGRAM PRINTS"

110 FOR L = 1 TO 500 : NEXT

120 PRINT "SLOWLY ON THE SCREEN"
130 FOR L = 1 TO 500 : NEXT

140 PRINT "USING A SIMPLE LOOP"

150 FOR L = 1 TO 500 : NEXT

160 PRINT "AS A TIME DELAY:"

170 FOR L = 1 TO 500 : NEXT

Here is the same program using GOSUB:

100 PRINT "THIS PROGRAM PRINTS"
110 GOSUB 200

120 PRINT "SLOWLY ON THE SCREEN"
130 GOSUB 200

140 PRINT "USING A SIMPLE LOOP"
150 GOSUB 200

160 PRINT "AS A TIME DELAY."
170 GOSUB 200

180 END

200 FOR L = 1 TO 500: NEXT

210 RETURN

BASIC LANGUAGE VOCABULARY 51

Each time the program executes a GOSUB, the line number and position in the
program line are saved in a special area called the "stack," which takes up 256
bytes of your memory. This limits the amount of data that can be stored in the
stack. Therefore, the number of subroutine return addresses that can be stored
is limited, and care should be taken to make sure every GOSUB hits the
corresponding RETURN, or else you'll run out of memory even though you have
plenty of bytes free.

GOTO

TYPE: Statement
FORMAT: GOTO <line-number> or GO TO <line-number>

Action: This statement allows the BASIC program to execute lines out of
numerical order. The word GOTO followed by a number will make the program
jump to the line with that number. GOTO NOT followed by a number equals
GOTO 0. It must have the line number after the word GOTO.

It is possible to create loops with GOTO that will never end. The simplest
example of this is a line that GOes TO itself, like 10 GOTO 10.

These loops can be stopped using the key on the keyboard.
EXAMPLES of GOTO Statement:

GOTO 100
10 GO TO S0
20 GOTO 999

IF... THEN...

TYPE: Statement

FORMAT: IF <expression> THEN <line-number>
IF <expression> GOTO <line-number>
IF <expression> THEN <statements>

Action: This is the statement that gives BASIC most of its "intelligence," the ability
to evaluate conditions and take different actions depending on the outcome.

52 BASIC LANGUAGE VOCABULARY

The word IF is followed by an expression, which can include variables, strings,
numbers, comparisons, and logical operators. The word THEN appears on the
same line and is followed by either a line number or one or more BASIC
statements. When the expression is false, everything after the word THEN on
that line is ignored, and execution continues with the next line number in the
program. A true result makes the program either branch to the line number after
the word THEN or execute whatever other BASIC statements are found on that
line.

EXAMPLE of IF... GOTO... Statement:

100 INPUT "TYPE A NUMBER"; N
110 IF N <= 0 GOTO 200

120 PRINT "SQUARE ROOT=" SQRC(N>
130 GOTO 100

200 PRINT "NUMBER MUST BE >0"
210 GOTO 100

This program prints out the square root of any positive number. The IF statement
here is used to validate the result of the INPUT. When the result of N <= 0 is
true, the program skips to line 200, and when the result is false the next line to
be executed is 120. Note that THEN GOTO is not needed with IF. . .THEN, as in
line 110 where GOTO 200 actually means THEN GOTO 200.

EXAMPLE OF IF... THEN... Statement:

100 FOR L = 1 TO 100

110 IF RNDC(1>< .5 THEN X = X + 1 : GOTO 130
120 =Y + 1

130 NEXT L

140 PRINT "HEADS= " X

150 PRINT "TAILS= " Y

The IF in line 110 tests a random number to see if it is less than .5.
When the result is true, the whole series of statements following the word THEN

are executed: first X is incremented by 1, then the program skips to line 130.
When the result is false, the program drops to the next statement, line 120.

BASIC LANGUAGE VOCABULARY 53

INPUT

TYPE: Statement
FORMAT: INPUT ["<prompt>";] <variable list>

Action: This is a statement that lets the person RUNning the program "feed"
information into the computer. When executed, this statement PRINTs a question
mark (2) on the screen, and positions the cursor 1 space to the right of the question
mark. Now the computer waits, cursor blinking, for the operator to type in the
answer and press the key.

The word INPUT may be followed by any text contained in quote marks (" ").
This text is PRINTed on the screen, followed by the question mark.

After the text comes a semicolon (;) and the name of one or more variables
separated by commas. This variable is where the computer stores the information
that the operator types. The variable can be any legal variable name, and you
can have several different variable names, each for a different input.

EXAMPLES of INPUT Statement:

100 INPUT A
110 INPUT B, C, D
120 INPUT "PROMPT"; E

When this program RUNs, the question mark appears to prompt the operator
that the Commodore64 is expecting an input for line 100. Any number typed in
goes into A, for later use in the program. If the answer typed was not a number,
the 2REDO FROM START message appears, which means that a string was
received when a number was expected. If the operator just hits without
typing anything, the variable's value doesn't change.

Now the next question mark, for line 110, appears. If we type only one number

and hit [{EAN, the Commodore 64 will now display 2 question marks (22),
which means that more input is required. You can just type as many inputs as you

54 BASIC LANGUAGE VOCABULARY

need separated by commas, which prevents the double question mark from
appearing. If you type more data than the INPUT statement requested, the
2EXTRA IGNORED message appears, which means that the extra items you
typed were not put into any variables.

Line 120 displays the word PROMPT before the question mark appears. The
semicolon is required between the prompt and any list of variables.

The INPUT statement can never be used outside a program. The Commodore 64
needs space for a buffer for the INPUT variables, the same space that is used
for commands.

INPUT#

TYPE: 1/O Statement
FORMAT: INPUT# <file-number> , <variable list>

Action: This is usually the fastest and easiest way to retrieve data stored in a
file on disk or tape. The data is in the form of whole variables of up to 80
characters in length, as opposed to the one-at-a-time method of GET#. First, the
file must have been OPENed, then INPUT# can fill the variables.

The INPUT# command assumes a variable is finished when it reads a RETURN
code (CHR$ (13)), a comma (,), semicolon (;), or colon (:). Quote marks (") can be
used fo enclose these characters when writing if they are needed (see PRINT#
statement).

If the variable type used is numeric, and non-numeric characters are received, a
BAD DATA error results. INPUT# can read strings up to 80 characters long,
beyond which a 2STRING TOO LONG error results.

When used with device #3 (the screen), this statement will read an entire logical
line and move the cursor down to the next line.

EXAMPLES of INPUT# Statement:

10 INPUT# 1, A
20 INPUT# 2, AS, BS

BASIC LANGUAGE VOCABULARY 55

INT

TYPE: Integer Function
FORMAT: INT (<numeric>)

Action: Returns the integer value of the expression. If the expression is positive,
the fractional part is left off. If the expression is negative, any fraction causes
the next lower integer to be returned.

EXAMPLES of INT Function:

120 PRINT INT(99.4343),INT(-12.34>
RUN

99 -13

LEFT$

TYPE: String Function
FORMAT: LEFT$ (<string>, <integer>)

Action: Returns a string comprised of the leftmost <integer> characters of the
<string>. The integer argument value must be in the range O to 255. If the
integer is greater than the length of the string, the entire string will be returned.
If an <integer> value of zero is used, then a null string (of zero length) is
returned.

EXAMPLES of LEFT$ Function:

10 A$ = "COMMODORE COMPUTERS"
20 B$ = LEFT$C(A%, 9>: PRINTBS
RUN

COMMODORE

56 BASIC LANGUAGE VOCABULARY

LEN

TYPE: Integer Function
Format: LEN (<string>)

Action: Returns the number of characters in the string expression. Non-printed
characters and blanks are counted.

EXAMPLE of LEN Function:
CC% = "COMMODORE COMPUTER": PRINT LENCCCS>

18

LET

TYPE: Statement
FORMAT: [LET] <variable> = <expression>

Action: The LET statement can be used to assign a value to a variable. But the
word LET is optional and therefore most advanced programmers leave LET out
because it's always understood and wastes valuable memory. The equal sign (=)
alone is sufficient when assigning the value of an expression to a variable name.

EXAMPLES of LET Statement:

10 LET D = 12 (This is the same as D=12)

20 LET E$ = "ABC"

30 F$ = "WORDS"

40 SUM$ = E$ + F$ (SUM$ would equal ABCWORDS)

BASIC LANGUAGE VOCABULARY 57

LIST

TYPE: Command
FORMAT: LIST [[<first-line>] — [<last-line>]]

Action: The LIST command allows you to look at lines of the BASIC program
currently in the memory of your Commodore 64. This lets you use your computer's
powerful screen editor to edit programs which you've LISTed both quickly and
easily.

The LIST system command displays all or part of the program that is currently in
memory on the default output device. The LIST will normally be directed to the
screen and the CMD statement can be used to switch output to an external device
such as a printer or a disk. The LIST command can appear in a program, but
BASIC always returns to the system READY message after a LIST is executed.

When you bring the program LIST onto the screen, the "scrolling” of the display
from the bottom of the screen to the top can be slowed by holding down the
ConTRol key. LIST is aborted by hitting the IRS\/A1K8Id key.

If no line numbers are given the entire program is listed. If only the first line
number is specified, and followed by a hyphen (-), that line and all higher-
numbered lines are listed. If only the last line number is specified, and it is
preceded by a hyphen, then all lines from the beginning of the program through
that line are listed. If both numbers are specified, the entire range, including the
line numbers LISTed, are displayed.

EXAMPLES of LIST Command:

LIST (lists the program currently in memory.)
LIST S00 (lists line 500 only.)

LIST 150- (lists all lines from150 to the end.)

LIST -1000 (lists all lines from the lowest through 1000.)
LIST 150-1000 (lists lines 150 through 1000, inclusive.)

10 PRINT "THIS IS LINE 10"
20 LIST (LIST used in Program Mode)
30 PRINT "THIS IS LINE 30"

58 BASIC LANGUAGE VOCABULARY

LOAD

TYPE: Command
FORMAT: LOAD ["<file-name>"] [,<device>] [,<address>]

Action: The LOAD statement reads the contents of a program file from tape or
disk into memory. That way you can use the information LOADed or change the
information in some way. The device number is optional, but when it is left out
the computer will automatically default to 1, the cassette unit. The disk unit is
normally device number 8. The LOAD closes all open files and, if it is used in
direct mode, it performs a CLR (clear) before reading the program. If LOAD is
executed from within a program, the program is RUN. This means that you can
use LOAD to "chain" several programs together. None of the variables are
cleared during a chain operation.

If you are using file-name pattern matching, the first file which matches the

"*") causes the first file-name

pattern is loaded. The asterisk in quotes by itself (
in the disk directory to be loaded. If the file-name used does not exist or if it is

not a program file, the BASIC error message 2FILE NOT FOUND occurs.

When LOADing programs from tape, the <file-name> can be left out, and the
next program file on the tape will be read. The Commodore 64 will blank the
screen to the border color after the PLAY key is pressed. When the program is
found, the screen clears to the background color and the "FOUND" message is
displayed. When the [§ key, key, key, or is pressed, the
file will be loaded. Programs will LOAD starting at memory location 2048 unless
a secondary <address> of 1 is used. If you use the secondary address of 1 this
will cause the program to LOAD to the memory location from which it was saved.

BASIC LANGUAGE VOCABULARY 59

EXAMPLES of LOAD Command:

LOAD (Reads the next program on tape)
LOAD A% (Uses the name A$ to search)

LOAD "x%",8 (LOADs first program from disk)
LoAD "",1,1 (Looks for the first program on tape,

and LOAD:s it into the same part of
memory that it came from)

LOAD "STAR TREK" (LOAD a files from tape)
PRESS PLAY ON TAPE

FOUND STAR TREK

LOADING

READY .

LOAD "FUN",8 (LOAD a file from disk)
SEARCHING FOR FUN

LOADING

READY .

LOAD "GAME ONE",8,1 (LOAD a file to the specific memory
SEARCHING FOR GAME ONE location from which the program was
LOADING
READY .

saved on the disk)

60 BASIC LANGUAGE VOCABULARY

LOG

TYPE: Floating-Point Function
FORMAT: LOG (<numeric>)

Action: Returns the natural logarithm (log to the base of e) of the argument. If
the value of the argument is zero or negative the BASIC error message ?ILLEGAL
QUANTITY will occur.

EXAMPLES of LOG Function:

25 PRINT LOG(4577)>

RUN

1.86075234

10 NUM=LOG(ARG>/LOG(10> (Calculates the LOG of ARG to the
base 10)

MID$

TYPE: String Function
FORMAT: MID$ (<string>, <numeric-1> [,<numeric-2>])

Action: The MID$ function returns a sub-string which is taken from within a larger
<string> argument. The starting position of the sub-string is defined by the
<numeric-1> argument and the length of the sub-string by the <numeric-2>
argument. Both of the numeric arguments can have values ranging from O to 255.

If the <numeric-1> value is greater than the length of the <string>, or if the
<numeric-2> value is zero, then MID$ gives a null string value. If the <numeric-
2> argument is left out, then the computer will assume that a length of the rest
of the string is to be used. And if the source string has fewer characters than
<numeric-2>, from the starting position to the end of the string argument, then
the whole rest of the string is used.

EXAMPLE of MID$ Function:

10 A$="GOOD"

20 B$="MORNING EVENING AFTERNOON"
30 PRINTA$ + MIDS(BS, 8, 8)

RUN

GOOD EVENING

BASIC LANGUAGE VOCABULARY 61

NEW

TYPE: Command
FORMAT: NEW

Action: The NEW command is used to delete the program currently in memory
and clear all variables. Before typing in a new program, NEW should be used
in direct mode to clear memory. NEW can also be used in a program, but you
should be aware of the fact that it will erase everything that has gone before
and is still in the computer's memory. This can be particularly troublesome when
you're trying to debug your program.

BE CAREFUL: Not clearing out an old program before typing a new one can result in a confusing
mix of the two programs.

EXAMPLES of NEW Command:

NEW (Clears the program and all variables)
10 NEW (Performs a NEW operation and STOPs the program.)
NEXT

TYPE: Statement
FORMAT: NEXT [<counter>] [,<counter>]...

Action: The NEXT statement is used with FOR to establish the end of a FOR...
NEXT loop. The NEXT need not be physically the last statement in the loop, but
it is always the last statement executed in a loop. The <counter> is the loop
index's variable name used with FOR to start the loop. A single NEXT can stop
several nested loops when it is followed by each FOR's <counter> variable
name(s). To do this each name must appear in the order of inner-most nested
loop first, to outer-most nested loop last. When using a single NEXT to increment
and stop several variable names, each variable name must be separated by
commas. Loops can be nested to 9 levels. If the counter variable(s) are omitted,
the counter associated with the FOR of the current level (of the nested loops) is
incremented.

62 BASIC LANGUAGE VOCABULARY

When the NEXT is reached, the counter value is incremented by 1 or by an
optional STEP value. It is then tested against an end-value to see if it's time to
stop the loop. A loop will be stopped when a NEXT is found which has its counter
value greater than the end-value.

EXAMPLES of NEXT Statement:

10 FOR J=1 TO 5: FOR K=10 TO 20: FOR N=5 TO-5 STEP-1
20 NEXT N, K, J (Stopping Nested Loops)

10 FOR L
20 FOR M

30 NEXT M
400 NEXT

1 TO 100
1 TO 10

-

(Note how the loops do NOT cross each other)

10 FOR A
20 FOR B
30 NEXT
40 NEXT (Notice that no variable names are needed)

1 TO 10
1 TO 20

NOT

TYPE: Logical Operator
FORMAT: NOT <expression>

Action: The NOT logical operator "complements” the value of each bit in its
single operand, producing an integer "two's complement” result. In other words,
the NOT is really saying, "if it isn't. . . ". When working with a floating-point
number, the operands are converted to integers and any fractions are lost. The
NOT operator can also be used in a comparison to reverse the true/false value
which was the result of a relationship test and therefore it will reverse the
meaning of the comparison. In the first example below, if the "two's complement"
of "AA" is equal to "BB" and if "BB" is NOT equal to "CC" then the expression is
true.

BASIC LANGUAGE VOCABULARY 63

EXAMPLES of NOT Operator:

10 IF NOT AA = BB AND NOT <(BB=CC> THEN...

NN%=NOT 96: PRINT NNX
-97

NOTE: To find the value of NOT use the expression X=(—(X+1)). (The two's complement of any
integer is the bit complement plus one.)

ON

TYPE: Statement
FORMAT: ON <variable> GOTO / GOSUB <line-number> [,<line-
number>]. ..

Action: The ON statement is used to GOTO one of several given line numbers,
depending upon the value of a variable. The value of the variables can range
from zero through the number of lines given. If the value is a non-integer, the
fractional portion is left off. For example, if the variable value is 3, ON will
GOTO the third line number in the list.

If the value of the variable is negative, the BASIC error message 2ILLEGAL
QUANTITY occurs. If the number is zero, or greater than the number of items in
the list, the program just "ignores" the statement and continues with the statement
following the ON statement.

ON is really an underused variant of the IF... THEN... statement. Instead of using
a whole lot of IF statements each of which sends the program to 1 specific line,
1 ON statement can replace a list of IF statements. When you look at the first
example you should notice that the one ON statement replaces 4 IF... THEN...
statements.

EXAMPLES of ON Statement:

ON —-(A=7) - 2%(A=3) - 3X(A<K3) - 4X(A>7> GOTO 400,
900, 1000, 100

ON X GOTO 100,130,180,220

ON X+3 GOSUB 9000, 20, 906000

100 ON NUM GOTO 150, 300, 320, 390
500 ON SUM » 2 + 1 GOSUB 50, 80, 20

64 BASIC LANGUAGE VOCABULARY

OPEN

TYPE: 1/O Statement
FORMAT: OPEN <file-number>, [<device>] [,<address>] [,"<file-
name> [,<type>] [[<mode>]"]

Action: This statement OPENs a channel for input and/or output to a peripheral
device. However, you may NOT need all those ports for every OPEN statement.
Some OPEN statements require only 2 codes:

1. LOGICAL FILE NUMBER
2. DEVICE NUMBER

The <file-number> is the logical file number, which relates the OPEN, CLOSE,
CMD, GET#, INPUT#, and PRINT# statements to each other and associates them
with the file-name and the piece of equipment being used. The logical file
number can range from 1 to 255 and you can assign it any number you want in
that range.

NOTE: File numbers over 128 were really designed for other uses so it's good practice to use
only numbers below 127 for file numbers.

Each peripheral device (printer, disk drive, cassette) in the system has its own
number which it answers to. The <device> number is used with OPEN to specify
on which device the data file exists. Peripherals like cassette decks, disk drives
or printers also answer to several secondary addresses. Think of these as codes
which tell each device what operation to perform. The device logical file number
is used with every GET#, INPUT#, and PRINT#.

If the <device> number is left out the computer will automatically assume that
you want your information to be sent to and received from the
Datasette ™, which is device number 1. The file-name can also be left out, but
later on in your program, you can NOT call the file by name if you have not
already given it one. When you are storing files on cassette tape, the computer
will assume that the secondary <address> is zero (0) if you omit the secondary
address (a READ operation).

BASIC LANGUAGE VOCABULARY 65

A secondary address value of one (1) OPENs cassette tape files for writing. A
secondary address value of two (2) causes an end-of-tape marker to be written
when the file is later closed. The end-of-tape marker prevents accidentally
reading past the end of data which results in the BASIC error message ?DEVICE
NOT PRESENT.

For disk files, the secondary addresses 2 through 14 are available for data-
files, but other numbers have special meanings in DOS commands. You must use
a secondary address when using your disk drive(s). (See your disk drive manual
for DOS command details.)

The <file-name> is a string of 1 — 16 characters and is optional for cassette or
printer files. If the file <type> is left out the type of file will automatically default
to the Program file unless the <mode> is given. Sequential files are OPENed for
reading <mode>=R unless you specify that files should be OPENed for writing
<mode>=W. A file <type> can be used to OPEN an existing Relative file. Use
REL for <type> with Relative files. Relative and Sequential files are for disk
only.

If you try to access a file before it is OPENed the BASIC error message ?FILE
NOT OPEN will occur. If you try to OPEN a file for reading which does not exist
the BASIC error message ?FILE NOT FOUND will occur. If a file is OPENed to
disk for writing and the file-name already exists, the DOS error message FILE
EXISTS occurs. There is no check of this type available for tape files, so be sure
that the tape is properly positioned or you might accidentally write over some
data that had previously been SAVEd. If a file is OPENed that is already OPEN,
the BASIC error message FILE OPEN occurs. (See Printer Manual for further
details.)

66 BASIC LANGUAGE VOCABULARY

EXAMPLES of OPEN Statements:

10 OPEN 2, 8, 4 "DISK-
OUTPUT, SEQ,W"

10 OPEN 1, 1, 2, "TAPE-
WRITE"

10 OPEN 30, O

10 OPEN 12, 3

10 OPEN 130, 4

10 OPEN 1, 1, O, "NAME"

10 OPEN 1, 1, 1, "NAME"

10 OPEN 1, 2, O, CHR$<10>

10 OPEN 1, 4, 0, "STRING"

10 OPEN 1, 4, 7, "STRING"

10 OPEN 1, 5, 7, "STRING"

10 OPEN 1, 8, 15, "COMMAND"

(Opens sequential files on
disk)

(Write End-of-File on Close)

(Keyboard input)

(Screen output)

(Printer output)

(Read from cassette)

(Write to cassette)

(Open channel to RS-232
device)

(Send upper case/graphics to
the printer)

(Send upper/lower case to
printer)

(Send upper/lower case to
printer with device # 5)

(Send a command to disk)

BASIC LANGUAGE VOCABULARY 67

OR

TYPE: Logical Operator
FORMAT: <operand> OR <operand>

Action: Just as the relational operators can be used to make decisions regarding
program flow, logical operators can connect two or more relations and return a
true or false value which can then be used in a decision. When used in
calculations, the logical OR gives you a bit result of 1 if the corresponding bit of
either, or both, operands is 1. This will produce an integer as a result depending
on the values of the operands.

When used in comparisons the logical OR operator is also used to link two
expressions into a single compound expression. If either of the expressions are
true, the combined expression value is true (—1). In the first example below if AA
is equal to BB OR if XX is 20, the expression is true.

Logical operators work by converting their operands to 16-bit, signed, two's
complement integers in the range of —32768 to +32767. If the operands are
not in the range an error message results. Each bit of the result is determined by
the corresponding bits in the two operands.

EXAMPLES of OR Operator:
100 IF (AA=BB) OR (XX= 20> THEN...

230 KK%=64 OR 32: PRINT KK% (You typed this with a bit value of
1000000 for 64 and 100000 for
32)

96 (The computer responded with bit
value 1100000.
1100000=96.)

68 BASIC LANGUAGE VOCABULARY

PEEK

TYPE: Integer Function
FORMAT: PEEK (<numeric>)

Action: Returns an integer in the range of 0 to 255, which is read from a memory
location. The <numeric> expression is a memory location which must be in the
range of O to 65535. If it isn't then the BASIC error message ?ILLEGAL
QUANTITY occurs.

EXAMPLES of PEEK Function:

10 PRINT PEEK(33280> AND 13 (Returns value of screen border

color)

S A% =PEEK(43)+PEEK(46)%236 (Returns address of BASIC variable
table)

POKE

TYPE: Statement
FORMAT: POKE <location>, <value>

Action: The POKE statement is used to write a one-byte (8-bits) binary value into
a given memory location or input/output register. The <location> is an arithmetic
expression which must equal a value in the range of 0 to 65535. The <value>
is an expression which can be reduced to an integer value of 0 to 255. If either
value is out of its respective range, the BASIC error message ?ILLEGAL
QUANTITY occurs.

The POKE statement and PEEK statement (which is a built-in function that looks at
a memory location) are useful for data storage, controlling graphics displays or
sound generation, loading assembly language subroutines, and passing
arguments and results to and from assembly language subroutines. In addition,
Operating System parameters can be examined using PEEK statements or
changed and manipulated using POKE statements. A complete memory map of
useful locations is given in Appendix G.

BASIC LANGUAGE VOCABULARY 69

EXAMPLES of POKE Statement:

POKE 1024, 1 (Puts an "A" at position 1 on the screen)
POKE 2040, PTR (Updates Sprite #0 data pointer)

10 POKE RED, 32

20 POKE 36879,8

2050 POKE A, B

POS

TYPE: Integer Function
FORMAT: POS (<dummy>)

Action: Tells you the current cursor position which, of course, is in the range of O
(leftmost character) through position 79 on an 80-character logical screen line.
Since the Commodore 64 has a 40-column screen, any position from 40 through
79 will refer to the second screen line. The dummy argument is ignored.

EXAMPLE of POS Function:

1000 IF POSCO> > 38 THEN PRINT CHR$(13>

PRINT

TYPE: Statement
FORMAT: PRINT [<variable>] [<,/;><variable>]...

Action: The PRINT statement is normally used to write data items to the screen.
However, the CMD statement may be used to redirect that output to any other
device in the system. The <variable(s)> in the output-list are expressions of any
type. If no output-list is present, a blank line is printed. The position of each
printed item is determined by the punctuation used to separate items in the
output-list.

The punctuation characters that you can use are blanks, commas, or semicolons.
The 80 character logical screen line is divided into 8 print zones of 10 spaces
each. In the list of expressions, a comma causes the next value to be printed at
the beginning of the next zone. A semicolon causes the next value to be printed
immediately following the previous value. However, there are two exceptions to
this rule:

70 BASIC LANGUAGE VOCABULARY

1. Numeric items are followed by an added space.
2. Positive numbers have a space preceding them.

When you use blanks or no punctuation between string constants or variable
names it has the same effect as a semicolon. However, blanks between a string
and a numeric item or between two numeric items will stop output without printing
the second item.

If a comma or a semicolon is at the end of the output-list, the next PRINT statement
begins printing on the same line, and spaced accordingly. If no punctuation
finishes the list, a carriage-return and a line-feed are printed at the end of the
data. The next PRINT statement will begin on the next line. If your output is
directed to the screen and the data printed is longer than 40 columns, the output
is continued on the next screen line.

There is no statement in BASIC with more variety than the PRINT statement. There
are so many symbols, functions, and parameters associated with this statement
that it might almost be considered as a language of its own within BASIC; a
language specially designed for writing on the screen.

EXAMPLES of PRINT Statement:

1.

SXX=25

10 PRINT -5%X, X-5, X+5, X15
-25 0 10 3125

2.

SX=09

10 PRINT X; "SQUARED IS";X%X;"AND";
20 PRINT X "CUBED IS" X713

9 SQUARED IS 81 AND 9 CUBED IS 729

3.

90 AAS="ALPHA" :BB$="BAKER" : CC$="CHARLIE" : DD$="DOG" :
EE$="ECHO"

100 PRINT AA$BBS;CC$ DD$,EES

ALPHABAKERCHARL IEDOG ECHO

BASIC LANGUAGE VOCABULARY 71

Quote Mode

Once the quote mark () is typed, the cursor controls stop operating
and start displaying reversed characters which actually stand for the cursor
control you are hitting. This allows you to program these cursor controls, because
once the text inside the quotes is PRINTed they perform their functions.
The key is the only cursor control not affected by "quote mode. "

1. Cursor Movement

The cursor controls which can be "programmed" in quote mode are:

KEY APPEARS AS

If you wanted the word HELLO to PRINT diagonally from the upper left corner
of the screen, you would type:

PRINT " [SEYERIV H NS E IS L BN L BRI 0"

Which would appear as:

PRINT"EHHDMEDMLD L[] O

2. Reverse Characters

EOEIO&E

Holding down the key and hitting] will cause [J] to appear inside the
quotes. This will make all characters start printing in reverse video (like a negative
of a picture). To end the reverse printing hit m, which prints a = or else
PRINT a (CHR$(13)). (Just ending the print statement without a semicolon
or comma will take care of this.)

3. Color Controls
Holding down the key or [§] key with any of the 8 color keys will make a

special reversed character appear in the quotes. When the character is PRINTed,
then the color change will occur.

72 BASIC LANGUAGE VOCABULARY

KEY COLOR APPEARS AS

Black
White E|
Red £
Cyan e
Purple =
6] Green
Blue
B Yellow M
(4 Orange E
C4 Brown F
G| Light Red i
Ce] Grey 1 [=]
C: Grey 2 4
G-Il 6 | Light Green]
G| Light Blue m
C-J 5| Grey 3 =+

If you wanted to print the word HELLO in cyan and the word THERE in white,
type:

PRINT " [Si A HELLO [SGM B} THERE"

Which would appear as:

PRINT "l HELLO[3 THERE"

4. Insert Mode

The spaces created by using the key have some of the same

characteristics as quote mode. The cursor controls and color controls show up as
reversed characters. The only difference is in the [[Nl and [BJdl}, which performs

BASIC LANGUAGE VOCABULARY 73

its normal function even in quote mode, now creates the . And JI\8, which

created a special character in quote mode, inserts spaces normally.

Because of this, it is possible to create a PRINT statement containing DELetes,
which cannot be PRINTed in quote mode. Here is an example of how this is done:

10 PRINT"HELLO"
[INST/DEL L

which displays as:
10 PRINT "HELLO p"

When the above line is RUN, the word displayed will be HELP, because the last
two letters are deleted and the P is put in their place.

WARNING: The DELetes will work when LISTing as well as PRINTing, so editing a line with these
characters will be difficult.

The "insert mode" condition is ended when the [{ZIVENY (or Kzl XML) key

is hit, or when as many characters have been typed as spaces were inserted.

5. Other Special Characters

There are some other characters that can be PRINTed for special functions,
although they are not easily available from the keyboard. In order to get these
info quotes, you must leave empty spaces for them in the line,
hit or E&EREN, ond go back to the spaces with the cursor
controls. Now you must hit , to start typing reversed characters,
and type the keys shown below:

. A A
Function Type ppears As
SHIFT I RETURN SHIFT
switch to lower case m
switch to upper case SHIFT m

disable case-switching keys

(=0 B N o

enable case-switching keys n

74 BASIC LANGUAGE VOCABULARY

The Mzlial IACLH will work in the LISTing as well as PRINTing, so editing will
be almost impossible if this character is used. The LISTing will also look very
strange.

PRINT#

TYPE: 1/O Statement
FORMAT: PRINT# <file-number> [<variable>]
[<,/;><variable>] ...

Actions: The PRINT# statement is used to write data items to a logical file. It
must use the same number used to OPEN the file. Output goes to the device
number used in the OPEN statement. The <variable> expressions in the output-
list can be of any type. The punctuation characters between items are the same
as with the PRINT statement and they can be used in the same ways. The effects
of punctuation are different in two significant respects.

When PRINT# is used with tape files, the comma, instead of spacing by print
zones, has the same effect as a semicolon. Therefore, whether blanks, commas,
semicolons or no punctuation characters are used between data items, the effect
on spacing is the same. The data items are written as a continuous stream of
characters. Numeric items are followed by a space and, if positive, are
preceded by a space.

If no punctuation finishes the list, a carriage-return and a line-feed are written
at the end of the data. If a comma or semicolon terminates the output-list, the
carriage-return and line-feed are suppressed. Regardless of the punctuation, the
next PRINT# statement begins output in the next available character position.
The line-feed will act as a stop when using the INPUT# statement, leaving an
empty variable when the next INPUT# is executed. The line-feed can be
suppressed or compensated for as shown in the examples below.

The easiest way to write more than one variable to a file on tape or disk is to

set a string variable to CHR$(13), and use that string in between all the other
variables when writing the file.

BASIC LANGUAGE VOCABULARY 75

EXAMPLES of PRINT# Statement:

10 OPEN 1, 1, 1, "TAPE FILE"

20 R$ = CHR$(13)

30 PRINT# 1,1;R$;2;RS$;3;R$;4;R$;5
40 PRINT# 1,6

50 PRINT# 1,7

10 CO$=CHR$(44):CR$=CHR$(13)

20 PRINT#1, "AAA" CO$ "BBB",
"CCC";"DDD“;“EEE"CR$
"FFF"CRS;

30 INPUT#1, A$,BCDES$,F$

5 CR$=CHR$(13)
10 PRINT#2, "AAA";CR$;"BBB"
20 PRINT#2, "CCC";

30 INPUT#2, A$,B$,DUMMY $,C$

READ

TYPE: Statement

(By changing the CHR$(13) to
CHR$(44) you put a "," between
each variable. CHR$(59) would put a

;' between each variable.)

AAA, BBB CCCDDDEEE
(carriage return)
FFF(carriage return)

(10 blanks) AAA
BBB
(10 blanks) CCC

FORMAT: READ <variable> [,<variable>]...

Action: The READ statement is used to fill variable names from constants in DATA
statements. The data actually read must agree with the variable types specified
or the BASIC error message 2SYNTAX ERROR will result. Variables in the DATA

input-list must be separated by commas.

A single READ statement can access one or more DATA statements, which will be
accessed in order (see DATA), or several READ statements can access the same
DATA statement. If more READ statements are executed than the number of

76 BASIC LANGUAGE VOCABULARY

elements in DATA statements(s) in the program, the BASIC error message 20UT
OF DATA is printed. If the number of variables specified is fewer than the
number of elements in the DATA statement(s), subsequent READ statements will
continue reading at the next data element. (See RESTORE.)

NOTE: The 2SYNTAX ERROR will appear with the line number from the DATA statement, NOT
the READ statement.

EXAMPLES of READ Statement:

110 READ A, B, C$
120 DATA 1, 2, HELLO

100 FOR X=1 TO 10: READA(K): NEXT

200 DATA 3.08, 5.19, 3.12, 3.98, 4.24
210 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Fills array items (line 1) in order of constants shown (line5))

1 READ CITY$, STATES, ZIP
S DATA DENVER, COLORADO, 80211

REM

TYPE: Statement
FORMAT: REM [<remark>]

Action: The REM statement makes your programs more easily understood when
LISTed. li's a reminder to yourself to tell you what you had in mind when you
were writing each section of the program. For instance, you might want to
remember what a variable is used for, or some other useful information. The
REMark can be any text, word, or character including the colon (:) or BASIC
keywords. The REM statement and anything following it on the same line number
are ignored by BASIC, but REMarks are printed exactly as entered when the
program is listed. A REM statement can be referred to by a GOTO or GOSUB
statement, and the execution of the program will continue with the next higher
program line having executable statements.

BASIC LANGUAGE VOCABULARY 77

EXAMPLES of REM Statement:

10 REM CALCULATE AVERAGE VELOCITY

20 FOR X=1 TO 20: REM LOOP FOR TWENTY VALUES
30 SUM=SUM + VEL(X): NEXT

40 AVG=SUMr/20

RESTORE

TYPE: Statement
FORMAT: RESTORE

Action: BASIC maintains an internal pointer to the next DATA constant to be
READ. This pointer can be reset to the first DATA constant in a program using the
RESTORE statement. The RESTORE statement can be used anywhere in the
program to begin re-READing DATA.

EXAMPLES of RESTORE Statement:

100 FOR X=1 TO 10: READACX): NEXT

200 RESTORE

300 FOR Y=1 TO 10: READ B(Y)>: NEXT
4000 DATA 3.08, 5.19, 3.12, 3.98, 4.24
4100 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Fills the two arrays with identical data)

10 DATA 1,2,
20 DATA 5,6,
30 FOR L=1 T
40 READA: PR
S0 NEXT

60 RESTORE
70 FOR L=1TO 8

80 READA: PRINT A
90 NEXT

3,4
7,8
08
INT A

78 BASIC LANGUAGE VOCABULARY

RETURN

TYPE: Statement
FORMAT: RETURN

Action: The RETURN statement is used to exit from a subroutine called for by a
GOSUB statement. RETURN restarts the rest of your program at the next
executable statement following the GOSUB. If you are nesting subroutines, each
GOSUB must be paired with at least one RETURN statement. A subroutine can
contain any number of RETURN statements, but the first one encountered will exit
the subroutine.

EXAMPLE of RETURN Statement:

10 PRINT "THIS IS THE PROGRAM"

20 GOSUB 1000

30 PRINT "PROGRAM CONTINUES"

40 GOSUB 1000

50 PRINT "MORE PROGRAM"

60 END

1000 PRINT "THIS IS THE GOSUB": RETURN

RIGHT$

TYPE: String Function
FORMAT: RIGHT$ (<string>, <numeric>)

Action: The RIGHT$ function returns a sub-string taken from the right-most end
of the <string> argument. The length of the sub-string is defined by the
<numeric> argument which can be any integer in the range of 0 to 255. If the
value of the numeric expression is zero, then a null string ("") is returned. If the
value you give in the <numeric> argument is greater than the length of the

<string> then the entire string is returned.

EXAMPLE of RIGHT$ Function:

10 MSG$ ="COMMODORE COMPUTERS"
20 PRINT RIGHT$(MSGS$, 9>

RUN

COMPUTERS

BASIC LANGUAGE VOCABULARY 79

RND

TYPE: Floating-Point Function
FORMAT: RND (<numeric>)

Action: RND creates a floating-point random from 0.0 to 1.0. The computer
generates a sequence of random numbers by performing calculations on a
starting number, which in computer jargon is called a seed. The RND function is
seeded on system power-up. The <numeric> argument is a dummy, except for
its sign (positive, zero, or negative).

If the <numeric> argument is positive, the same "pseudorandom” sequence of
numbers is returned, starting from a given seed value. Different number
sequences will result from different seeds, but any sequence is repeatable by
starting from the same seed number. Having a known sequence of "random"
numbers is useful in testing programs.

If you choose a <numeric> argument of zero, then RND generates a number

directly from a free-running hardware clock (the system "jiffy clock"). Negative
arguments cause the RND function to be re-seeded with each function call.

EXAMPLES of RND Function:

220 PRINT INT(RNDC(O>%50) (Return random integers
0 - 49)

100 X=INTC(RNDC1>%6>+INTC(RNDC1>X6>+2 (Simulates 2 dice)

100 X=INTC(RND(1>%1000>+1 (Random integers from
1 -1000)

100 X=INT(RND(1>%150>+100 (Random numbers from
100 — 249)

100 X=RND(1>X(U-L>+L (Random numbers

between upper (U) and
lower (L) limits)

80 BASIC LANGUAGE VOCABULARY

RUN

TYPE: Command
FORMAT: RUN [<line-number>]

Action: The system command RUN is used to start the program currently in
memory. The RUN command causes an implied CLR operation to be performed
before starting the program. You can avoid the CleaRing operation by using
CONT or GOTO to restart a program instead of RUN. If a <line-number> is
specified, your program will start on that line. Otherwise, the RUN command
starts at first line of the program.

The RUN command can also be used within a program. If the <line-number> you
specify doesn't exist, the BASIC error message 2UNDEF'D STATEMENT occurs.

A RUNning program stops and BASIC returns to direct mode when an END or
STOP statement is reached, when the last line of the program is finished, or when

a BASIC error occurs during execution.

EXAMPLES of RUN Command:

RUN (Starts at first line of program)
RUN 500 (Starts at line number 500)
RUN X (Starts at line X, or UNDEF'D STATEMENT ERROR if there
is no line X)
SAVE

TYPE: Command
FORMAT: SAVE ["<file-name>"] [,<device-number>] [,<address>]

Action: The SAVE command is used to store the program that is currently in
memory onto a tape or diskette file. The program being SAVEd is only affected
by the command while the SAVE is happening. The program remains in the
current computer memory even after the SAVE operation is completed until you
put something else there by using another command. The file type will be "prg"
(program). If the <device-number> is left out, then the C64 will automatically
assume that you want the program saved on cassette, device number 1. If the
<device-number> is an <8>, then the program is written onto disk. The SAVE

BASIC LANGUAGE VOCABULARY 81

statement can be used in your programs and execution will continue with the next
statement after the SAVE is completed.

Programs on tape are automatically stored twice, so that your Commodore 64
can check for errors when LOADing the program back in. When saving programs
to tape, the <file-name> and secondary <address> are optional. But following
"") or by a string variable (---$) helps
your Commodore 64 find each program more easily. If the file-name is left out

it can NOT be LOADed by name later on.

a SAVE with a program name in quotes (

A secondary address of 1 will tell the KERNAL to LOAD the tape at a later time,
with the program currently in memory instead of the normal 2048 location. A
secondary address of 2 will cause an end-of-tape marker to follow the program.
A secondary address of 3 combines both functions.
When saving programs onto a disk, the <file-name> must be pre-sent.
EXAMPLES of SAVE Command:

SAVE (Write to tape without a name)

SAVE "ALPHA", 1 (Store on tape as file-name "alpha")

SAVE "ALPHA", 1, 2 (Store "alpha" with end-of-tape marker)

SAVE "FUN.DISK", 8 (SAVEs on disk (device 8 is the disk))

SAVE A% (Store on tape with the name A$)

10 SAVE "HI" (SAVEs program and then move to next

program line)

SAVE "ME", 1, 3 (Stores at same memory location and puts an
end-of-tape marker on)

82 BASIC LANGUAGE VOCABULARY

SGN

TYPE: Integer Function
FORMAT: SGN (<numeric>)

Action: SGN gives you an integer value depending upon the sign of the
<numeric> argument. If the argument is positive the result is 1, if zero the result
is also 0, if negative the result is —1.

EXAMPLE of SGN Function:
90 ON SGN(DW»+2 GOTO 100, 200, 300

(jump to 100 if DV=negative, 200 if DV=0, 300 if DV=positive)

SIN

TYPE: Floating-Point Function
FORMAT: SIN (<numeric>)

Action: SIN gives you the sine of the <numeric> argument, in radians. The value
of COS(x) is equal to SIN(x+3.14159265/2).

EXAMPLE of SIN Function:

235 AA = SINC1.53>: PRINT AA
.997494987

SPC

TYPE: Special Function
FORMAT: SPC (<numeric>)

Action: The SPC function is used to control the formatting of data, as either an
output to the screen or into a logical file. The number of SPaCes given by the
<numeric> argument are printed, starting at the first available position. For
screen or tape files the value of the argument is in the range of O to 255 and
for disk files up to 254. For printer files, an automatic carriage-return and line-
feed will be performed by the printer if a SPaCe is printed in the last character
position of a line. No SPaCes are printed on the following line.

BASIC LANGUAGE VOCABULARY 83

EXAMPLE of SPC Function:

10 PRINT "RIGHT "; "HERE &";

20 PRINT SPC(5> "OVER" SPC(14) "THERE"
RUN

RIGHT HERE & OVER THERE

SQR

TYPE: Floating-Point Function.
FORMAT: SQR (<numeric>)

Action: SQR gives you the value of the SQuare Root of the <numeric> argument.
The value of the argument must not be negative, or the BASIC error message
2ILLEGAL QUANTITY will happen.

EXAMPLE of SQR Function:

FOR J=2 TO 5: PRINT JXS5, SQRC(J X 5): NEXT
10 3.16227766

15 3.87298335

20 4.47213595

25 S

READY .

STATUS

TYPE: Integer Function
FORMAT: STATUS

Action: Returns a completion STATUS for the last input/output operation which
was performed on an open file. The STATUS can be read from any peripheral
device. The STATUS (or simply ST) keyword is a system defined variable-name

84 BASIC LANGUAGE VOCABULARY

into which the KERNAL puts the STATUS of |/O operations. A table of STATUS
code values for tape, printer, disk and RS-232 file operations is shown below:

ST Bit ST Numeric Cassette Serial Bus Tape Verify
Position Value Read R/W + Load
0 . tim'e out
write
time out
1 2
read
2 4 short block short block
3 8 long block long block
unrecoverable .
4 16 any mismatch
read error
checksum
5 32 checksum error
error
6 64 end of file EOI
device not
7 -128 end of tape end of tape
present

EXAMPLE of STATUS Function:

10 OPEN 1, 4: OPEN 2, 8, 4, "MASTER FILE,SEQ,UW"

20 GOSUB 100: REM CHECK STATUS

30 INTPUT#2, RS, B, C

40 IF STATUS AND 64 THEN 80: REM HANDLE END-OF-FILE
50 GOSUB 100: REM CHECK STATUS

60 PRINT#1, A, B; C

70 GOTO 20

80 CLOSE1l: CLOSE2

90 GOSUB 100: END

100 IF ST > 0 THEN 9000: REM HANDLE FILE I~»0O ERROR
110 RETURN

BASIC LANGUAGE VOCABULARY 85

STEP

TYPE: Statement
FORMAT: [STEP <expression>]

Action: The optional STEP keyword follows the <end-value> expression in a
FOR statement. It defines an increment value for the loop counter variable. Any
value can be used as the STEP increment. Of course, a STEP value of zero will
loop forever. If the STEP keyword is left out, the increment value will be + 1.
When the NEXT statement in a FOR loop is reached, the STEP increment happens.
Then the counter is tested against the end-value to see if the loop is finished.
(See FOR statement for more information.)

NOTE: The STEP value can NOT be changed once it's in the loop.

EXAMPLES of STEP Statement:

25 FOR XX = 2 TO 20 STEP 2 (Loop repeats 10 times)
35 FOR 22 = 0 TO -20 STEP -2 (Loop repeats 11 times)
STOP

TYPE: Statement
FORMAT: STOP

Action: The STOP statement is used to halt execution of the current program and
return to direct mode. Typing the key on the keyboard has the same
effect as a STOP statement. The BASIC error message BREAK IN XX is displayed
on the screen, followed by READY. The "XX" is the line number where the STOP
occurs. Any open files remain open and all variables are preserved and can be
examined. The program can be restarted by using CONT or GOTO statements.

EXAMPLES of STOP Statement:
10 INPUT#1, AA, BB, CC

20 IF AR = BB AND BB = CC THEN STOP
30 STOP

(If the variable AA is =1 and BB is equal to CC then:)
BREAK IN 20
BREAK IN 30 (For any other data values)

86 BASIC LANGUAGE VOCABULARY

STR$

TYPE: String Function
FORMAT: STR$ (<numeric>)

Action: STR$ gives you the STRing representation of the numeric value of the
argument. When the STR$ value is converted to each variable represented in
the <numeric> argument, any number shown is followed by a space and, if it's
positive, it is also preceded by a space.

EXAMPLE of STR$ Function:

100 FLT =1.5E4: ALPHA$ = STRSC(FLT>
110 PRINT FLT, ALPHAS

15000 15000

SYS

TYPE: Statement
FORMAT: SYS <memory-location>

Action: This is the most common way to mix a BASIC program with a machine
language program. The machine language program begins at the location given
in the SYS statement. The system command SYS is used in either direct or program
mode to transfer control of the microprocessor to an existing machine language
program in memory. The memory-location given is by numeric expression and
can be anywhere in memory, RAM or ROM.

When you're using the SYS statement you must end that section of machine
language code with an RTS (ReTurn from Subroutine) instruction so that when the
machine language program is finished, the BASIC execution will resume with the
statement following the SYS command.

EXAMPLES of SYS Statement:

SYS 64738 (Jump to System Cold Start in ROM)

10 POKE 4400,96: SYS 4400 (Goes to machine code location
4400 and returns immediately)

BASIC LANGUAGE VOCABULARY 87

TAB

TYPE: Special Function
FORMAT: TAB (<numeric>)

Action: The TAB function moves the cursor to a relative SPC move position on the
screen given by the <numeric> argument, starting with the left-most position of
the current line. The value of the argument can range from O to 255. The TAB
function should only be used with the PRINT statement, since it has no effect if
used with PRINT# to a logical file.

EXAMPLE of TAB Function:
100 PRINT "NAME" TABC(25> "AMOUNT": PRINT

110 INPUT#1, NAMS, AMTS
120 PRINT NAM$ TAB(25> AMTS

NAME AMOUNT
G.T. JONES e5.
TAN

TYPE: Floating-Point Function
FORMAT: TAN (<numeric>)

Action: Returns the tangent of the value of the <numeric> expression in radians.
If the TAN function overflows, the BASIC error message ?DIVISION BY ZERO is
displayed.

EXAMPLE of TAN Function:

10 XX = .783398163: YY = TANCXX): PRINT YY
1

88 BASIC LANGUAGE VOCABULARY

TIME

TYPE: Numeric Function
FORMAT: Ti

Action: The Tl function reads the interval Timer. This type of "clock" is called a
"iiffy clock." The "jiffy clock" value is set at zero (initialized) when you power-up
the system. This 1/60 second interval timer is turned off during tape 1/O.

EXAMPLE of Tl Function:

10 PRINT TIvs60 "SECONDS SINCE POWER UP"

TIME$

TYPE: String Function
FORMAT: TI$

Action: The TI$ timer looks and works like a real clock as long as your system is
powered-on. The hardware interval timer (or jiffy clock) is read and used to
update the value of TI$, which will give you a Time $tring of six characters in
hours, minutes and seconds. The TI$ timer can also be assigned an arbitrary
starting point similar to the way you set your wristwatch. The value of TI$ is not
accurate after tape |/O.

EXAMPLE of TI$ Function:

1 TI$ = "OOOOOO": FOR J=1 TO 10000: NEXT: PRINT TI$

000011

BASIC LANGUAGE VOCABULARY 89

USR

TYPE: Floating-Point Function
FORMAT: USR (<numeric>)

Action: The USR function jumps to a User callable machine language SubRoutine
which has its starting address pointed to by the contents of memory locations
785 — 786. The starting address is established before calling the USR function
by using POKE statements to set up locations 785 — 786. Unless POKE statements
are used, locations 785 — 786 will give you an ?ILLEGAL QUANTITY error
message.

The value of the <numeric> argument is stored in the floating-point accumulator
starting at location 97, for access by the Assembler code, and the result of the
USR function is the value which ends up there when the subroutine returns to
BASIC.

EXAMPLES of USR Function:

10 B=T X SINCYD
20 C=USR (<(Br2>
30 D=USR (Br3>

VAL

TYPE: Numeric Function
FORMAT: VAL (<string>)

Action: Returns a numeric VALue representing the data in the <string> argument.
If the first non-blank character of the string is not a plus sign (+), minus sign (—),
or a digit the VALue returned is zero. String conversion is finished when the end
of the string or any non-digit character is found (except decimal point or
exponential e).

EXAMPLE of VAL Function:
10 INPUT#1, NAMS, ZIPS

20 IF VAL (ZIP$> < 19400 OR VAL (ZIP$> > 96699 THEN
PRINT NAM$ TAB(25)> "GREATER PHILADELPHIA"

90 BASIC LANGUAGE VOCABULARY

VERIFY

TYPE: Command
FORMAT: VERIFY ["<file-name>"] [,<device>]

Action: The VERIFY command is used, in direct or program mode, to compare
the contents of a BASIC program file on tape or disk with the program currently
in memory. VERIFY is normally used right after a SAVE, to make sure that the
program was stored correctly on tape or disk.

If the <device> number is left out, the program is assumed to be on the
Datassette™ which is device number 1. For tape files, if the <file-name> is left
out, the next program found on the tape will be compared. For disk files (device
number 8), the file-name must be present. If any differences in program text are
found, the BASIC error message ?VERIFY ERROR is displayed.

A program name can be given either in quotes (" ") or as a string variable.
VERIFY is also used to position a tape just past the last program, so that a new
program can be added to the tape without accidentally writing over another

program.

EXAMPLES of VERIFY Command:

VERIFY (Checks 1st program on tape)
PRESS PLAY ON TAPE

OK

SEARCHING

FOUND <FILENAME>

VERIFYING

9000 SAVE"ME",8:
9010 VERIFY"ME",8 (Looks at device 8 for the program)

BASIC LANGUAGE VOCABULARY 91

WAIT

TYPE: Statement
FORMAT: WAIT <location>, <mask-1> [,<mask-2>]

Action: The WAIT statement causes program execution to be suspended until a
given memory address recognizes a specified bit pattern. In other words WAIT
can be used to halt the program until some external event has occurred. This is
done by monitoring the status of bits in the input/output registers. The data items
used with WAIT can be any numeric expressions, but they will be converted to
integer values.

For most programmers, this statement should never be used. It causes the
program to halt until a specific memory location's bits change in a specific way.
This is used for certain |/O operations and almost nothing else.

The WAIT statement takes the value in the memory location and performs a
logical AND operation with the value in mask-1. If there is a mask-2 in the
statement, the result of the first operation is exclusive-ORed with mask-2. In other
words mask-1 "filters out" any bits that you don't want to test. Where the bit is
0 in mask-1, the corresponding bit in the result will always be 0. The mask-2
value flips any bits, so that you can test for an off condition as well as an on
condition. Any bits being tested for a O should have a 1 in the corresponding
position in mask-2.

If corresponding bits of the <mask-1> and <mask-2> operands differ, the
exclusive-OR operation gives a bit result of 1. If corresponding bits get the same
result the bit is O. It is possible to enter an infinite pause with the WAIT statement,
in which case the and keys can be used to recover. Hold
down the key and then press . The first example below
WAITs until a key is pressed on the tape unit to continue with the program. The
second example will WAIT until a sprite collides with the screen background.

EXAMPLES of WAIT Statement:

WAIT 1, 32, 32
WAIT 53273, 6, 6

WAIT 36868, 144, 16 (144 & 16 are masks.144 = 10010000 in
binary and 16=10000 in binary. The WAIT
statement will halt the program until the 128
bit is on or until the 16 bit is off)

92 BASIC LANGUAGE VOCABULARY

THE COMMODORE 64 KEYBOARD AND FEATURES

The Operating System has a ten-character keyboard "buffer" that is used to
hold incoming keystrokes until they can be processed. This buffer, or queue, holds
key strokes in the order in which they occur so that the first one put into the queue
is the first one processed. For example; if a second keystroke occurs before the
first can be processed, the second character is stored in the buffer, while
processing of the first character continues. After the program has finished with
the first character, the keyboard buffer is examined for more data, and the
second keystroke processed. Without this buffer, rapid keyboard input would
occasionally drop characters.

In other words, the keyboard buffer allows you to "type-ahead" of the system,
which means it can anticipate responses to INPUT prompts or GET statements. As
you type on the keys their character values are lined up, single-file (queued) into
the buffer to wait for processing in the order the keys were struck. This type-
ahead feature can give you an occasional problem where an accidental
keystroke causes a program to fetch an incorrect character from the buffer.

Normally, incorrect keystrokes present no problem, since they can be corrected
by the CuRSoR-Left or DELete keys and then retyping the
character, and the corrections will be processed before a following carriage-
return. However, if you press the key, no corrective action is possible,
since all characters in the buffer up to and including the carriage-return will be
processed before any corrections. This situation can be avoided by using a loop
to empty the keyboard buffer before reading an intended response:

10 GET JUNK$: IF JUNK$ <>"" THEN 10: REM EMPTY THE
KEYBOARD BUFFER

In addition to GET and INPUT, the keyboard can also be read using PEEK to
fetch from memory location 197 ($00C5) the integer value of the key currently
being pressed. If no key is being held when the PEEK is executed, a value of 64
is returned. The numeric keyboard values, keyboard symbols and character
equivalents (CHR$) are shown in Appendix C. The following example loops until
a key is pressed then converts the integer to a character value:

10 AA = PEEK(197>: IF AA = 64 THEN 10
20 BB$ = CHRS$C(AAD

BASIC LANGUAGE VOCABULARY 93

The keyboard is treated as a set of switches organized into a matrix of 8 columns
by 8 rows. The keyboard matrix is scanned for key switch-closures by the
KERNAL using the CIA#1 1/O chip (MOS 6526 Complex Interface Adapter). Two
CIA registers are used to perform the scan: register#0 at location 56320
($DCOO) for keyboard columns and register#1 at location 56321 ($DCO1) for
keyboard rows.

Bits O — 7 of memory location 56320 correspond to the columns O — 7. Bits O —
7 of memory location 56321 correspond to rows O — 7. By writing column values
in sequence, then reading row values, the KERNAL decodes the switch closures
into the CHR$ (N) value of the key pressed.

Eight columns by eight rows yields 64 possible values. However, if you first strike
the , or [§ keys or hold down the key and type a second
character, additional values are generated. This is because the KERNAL decodes
these keys separately and "remembers" when one of the control keys was
pressed. The result of the keyboard scan is then placed in location 197.

Characters can also be written directly to the keyboard buffer at locations 631—
640 using a POKE statement. These characters will be processed when the POKE
is used to set a character count into location 198. These facts can be used to
cause a series of direct-mode commands to be executed automatically by
printing the statements onto the screen, putting carriage-returns into the buffer,
and then setting the character count. In the example below, the program will LIST
itself to the printer and then resume execution:

10 PRINT CHR$(147> "PRINT#1: CLOSE 1: GOTO S0"

20 POKE 631, 19: POKE 632, 13: POKE 633, 13: POKE 198, 3
30 OPEN 1, 4: CMD1: LIST

40 END

S0 REM PROGRAM RE-STARTS HERE

SCREEN EDITOR

The SCREEN EDITOR provides you with powerful and convenient facilities for
editing program text. Once a section of a program is listed to the screen, the
cursor keys and other special keys are used to move around the screen so that
you can make any appropriate changes, After, making all the changes you want
to a specific line number of text, hitting the key anywhere on the line,
causes the SCREEN EDITOR to read the entire 80-character logical screen line.

94 BASIC LANGUAGE VOCABULARY

The text is then passed to the Interpreter to be tokenized and stored in the
program. The edited line replaces the old version of that line in memory. An
additional copy of any line of text can be created simply by changing the line

number and pressing [N

If you use keyword abbreviations which cause a program line to exceed 80
characters, the excess characters will be lost when that line is edited, because
the EDITOR will read only two physical screen lines. This is also why using INPUT
for more than a total of 80 characters is not possible. Thus, for all practical
purposes, the length of a line of BASIC text is limited to 80 characters as
displayed on the screen.

Under certain conditions the SCREEN EDITOR ftreats the cursor control keys
differently from their normal mode of handling. If the CuRSoR is positioned to
the right of an odd number of double-quote marks (") the EDITOR operates in
what is known as the QUOTE MODE.

In quote mode data characters are entered normally but the cursor controls no
longer move the CuRSoR, instead reversed characters are displayed which
actually stand for the cursor control being entered. The same is true of the color
control keys. This allows you to include cursor and color controls inside string data
items in programs. You will find that this is a very important and powerful
feature. That's because when the text inside the quotes is printed to the screen it
performs the cursor positioning and color control functions automatically as part
of the string. An example of using cursor controls in strings is:

You type ——p 10 PRINT "ACRI(RIB(LICLYCLICC(RIC(RID":
REM(R)> = CRSR RIGHT, <(L> = CRSR LEFT

Computer prints —» AC BD

The key is the only cursor control NOT affected by quote mode. Therefore,
if an error is made while keying in quote mode, the key can't be used
to back up and strike over the error — even the key produces a reverse
video character. Instead, finish entering the line, and then, after hitting
the key, you can edit the line normally. Another alternative, if no further
cursor-controls are needed in the string, is to press
the and keys which will cancel QUOTE MODE. The cursor
control keys that you can use in strings are shown in Table 2-2.

BASIC LANGUAGE VOCABULARY 95

TABLE 2-2. CURSOR CONTROL CHARACTERS IN QUOTE MODE

Control Key Appearance

CRSR up O
CRSR down m
CRSR left [1]
CRSR right il
CLR W
HOME 5|
INST in

When you are NOT in quote mode, holding down the key and then
pressing the INSerT key shifts data to the right of the cursor to open up
space between two characters for entering data between them. The Editor then
begins operating in INSERT MODE until all of the space opened up is filled.

The cursor controls and color controls again show as reversed characters in insert
mode. The only difference occurs on the DELete and INSerT key.
The key instead of operating normally as in the quote mode, now creates
the reversed . The key, which created a reverse character in quote mode,
inserts spaces normally.

This means that a PRINT statement can be created, containing DELetes, which
can't be done in quote mode. The insert mode is cancelled by pressing
the , and or and keys. Or you can
cancel the insert mode by filling all the inserted spaces. An example of using DEL
characters in strings is:

10 PRINT "HELLO" P

(Keystroke sequence shown above, appearance when listed below)

10 PRINT "HELP"

When the example is RUN, the word displayed will be HELP, because the letters
LO are deleted before the P is printed. The DELete character in strings will work
with LIST as well as PRINT. You can use this to "hide" part or all of a line of text
using this technique. However, trying to edit a line with these characters will be
difficult if not impossible.

96 BASIC LANGUAGE VOCABULARY

There are some other characters that can be printed for special functions,
although they are not easily available from the keyboard. In order to get these
intfo quotes, you must leave empty spaces for them in the line, press and
go back to edit the line. Now you hold down the (ConTRol) key and
type (ReVerSe-ON) to start typing reversed characters. Type the keys
as shown below:

Key Function Key Entered Appearance
Shifted RETURN %]
Switch to upper/lower case [N | (M
Switch to upper/graphics L

Holding down the key and hitting causes a carriage-return and
line-feed on the screen but does not end the string. This works with LIST as well
as PRINT, so editing will be almost impossible if this character is used. When
output is switched to the printer via the CMD statement, the reverse "N" character
shifts the printer into its upper-lower case character set and the "N" shifts
the printer into the upper-case/graphics character set.

Reverse video characters can be included in strings by holding down the
ConTRol key and pressing ReVerSe , causing a reversed R to appear
inside the quotes. This will make all characters print in reverse video (like a
negative of a photograph). To end the reverse printing,
press and (ReVerSe OFF) which prints a reverse R. Numeric data
can be printed in reverse video by first printing a CHR$(18). Printing a
CHR$(146) or a carriage-return will cancel reverse video output.

BASIC LANGUAGE VOCABULARY 97

98 BASIC LANGUAGE VOCABULARY

CHAPTER 3

PROGRAMMING
GRAPHICS

ON THE
COMMODORE 64

Graphics Overview

Graphics Locations

Standard Character Mode
Multicolor Mode Graphics
Extended Background Color Mode
Bitmapped Graphics

Multicolor Bitmap Mode

Smooth Scrolling

Sprites

Other Graphics Features
Programming Sprites — Another Look

GRAPHICS OVERVIEW

All of the graphics abilities of the Commodore 64 come from the 6567 Video
Interface Chip (also known as the VIC-Il chip). This chip gives a variety of
graphics modes, including a 40 column by 25 line text display, a 320 by 200
dot high resolution display, and SPRITES, small movable objects which make
writing games simple. And if this weren't enough, many of the graphics modes
can be mixed on the same screen. It is possible, for example, to define the top
half of the screen to be in high resolution mode, while the bottom half is in text
mode. And SPRITES will combine with anything! More on sprites later. First the
other graphics modes.

The VIC-Il chip has the following graphics display modes:

A. CHARACTER DISPLAY MODES

1. Standard Character Mode
a. ROM characters
b. RAM programmable characters

2. Multicolor Character Mode
a. ROM characters
b. RAM programmable characters

3. Extended Background Color Mode
da. ROM characters
b. RAM programmable characters

B. BITMAP MODES

1. Standard Bitmap Mode
2. Multicolor Bitmap Mode

C. SPRITES

1. Standard Sprites
2. Multicolor Sprites

100 PROGRAMMING GRAPHICS

GRAPHICS LOCATIONS

Some general information first. There are 1000 possible locations on the
Commodore 64 screen. Normally, the screen starts at location 1024 ($0400 in
HEXadecimal notation) and goes to location 2023. Each of these locations is 8
bits wide. This means that it can hold any integer number from 0 to 255.
Connected with screen memory is a group of 1000 locations called COLOR
MEMORY or COLOR RAM. These start at location 55296 ($D800 in HEX) and
go up to 56295. Each of the color RAM locations is 4 bits wide, which means that
it can hold any integer number from O to 15. Since there are 16 possible colors
that the Commodore 64 can use, this works out well.

In addition, there are 256 different characters that can be displayed at any
time. For normal screen display, each of the 1000 locations in screen memory
contains a code number which tells the VIC-II chip which character to display at
that screen location.

The various graphics modes are selected by the 47 CONTROL registers in the
VIC-II chip. Many of the graphics functions can be controlled by POKEing the
correct value into one of the registers. The VIC-Il chip is located starting at 53248
($D000 in HEX) through 53294 ($DO2E in HEX).

VIDEO BANK SELECTION

The VIC-Il chip can access ("see") 16K of memory at a time. Since there is 64K
of memory in the Commodore 64, you want to be able to have the VIC-II chip
see all of it. There is a way. There are 4 possible BANKS (or sections) of 16K of
memory. All that is needed is some means of controlling which 16K bank the VIC-
Il chip looks at. In that way, the chip can "see" the entire 64K of memory. The
BANK SELECT bits that allow you access to all the different sections of memory
are located in the 6526 COMPLEX INTERFACE ADAPTER CHIP #2 (CIA#2).The
POKE and PEEK BASIC statements (or their machine language versions) are used
to select a bank by controlling bits 0 and 1 of PORT A of CIA#2 (location 56576
(or $DDO0 HEX). These 2 bits must be set to outputs by setting bits O and 1 of
location 56578 ($DD02 HEX) to change banks. The following example shows
this:

POKE 56578, PEEK(56578)> OR 3 :REM MAKE SURE BITS O AND 1
ARE SET TO OUTPUTS
POKE 56576, (PEEK(56576> AND 252> OR A: REM CHANGE BANKS

"A" should have one of the following values:

PROGRAMMING GRAPHICS 101

V:‘FLiE BITS | BANK f‘;‘éﬂ:’;ﬁl VIC-Il CHIP RANGE
0 00 3 49152 | ($C000 — $FFFF)*
1 01 2 32768 | ($8000 — $BFFF)
2 10 1 16384 | ($4000 — $7FFF)*
3 11 0 0 ($0000 — $3FFF) (DEFAULT VALUE)

This 16K bank concept is part of everything that the VIC-II chip does. You should
always be aware of which bank the VIC-II chip is pointing at, since this will affect
where character data patterns come from, where the screen is, where sprites
come from, etc. When you turn on the power of your Commodore 64, bits O and
1 of location 56576 are automatically set to BANK O ($0000 to $3FFF) for all
display information.

*NOTE: The Commodore 64 character set is not available to the VIC-II chip in BANKS 1 and 3.
(See character memory section.)

SCREEN MEMORY

The location of screen memory can be changed easily by a POKE to control
register 53272 ($D018 HEX). However, this register is also used to control which
character set is used, so be careful to avoid disturbing that part of the control
register. The UPPER 4 bits control the location of screen memory. To move the
screen, the following statement should be used:

POKE 53272, (PEEK(53272) AND 15) OR A

102 PROGRAMMING GRAPHICS

Where "A" has one of the following values:

LOCATION*
A BITS DECIMAL HEX
0 0000XXXX 0 $0000
16 0001 XXXX 1024 $0400 (DEFAULT)
32 0010XXXX 2048 $0800
48 001 1XXXX 3072 $0C00
64 0T00XXXX 4096 $1000
80 0101XXXX 5120 $1400
96 0110XXXX 6144 $1800
112 0111XXXX 7168 $1C00
128 T000XXXX 8192 $2000
144 1001 XXXX 9216 $2400
160 10T0XXXX 10240 $2800
176 101 1XXXX 11264 $2C00
192 1100XXXX 12288 $3000
208 1101 XXXX 13312 $3400
224 1110XXXX 14336 $3800
240 11T1XXXX 15360 $3C00
*Remember that the BANK ADDRESS of the VIC-Il chip must be added in. You must also tell the
KERNAL'S screen editor where the screen is as follows: POKE 648, page (where page =
address/256, e.g., 1024/256= 4, so POKE 648, 4).

COLOR MEMORY

Color memory can NOT move. It is always located at locations 55296 ($D800)
through 56295 ($DBE7). Screen memory (the 1000 locations starting at 1024)
and color memory are used differently in the different graphics modes. A picture
created in one mode will often look completely different when displayed in
another graphics mode.

CHARACTER MEMORY

Exactly where the VIC-Il gets it character information is important to graphic
programming. Normally, the chip gets the shapes of the characters you want to
be displayed from the CHARACTER GENERATOR ROM. In this chip are stored
the patterns which makeup the various letters, numbers, punctuation symbols, and
the other things that you see on the keyboard. One of the features of the
Commodore 64 is the ability to use patterns located in RAM memory. These RAM

PROGRAMMING GRAPHICS 103

patterns are created by you, and that means that you can have an almost infinite

set of symbols for games, business applications, etc.

A normal character set contains 256 characters in which each character is
defined by 8 bytes of data. Since each character takes up 8 bytes this means
that a full character set is 256*8=2K bytes of memory.

Since the VIC-II chip looks at 16K of memory at a time, there are 8 possible
locations for a complete character set. Naturally, you are free to use less than a
full character set. However, it must still start at one of the 8 possible starting

locations.

The location of character memory is controlled by 3 bits of the VIC-Il control
register located at 53272 ($D018 in HEX notation). Bits 3, 2, and 1 control where
the characters' set is located in 2K blocks. Bit O is ignored. Remember that this is
the same register that determines where screen memory is located so avoid
disturbing the screen memory bits. To change the location of character memory,
the following BASIC statement can be used:

POKE 53272, (PEEK(53272> AND 240> OR A

Where A is one of the following values:

LOCATION*
DECIMAL HEX
0] XXXX000X 0 $0000-$07FF

2 | XXXX001X | 2048 | $0800-$OFFF

4 | XXXXO10X | 4096 | $1000-$17FF ROM IMAGE in BANK
0 & 2 (default)

6 | XXXXO11X | 6144 | $1800-$1FFF ROM IMAGE in BANK
0&?2

A BITS

8 XXXX100X 8192 $2000-$27FF
10 XXXX101X 10240 $2800-$2FFF
12 XXXX110X 12288 $3000-$37FF
14 XXXXT111X 14336 $3800-$3FFF

*Remember to add in the BANK address.

104 PROGRAMMING GRAPHICS

The ROM IMAGE in the above table refers to the character generator ROM. It
appears in place of RAM at the above locations in bank 0. It also appears in the
corresponding RAM at locations 36864 to 40959 ($9000 to $9FFF) in bank 2.
Since the VIC-II chip can only access 16K of memory at a time, the ROM character
patterns appear in the 16K block of memory the VIC-II chip looks at. Therefore,
the system was designed to make the VIC-II chip think that the ROM characters
are at 4096 to 8191 ($1000 to $1FFF) when your data is in bank 0, and 36864
to 40959 ($9000 to $9FFF) when your data is in bank 2, even though the
character ROM is actually at location 53248 to 57343 ($D000 to $DFFF). This
imaging only applies to character data as seen by the VIC-II chip. It can be used
for programs, other dataq, etc., just like any other RAM memory.

NOTE: If these ROM images get in the way of your own graphics, then set the BANK SELECT
BITS to one of the BANKS without the images (BANKS 1 or 3). The ROM patterns won't be there.

The location and contents of the character set in ROM are as follows:

ADDRESS VIC-II
BLoci DECIMAL HEX IMAGE CONTENTS
0 53248 DOOO-DI1FF | 1000-11FF Upper case characters

53760 D200-D3FF | 1200-13FF Graphics characters

54272 D400-D5FF | 1400-15FF Reversed upper case

characters
54784 D600-D7FF | 1600-17FF Reversed graphics
characters
1 55296 D800-D9FF | 1800-19FF Lower case characters

55808 DAOO-DBFF | 1AO00-1BFF Upper case &
graphics characters
56320 DCOO-DDFF | 1C0O0-1DFF Reversed lower case
characters

56832 DEOO-DFFF | 1EOO-1FFF Reversed upper case
& graphics characters

Sharp-eyed readers will have just noticed something. The locations occupied by
the character ROM are the same as the ones occupied by the VIC-II chip control
registers. This is possible because they don't occupy the same locations at the
same time. When the VIC-Il chip needs to access character data the ROM s
switched in. It becomes an image in the16K bank of memory that the VIC-II chip

PROGRAMMING GRAPHICS 105

is looking at. Otherwise, the area is occupied by the 1/O control registers, and
the character ROM is only available to the VIC-II chip.

However, you may need to get to the character ROM if you are going to use
programmable characters and want to copy some of the character ROM for
some of your character definitions. In this case you must switch out the 1/O
register, switch in the character ROM, and do your copying. When you're
finished, you must switch the 1/O registers back in again. During the copying
process (when 1/O is switched out) no interrupts can be allowed to take place.
This is because the 1/O registers are needed to service the interrupts. If you
forget and perform an interrupt, really strange things happen. The keyboard
should not be read during the copying process. To turn off the keyboard and
other normal interrupts that occur with your Commodore 64, the following POKE
should be used:

POKE 56334, PEEK(56334)> AND 254 (TURNS INTERRUPTS OFF)
After you are finished getting characters from the character ROM, and are
ready to continue with your program, you must turn the keyboard scan back on

by the following POKE:

POKE 56334, PEEK(56334) OR 1 (TURNS INTERRUPTS ON)})

The following POKE will switch out I/O and switch the CHARACTER ROM in:
POKE 1, PEEK(1> AND 251

The character ROM is now in the locations from 53248 to 57343 ($D000 to
$DFFF).

To switch I/O back into $D000 for normal operation use the following POKE:

POKE 1, PEEK(1)> OR 4

106 PROGRAMMING GRAPHICS

STANDARD CHARACTER MODE

Standard character mode is the mode the Commodore 64 is in when you first
turn it on. It is the mode you will generally program in.

Characters can be taken from ROM or from RAM, but normally they are taken
from ROM. When you want special graphics characters for a program, all you
have to do is define the new character shapes in RAM, and tell the VIC-II chip to
get its character information from there instead of the character ROM. This is
covered in more detail in the next section.

In order to display characters on the screen in color, the VIC-Il chip accesses the
screen memory to determine the character code for that location on the screen.
At the same time, it accesses the color memory to determine what color you want
for the character displayed. The character code is translated by the VIC-II into
the starting address of the 8-byte block holding your character pattern. The 8-
byte block is located in character memory.

The translation isn't too complicated, but a number of items are combined to
generate the desired address. First the character code you use to POKE screen
memory is multiplied by 8. Next add the start of character memory (see
CHARACTER MEMORY section). Then the Bank Select Bits are taken into account
by adding in the base address (see VIDEO BANK SELECTION section). Below is
a simple formula to illustrate what happens:

CHARACTER ADDRESS = SCREEN CODE * 8 + (CHARACTER SET* 2048) +
(BANK * 16384)

CHARACTER DEFINITIONS

Each character is formed in an 8 by 8 grid of dots, where each dot maybe either
on or off. The Commodore 64 character images are stored in the Character
Generator ROM chip. The characters are stored as a set of 8 bytes for each
character, with each byte representing the dot pattern of a row in the character,
and each bit representing a dot. A zero bit means that dot is off, and a one bit
means the dot is on.

The character memory in ROM begins at location 53248 (when the 1/O is

switched off). The first 8 bytes from location 53248 ($D000) to 53255 ($D007)
contain the pattern for the @ sign, which has a character code value of zero in

PROGRAMMING GRAPHICS 107

the screen memory. The next 8 bytes, from location 53256 ($D008) to 53263
($DOOF), contain the information for forming the letter A.

IMAGE BINARY PEEK
XX 00011000 24
XXk 00111100 60
XX XX 01100110 102
XXkkxkk 01111110 126
XX XX 01100110 102
XX k% 01100110 102
XX k% 01100110 102
00000000 0

Each complete character set takes up 2K (2048 bits) of memory, 8 bytes per
character and 256 characters. Since there are two character sets, one for upper
case and graphics and the other with upper and lower case, the character
generator ROM takes up a total of 4K locations.

PROGRAMMABLE CHARACTERS

Since the characters are stored in ROM, it would seem that there is no way to
change them for customizing characters. However, the memory location that tells
the VIC-II chip where to find the characters is a programmable register which
can be changed to point to many sections of memory. By changing the character
memory pointer to point to RAM, the character set may be programmed for any
need.

If you want your character set to be located in RAM, there are a few VERY
IMPORTANT things to take into account when you decide to actually program
your own character sets. In addition, there are two other important points you
must know to create your own special characters:

1. It is an all or nothing process. Generally, if you use your own character set by
telling the VIC-II chip to get the character information from the area you have
prepared in RAM, the standard Commodore 64 characters are unavailable to
you. To solve this, you must copy any letters, numbers, or standard Commodore
64 graphics you intend to use into your own character memory in RAM. You can
pick and choose, take only the ones you want, and don't even have to keep them
in order!

108 PROGRAMMING GRAPHICS

2. Your character set takes memory space away from your BASIC program. Of
course, with 38K available for a BASIC program, most applications won't have
problems.

WARNING: You must be careful to protect the character set from being overwritten by your
BASIC program, which also uses the RAM.

There are two locations in the Commodore 64 to start your character set that
should NOT be used with BASIC: location O and location 2048. The first should
not be used because the system stores important data on page 0. The second
can't be used because that is where your BASIC program starts! However, there
are 6 other starting positions for your custom character set.

The best place to put your character set for use with BASIC while experimenting
is beginning at 12288 ($3000 in HEX). This is done by POKEing the low 4 bits
of location 53272 with 12. Try the POKE now, like this:

POKE 53272, (PEEK(53272)AND240)>+12

Immediately, all the letters on the screen turn to garbage. This is because there
are no characters set up at location 12288 right now... only random bytes. Set
the Commodore 64 back to normal by hitting the {SIVAY[8ld key and then

the eI} key.

Now let's begin creating graphics characters. To protect your character set from
BASIC, you should reduce the amount of memory BASIC thinks it has. The amount
of memory in your computer stays the same... it's just that you've told BASIC not
to use some of it. Type:

PRINT FRECO>-(SGN(FRE(O)><0>%X65535

The number displayed is the amount of memory space left unused. Now type the
following:

POKE 52,48: POKES6,48: CLR
Now type:

PRINT FRECO>-(SGNC(FRE(O)><0>%65535

PROGRAMMING GRAPHICS 109

See the change? BASIC now thinks it has less memory to work with. The memory
you just claimed from BASIC is where you are going to put your character set,
safe from actions of BASIC.

The next step is to put your characters into RAM. When you begin, there is
random data beginning at 12288 ($3000 HEX). You must put character patterns
in RAM (in the same style as the ones in ROM) for the VIC-II chip to use.

The following program moves 64 characters from ROM to your character set
RAM:

S PRINT CHR$(142>: REM SWITCH TO UPPER CASE

10 POKE 52, 48: POKE 56, 48: CLR: REM RESERVE MEMORY FOR
CHARACTERS

20 POKE 56334, PEEK (56334)> AND 254: REM TURN OFF KEYSCAN
INTERRUPT TIMER

30 POKE 1, PEEK(1> AND 251: REM SWITCH IN CHARACTER

40 FOR I = 0 TO 5S11: POKE I + 12288, PEEK (I + 53248)
NEXT

S0 POKE1l, PEEK(1> OR 4 :REM SWITCH IN I~/O

60 POKE 56334, PEEK(56334> OR 1: REM RESTART KEYSCAN
INTERRUPT TIMER

70 END

Now POKE location 53272 with (PEEK(53272) AND 240) + 12. Nothing
happens, right?2 Well, almost nothing. The Commodore 64 is now getting its
character information from your RAM, instead of from ROM. But since we copied
the characters from ROM exactly, no difference can be seen... yet.

You can easily change the characters now. Clear the screen and type an @ sign.
Move the cursor down a couple of lines, then type:

FOR I = 12288 TO 12288 +7: POKE I, 255 - PEEK(I): NEXT

You just created a reversed @ sign!

TIP: Reversed characters are just characters with their bit patterns in character memory reversed.

Now move the cursor up to the program again and hit again to re-
reverse the character (bring it back to normal). By looking at the table of screen
display codes, you can figure out where in RAM each character is. Just remember
that each character takes eight memory locations to store. Here's a few examples
just to get you started:

110 PROGRAMMING GRAPHICS

CHARACTER | DISPLAY CODE | CURRENT STARTING LOCATION IN RAM
@ o 12288
A 1 12296
! 33 12552
> 62 12784

Remember that we only took the first 64 characters. Something else will have to
be done if you want one of the other characters.

What if you wanted character number 154, a reversed Z2 Well, you could make
it yourself, by reversing a Z, or you could copy the set of reversed characters
from the ROM, or just take the one character you want from ROM and replace
one of the characters you have in RAM that you don't need.

Suppose you decide that you won't need the > sign. Let's replace the > sign with
the reversed Z. Type this:

FOR I=0 TO 7: POKE 12784 + I, 255 - PEEK(I+12496): NEXT

Now type a > sign. It comes up as a reversed Z. No matter how many times you
type the >, it comes out as a reversed Z. (This change is really an illusion. Though
the > sign looks like a reversed Z, it still acts like a > in a program. Try something
that needs a > sign. It will still work fine, only it will look strange.)

A quick review: You can now copy characters from ROM into RAM. You can
even pick and choose only the ones you want. There's only one step left in
programmable characters (the best stepl)... making your own characters.

Remember how characters are stored in ROM? Each character is stored as a
group of eight bytes. The bit patterns of the bytes directly control the character.
If you arrange 8 bytes, one on top of another, and write out each byte as eight
binary digits, it forms an eight by eight matrix, looking like the characters. When
a bit is a one, there is a dot at that location. When a bit is a zero, there is a
space at that location.

When creating your own characters, you set up the same kind of table in
memory. Type NEW and then type this program:

10 FOR I = 12448 TO 12455: READ A: POKE I, A: NEXT
20 DATA 60, 66, 163, 129, 165, 133, 66, 60

PROGRAMMING GRAPHICS 111

Now type RUN. The program will replace the letter T with a smiley face
character. Type a few T's to see the face. Each of the numbers in the DATA
statement in line 20 is a row in the smiley face character. The matrix for the face
looks like this:

7 6 5 4 3 2 1 O BINARY DECIMAL

ROW O X X X X 00111100 60

1 X X 01000010 66

2| X X X X 10100101 165

3] X X 10000001 129

4| X X X X 10100101 165

5| X X X X 10011001 153

6 X X 01000010 66
ROW 7 X X X X 00111100 60

7 6 5 4 3 2 1 0

(0]

1

2

3

4

5

6

7

FIGURE 3-1. PROGRAMMABLE CHARACTER WORKSHEET.

112 PROGRAMMING GRAPHICS

The Programmable Character Worksheet (Figure 3-1) will help you design your
own characters. There is an 8 by 8 matrix on the sheet, with row numbers, and
numbers at the top of each column. (If you view each row as a binary word, the
numbers are the value of that bit position. Each is a power of 2. The left most bit
is equal to 128 or 2 to the 7th power, the next is equal to 64 or 2 to the 6th,
and so on, until you reach the right most bit (bit 0) which is equal to 1 or 2 to the
0 power.)

Place an X on the matrix at every location where you want a dot to be in your
character. When your character is ready you can create the DATA statement for
your character.

Begin with the first row. Wherever you placed an X, take the number at the top
of the column (the power-of-2 number, as explained above) and write it down.
When you have the numbers for every column of the first row, add them together.
Write this number down, next to the row. This is the number that you will put into
the DATA statement to draw this row.

Do the same thing with all of the other rows (1 to 7). When you are finished you
should have 8 numbers between 0 and 255. If any of your numbers are not
within range, recheck your addition. The numbers must be in this range to be
correct! If you have less than 8 numbers, you missed a row. It's OK if some are
0. The O rows are just as important as the other numbers.

Replace the numbers in the DATA statement in line 20 with the numbers you just
calculated, and RUN the program. Then type a T. Every time you type it, you'll
see your own character!

If you don't like the way the character turned out, just change the numbers in the
DATA statement and re-RUN the program until you are happy with your

character.

That's all there is to it!

HINT: For best results, always make any vertical lines in your characters at least 2 dots (bits)
wide. This helps prevent CHROMA noise (color distortion) on your characters when they are
displayed on a TV screen.

PROGRAMMING GRAPHICS 113

Here is an example of a program using standard programmable characters:

10
20
31
35
36
37
38
39
40
60
80
100
120
140
150
155
170
180
190
200
210
220
230
240

114

REM X EXAMPLE 1 X
REM CREATING PROGRAMMABLE CHARACTERS
POKES6334, PEEK(56334)AND254 : POKE1, PEEK(1)>AND251
FORI=0TO063
FORJ=0TO7?
POKE12288+I1%8+J, PEEK(53248+1%8+J)
NEXTJ, NEXTI
POKE1, PEEK(1)>0R4:POKES6334,PEEK(56334)>0R1
POKES3272, (PEEK(53272)AND240>+12
FORCHAR=60T063
FORBYTE=0TO7?

READNUMBER
POKE12288+(8%CHAR>+BYTE , NUMBER
NEXTBYTE : NEXTCHAR
PRINTCHR$(147)>TAB(255)>CHRS(60) ;
PRINTCHR$(61>TAB(S5>CHRE(62)CHR$(63)>
GETAS$

IFAS="" THEN 170

POKES3272,21

DATA 4,6,7,5,7,7,3,3

DATA 32,96,224,160,224,224,192,192
DATA 7,7,7,31,31,95,143,127

DATA 224,224,224,248,248,248,240, 224
END

PROGRAMMING GRAPHICS

MULTICOLOR MODE GRAPHICS

Standard high-resolution graphics give you control of very small dots on the
screen. Each dot in character memory can have 2 possible values, 1 for on and
0 for off. When a dot is off, the color of the screen is used in the space reserved
for that dot. If the dot is on, the dot is colored with the character color you have
chosen for that screen position. When you're using standard high-resolution
graphics, all the dots within each 8x8 character can either have background
color or foreground color. In some ways this limits the color resolution within that
space. For example, problems may occur when two different colored lines cross.

Multicolor mode gives you a solution to this problem. Each dot in multicolor mode
can be one of 4 colors: screen color (background color register #0), the color in
background register #1, the color in background color register#2, or character
color. The only sacrifice is in the horizontal resolution, because each multicolor
mode dot is twice as wide as a high-resolution dot. This minimal loss of resolution
is more than compensated for by the extra abilities of multicolor mode.

MULTICOLOR MODE BIT

To turn on multicolor character mode, set bit 4 of the VIC-Il control register at
53270 ($D016) to a 1 by using the following POKE:

POKE 53270, PEEK(53270> OR 16

To turn off multicolor character mode, set bit 4 of location 53270 to a 0 by the
following POKE:

POKE 53270, PEEK(53270> AND 239

Multicolor mode is set on or off for each space on the screen, so that multicolor
graphics can be mixed with high-resolution (hi-res) graphics. This is controlled by
bit 3 in color memory. Color memory begins at location 55296 ($D800 in HEX).
If the number in color memory is less than 8 (0 to 7) the corresponding space on
the video screen will be standard hi-res, in the color (0 to 7) you've chosen. If the
number located in color memory is greater or equal to 8 (from 8 to 15), then
that space will be displayed in multicolor mode.

PROGRAMMING GRAPHICS 115

By POKEing a number into color memory, you can change the color of the
character in that position on the screen. POKEing a number from O to 7 gives the
normal character colors. POKEing a number between 8 and 15 puts the space
into multicolor mode. In other words, turning BIT 3 ON in color memory, sets
MULTICOLOR MODE. Turning BIT 3 OFF in color memory, sets the normal, HIGH-
RESOLUTION mode.

Once multicolor mode is set in a space, the bits in the character determine which
colors are displayed for the dots. For example, here is a picture of the letter A,
and its bit pattern:

IMAGE BIT PATTERN
XX 00011000
XXk 00111100
XX XX 01100110
Xxkkxk 01111110
XX XX 01100110
XX XX 01100110
XX XX 01100110
00000000

In normal or high-resolution mode, the screen color is displayed everywhere there
is a O bit, and the character color is displayed where the bit is a 1. Multicolor
mode uses the bits in pairs, like so:

IMAGE BIT PATTERN
AABB 0001 1000
CCccC 00111100
AABBAABB 011001 10
AACCCCBB 01111110
AABBAABB 011001 10
AABBAABB 011001 10
AABBAABB 011001 10
00 00 00 00

In the image area above, the spaces marked AA are drawn in the background
#1color, the spaces marked BB use the background #2 color, and the spaces
marked CC use the character color. The bit pairs determine this, according to the
following chart:

116 PROGRAMMING GRAPHICS

BIT PAIR COLOR REGISTER LOCATION
00 Background #0 color (screen color) | 53281 ($D021)
01 Background #1 color 53282 ($D022)
10 Background #2 color 53283 ($D023)
11 Color specified by the lower 3 bits | Color RAM

in color memory

NOTE: The sprite foreground color is a 10. The character foreground color is an 11.

Type NEW and then type this demonstration program:

100 POKES3281,1

110 POKES3282, 3

120 POKES3283,8

130 POKES3270, PEEK(33270>0R16
140 C=13%4096+8%256

150 PRINTCHR$(147)"ARAAARAARARAAR"
160 FORL=0TOS

170 POKEC+L,8

180 NEXT

The screen color is white, the character color is black, one color register is cyan
(greenish blue), the other is orange.

You're not really putting color codes in the space for character color, you're
actually using references to the registers associated with those colors. This
conserves memory, since 2 bits can be used to pick 16 colors (background) or 8
colors (character). This also makes some neat tricks possible. Simply changing one

PROGRAMMING GRAPHICS 117

of the indirect registers will change every dot drawn in that color. Therefore
everything drawn in the screen and background colors can be changed on the
whole screen instantly. Here is an example of changing background color
register #1:

100 POKES3270,PEEK(53270>0R16
110 PRINTCHR$(147>CHR$(18);

——@n

120 PRINT"E3"; REM C= & 1
130 FORL=1T022:PRINTCHRS(65) ; :NEXT
135 FORT=1TOS00:NEXT

¢ EE

140 PRINT"[3d"; REM CTRL & 7
145 FORT=1T0S00:NEXT

150 PRINT"HHIT A KEY" REM CTRL & 1
160 GETA%: IFA$=""THEN160

170 X=INT(RND(1>%16>

180 POKES3282, X

190 GOTO160

By using the Cx] key and the COLOR keys the characters can be changed to any
color, including multicolor characters. For example, type this command:

POKE 53270, PEEK(53270) OR 16: PRINT"",‘:REN LT.
RED/MULTICOLOR RED
! =me

The word READY and anything else you type will be displayed in multicolor
mode. Another color control can set you back to regular text.

118 PROGRAMMING GRAPHICS

Here is an example of a program using multicolor programmable characters:

10
20
31
35
36
37
38
39
40
350
o1
o2
953
60
80
100
120
140

150
CHR
170
180
190
200
210
220
230
240

REM X EXAMPLE 2 X
REM CREATING MULTI COLOR PROGRAMMABLE CHARACTERS
POKES6334, PEEK(56334)>AND254 : POKE1 , PEEK(1>AND251

FORI=0T063
FORJ=0TO?
POKE12288+1%8+J, PEEK(53248+1%8+J)
NEXTJ, I
POKE1, PEEK(1>0R4 :POKES6334, PEEK(56334)0R1
POKES3272, (PEEK(53272>AND240>+12
POKES3270, PEEK(33270>0R16
POKES3281,0
POKES3282, 2
POKES3283, 7
FORCHAR=60T063
FORBYTE=0TO7?
READNUMBER
POKE12288+(8%CHAR>+BYTE , NUMBER
NEXTBYTE, CHAR
LT Lcur oMl
PRINT"L]"TAB(255)CHRS(60)CHRS(61) TAB(S55)CHRS(62)
$¢63>

GETA$

IFA$="" THEN 170
POKES3272,21 : POKES3270, PEEK(33270>AND239
DATA 129,37,21,29,93,85,85,85

DATA 66,72,84,116,117,85,85,85

DATA 87,87,85,21,8,8,40,0

DATA 213,213,85,84,32,32,40,0

END

PROGRAMMING GRAPHICS 119

EXTENDED BACKGROUND COLOR MODE

Extended background color mode gives you control over the background color
of each individual character, as well as over the foreground color. For example,
in this mode you could display a blue character with a yellow background on a
white screen.

There are 4 registers available for extended background color mode. Each of
the registers can be set to any of the16 colors.

Color memory is used to hold the foreground color in extended background
mode. It is used the same as in standard character mode.

Extended character mode places a limit on the number of different characters
you can display, however. When extended color mode is on, only the first 64
characters in the character ROM (or the first 64 characters in your
programmable character set) can be used. This is because two of the bits of the
character code are used to select the background color. It might work something
like this:

The character code (the number you would POKE to the screen) of the letter "A"
is a 1. When extended color mode is on, if you POKEd a 1 to the screen, an "A"
would appear. If you POKEd a 65 to the screen normally, you would expect the
character with character code (CHR$) 129 to appear, which is a reversed "A."
This does NOT happen in extended color mode. Instead you get the same
unreversed "A" as before, but on a different background color. The following
chart gives the codes:

CHARACTER CODE BACKGROUND COLOR REGISTER
RANGE | BIT7 BIT 6 NUMBER ADDRESS
0-63 0 0 0 53281—($D021)
64-127 0 1 1 53282—($D022)
128-191 1 0 2 53283-($D023)
192-255 1 1 3 53284—($D024)

Extended color mode is turned ON by setting bit 6 of the VIC-Il register to a 1
at location 53265 ($D011 in HEX). The following POKE does it:

POKE 53265, PEEK(53265) OR 64

120 PROGRAMMING GRAPHICS

Extended color mode is turned OFF by setting bit 6 of the VIC-Il register to a O
at location 53265 ($D011). The following statement will do this:

POKE 53265, PEEK(53265) AND 191

BITMAPPED GRAPHICS

When writing games, plotting charts for business applications, or other types of
programs, sooner or later you get to the point where you want high-resolution
displays.

The Commodore 64 has been designed to do just that: high resolution is available
through bitmapping of the screen. Bitmapping is the method in which each
possible dot (pixel) of resolution on the screen is assigned its own bit (location)
in memory. If that memory bit is a one, the dot it is assigned to is on. If the bit is
set to zero, the dot is off.

High-resolution graphic design has a couple of drawbacks, which is why it is not
used all the time. First of all, it takes lots of memory to bitmap the entire screen.
This is because every pixel must have a memory bit to control it. You are going
to need one bit of memory for each pixel (or one byte for 8 pixels). Since each
character is 8 by 8, and there are 40 lines with 25 characters in each line, the
resolution is 320 pixels (dots) by 200 pixels for the whole screen. That gives you
64000 separate dots, each of which requires a bit in memory. In other words,
8000 bytes of memory are needed to map the whole screen.

Generally, high-resolution operations are made of many short, simple, repetitive
routines. Unfortunately, this kind of thing is usually rather slow if you are trying
to write high-resolution routines in BASIC. However, short, simple, repetitive
routines are exactly what machine language does best. The solution is to either
write your programs entirely in machine language, or call machine language,
high-resolution sub-routines from your BASIC program using the SYS command
from BASIC. That way you get both the ease of writing in BASIC, and the speed
of machine language for graphics. The VSP cartridge is also available to add
high-resolution commands to COMMODORE 64 BASIC.

All of the examples given in this section will be in BASIC to make them clear.
Now to the technical details.

BITMAPPING is one of the most popular graphics techniques in the computer

world. It is used to create highly detailed pictures. Basically, when the
Commodore 64 goes into bitmap mode, it directly displays an 8K section of

PROGRAMMING GRAPHICS 121

memory on the TV screen. When in bitmap mode, you can directly control whether
an individual dot on the screen is on or off.

There are two types of bitmapping available on the Commodore 64. They are:
1. Standard (high-resolution) bitmapped mode (320-dot by 200-dot resolution)
2. Multicolor bitmapped mode (160-dot by 200-dot resolution)

Each is very similar to the character type it is named for: standard has greater
resolution, but fewer color selections. On the other hand, multicolor bitmapping

trades horizontal resolution for a greater number of colors in an 8-dot by 8-dot
square.

STANDARD HIGH-RESOLUTION BITMAP MODE

Standard bitmap mode gives you a 320 horizontal dot by 200 vertical dot
resolution, with a choice of 2 colors in each 8-dot by 8-dot section. Bitmap mode
is selected (turned ON) by setting bit 5 of the VIC-Il control register to a 1 at
location 53265 ($D011 in HEX). The following POKE will do this:

POKE 53265, PEEK(53265) OR 32

Bitmap mode is turned OFF by setting bit 5 of the VIC-II control register to O at
location 53265 ($D011), like this:

POKE 53265, PEEK(53265) AND 223

Before we get into the details of the bitmap mode, there is one more issue to
tackle, and that is where to locate the bitmap area.

HOW IT WORKS

If you remember the PROGRAMMABLE CHARACTERS section you will recall that
you were able to set the bit pattern of a character stored in RAM to almost
anything you wanted. If at the same time you change the character that is
displayed on the screen, you would be able to change a single dot, and watch
it happen. This is the basis of bit-mapping. The entire screen is filled with

122 PROGRAMMING GRAPHICS

programmable characters, and you make your changes directly into the memory
that the programmable characters get their patterns from.

Each of the locations in screen memory that were used to control what character
was displayed, are now used for color information. For example, instead of
POKEing a 1 in location 1024 to make an "A" appear in the top left hand corner
of the screen, location 1024 now controls the colors of the bits in that top left
space.

Colors of squares in bitmap mode do not come from color memory, as they do
in the character modes. Instead, colors are taken from screen memory. The upper
4 bits of screen memory become the color of any bit that is set to 1 in the 8 by
8 area controlled by that screen memory location. The lower 4 bits become the
color of any bit that is set to a 0.

EXAMPLE: Type the following:

S BASE=2%4096: POKES3272, PEEK(53272> OR 8: REM PUT
BITMAP AT 8192
10 POKES3265, PEEK(53265> OR 32: REM ENTER BITMAP MODE

Now RUN the program.

Garbage appears on the screen, right? Just like the normal screen mode, you
have to clear the HIGH-RESOLUTION (HI-RES) screen before you use it.
Unfortunately, printing a CLR won't work in this case. Instead you have to clear
out the section of memory that you're using for your programmable characters.
Hit the and keys, then add the following lines to your
program to clear the HI-RES screen:

20 FOR I = BASE TO BASE + 7999: POKE I, 0O: NEXT: REM
CLEAR BITMAP

30 FOR I = 1024 TO 2023: POKE I, 3: NEXT: REM SET COLOR
TO CYAN AND BLACK

Now RUN the program again. You should see the screen clearing, then the
greenish blue color, cyan, should cover the whole screen. What we want to do
now is to turn the dots on and off on the HI-RES screen.

PROGRAMMING GRAPHICS 123

To SET a dot (turn a dot ON) or UNSET a dot (turn a dot OFF) you must know
how to find the correct bit in the character memory that you have to set to a 1.
In other words, you have to find the character you need to change, the row of
the character, and which bit of the row that you have to change. You need a
formula to calculate this.

We will use X and Y to stand for the horizontal and vertical positions of a dot.
The dot where X=0 and Y=0 is at the upper left of the display. Dots to the right
have higher X values, and the dots toward the bottom have higher Y values. The
best way to use bitmapping is to arrange the bitmap display something like this:

Each dot will have an X and a Y coordinate. With this format it is easy to control
any dot on the screen.

124 PROGRAMMING GRAPHICS

However, what you actually have is something like this:

------ BYTE O BYTE 8 BYTE 16 BYTE 24 veeee. BYTE 312

BYTE 1 BYTE 9 . . BYTE 313

w BYTE 2 BYTE10 . . BYTE 314
E ; BYTE 3 BYTE 11 . . BYTE 315
3 8 BYTE 4 BYTE12 . . BYTE 316
= BYTE 5 BYTE13 . . BYTE 317
BYTE 6 BYTE 14 . . BYTE 318

------ BYTE 7 BYTE15 . . BYTE 319

------ BYTE 320 BYTE 328 BYTE 336 BYTE344 BYTE 632

. BYTE 321 BYTE 329 . . BYTE 633
Z BYTE 322 BYTE 330 . . BYTE 634
; ; BYTE 323 BYTE 331 . . BYTE 635
g 2 BYTE 324 BYTE 332 . . BYTE 636
b BYTE 325 BYTE 333 . . BYTE 637
@ BYTE 326 BYTE 334 . . BYTE 638
------ BYTE 327 BYTE 335 . . BYTE 639

The programmable characters which make up the bitmap are arranged in 25
rows of 40 columns each. While this is a good method of organization for text,
it makes bitmapping somewhat difficult. (There is a good reason for this method.
See the section on MIXED MODES.)

The following formula will make it easier to control a dot on the bitmap screen:

The start of the display memory area is known as the BASE. The row number
(from O to 24) of your dot is:

ROW = INT(Y/8) (There are 320 bytes per line.)
The character position on that line (from O to 39) is:
CHAR = INT(X/8) (There are 8 bytes per character.)
The line of that character position (from O to 7) is:

LINE=Y AND 7

PROGRAMMING GRAPHICS 125

The bit of that byte is:
BIT=7—(X AND 7)

Now we put these formulas together. The byte in which character memory dot
(X,Y) is located is calculated by:

BYTE= BASE + ROW * 320 + CHAR * 8 + LINE
To turn on any bit on the grid with coordinates (X,Y), use this line:

POKE BYTE, PEEK(BYTE> OR 2 1 BIT

Let's add these calculations to the program. In the following example, the
COMMODORE 64 will plot a sine curve:

S BASE=2%4096 : POKES3272, PEEK(53272)0R8
10 POKE 33265, PEEK(33265)0R32

20 FORI=BASETOBASE+7999:POKEI, O:NEXT
30 FORI=1024T02023:POKEI, 3:NEXT

50 FORX=0TO319STEP.5S5

60 Y=INT(90+80XSIN(X/10))>

70 CH=INT(Xs8)

80 RO=INT(Ys8)>

85 LN=YAND?7

90 BY=BASE+R0O*320+8%CH+LN

100 BI=7-(XAND7>

110 POKEBY,PEEK(BY>OR(2TBI>

120 NEXTX

125 POKE1024, 16
130 GOTO130

The calculation in line 60 will change the values for the sine function from a range
of +1 to =1 to a range of 10 to 170. Lines 70 to 100 calculate the character,
row, byte, and bit being affected, using the formulae as shown above. Line 125
signals the program is finished by changing the color of the top left corner of the
screen. Line 130 freezes the program by putting it into an infinite loop. When
you have finished looking at the display, just hold down and

i ResTORE S

126 PROGRAMMING GRAPHICS

As a further example, you can modify the sine curve program to display a
semicircle. Here are the lines to type to make the changes:

S50 FORX=0T0160

S5 Y1=100+SQAR(160%XX—-X*XX>
56 Y2=100-SQAR(160%X—-X*XX)
60 FORY=Y1TOY2STEPY1-Y2
70 CH=INT(X/8>

80 RO=INT(Ys’8>

85 LN=YAND?7

90 BY=BASE+R0O%320+8%CH+LN
100 BI=7-(XAND7)>

110 POKEBY,PEEK(BY>OR(21BI>
114 NEXT

This will create a semicircle in the HI-RES area of the screen.

WARNING: BASIC variables can overlay your high-resolution screen. If you need more memory
space you must move the bottom of BASIC above the high-resolution screen area. Or, you must
move your high-resolution screen area. This problem will NOT occur in machine language. It ONLY
happens when you're writing programs in BASIC.

MULTICOLOR BITMAP MODE

Like multicolor mode characters, multicolor bitmap mode allows you to display
up to four different colors in each 8 by 8 section of bitmap. And as in multi-
character mode, there is a sacrifice of horizontal resolution (from 320 dots to
160 dots).

Multicolor bitmap mode uses an 8K section of memory for the bitmap. You select
your colors for multicolor bitmap mode from (1) the background color register O,
(the screen background color), (2) the video matrix (the upper 4 bits give one
possible color, the lower 4 bits another), and (3) color memory.

Multicolor bitmapped mode is turned ON by setting bit 5 of 53265 ($D011)
and bit 4 at location 53270 ($D016) to a 1. The following POKE does this:

POKES3265, PEEK(53265>0R 32:POKES3270, PEEK(53270>0R16

PROGRAMMING GRAPHICS 127

Multicolor bitmapped mode is turned OFF by setting bit 5 of 53265 ($D011)
and bit 4 at location 53270 ($D016) to a 0. The following POKE does this:

POKES3265, PEEK(53265)AND223 : POKES3270, PEEK(53270)>AND239

As in standard (HI-RES) bitmapped mode, there is a one-to-one correspondence
between the 8K section of memory being used for the display, and what is shown
on the screen. However, the horizontal dots are two bits wide. Each 2 bits in the
display memory area form a dot, which can have one of 4 colors.

BITS COLOR INFORMATION COMES FROM

00 Background color #0 (screen color)

01 Upper 4 bits of screen memory

10 Lower 4 bits of screen memory

11 Color nybble (nybble = 2 byte = 4 bits)

SMOOTH SCROLLING

The VIC-II chip supports smooth scrolling in both the horizontal and vertical
directions. Smooth scrolling is a one pixel movement of the entire screen in one
direction. It can move either up, or down, or left, or right. It is used to move new
information smoothly onto the screen, while smoothly removing characters from
the other side.

While the VIC-II chip does much of the task for you, the actual scrolling must be
done by a machine language program. The VIC-II chip features the ability to
place the video screen in any of 8 horizontal positions, and 8 vertical positions.
Positioning is controlled by the VIC-II scrolling registers. The VIC-Il chip also has
a 38 column mode, and a 24 row mode. The smaller screen sizes are used to
give you a place for your new data to scroll on from.

The following are the steps for SMOOTH SCROLLING:

128 PROGRAMMING GRAPHICS

1. Shrink the screen (the border will expand).

2. Set the scrolling register to maximum (or minimum value depending upon the
direction of your scroll).

3. Place the new data on the proper (covered) portion of the screen.

4. Increment (or decrement) the scrolling register until it reaches the maximum (or
minimum) value.

5. At this point, use your machine language routine to shift the entire screen one
entire character in the direction of the scroll.

6. Go back to step 2.

To go into 38 column mode, bit 3 of location 53270 ($D016) must be set to a O.
The following POKE does this:

POKE 53270, PEEK(53270)> AND 247

To return to 40 column mode, set bit 3 of location 53270 ($D016) to a 1. The
following POKE does this:

POKE 53270, PEEK(53270> OR 8

To go into 24 row mode, bit 3 of location 53265 ($D011) must be set to a O.
The following POKE will do this:

POKE 53265, PEEK(53265) AND 247

To return to 25 row mode, set bit 3 of location 53265 ($D011) to a 1. The
following POKE does this:

POKE 53265, PEEK(53265) OR 8

When scrolling in the X direction, it is necessary to place the VIC-II chip into 38
column mode. This gives new data a place to scroll from. When scrolling LEFT,
the new data should be placed on the right. When scrolling RIGHT the new data
should be placed on the left. Please note that there are still 40 columns to screen
memory, but only 38 are visible.

When scrolling in the Y direction, it is necessary to place the VIC-II chip into 24
row mode. When scrolling UP, place the new data in the LAST row. When
scrolling DOWN, place the new data on the FIRST row. Unlike X scrolling, where
there are covered areas on each side of the screen, there is only one covered
area in Y scrolling. When the Y scrolling register is set to O, the first line is
covered, ready for new data.

PROGRAMMING GRAPHICS 129

When the Y scrolling register is set to 7 the last row is covered.

For scrolling in the X direction, the scroll register is located in bits 2 to O of the
VIC-Il control register at location 53270 ($D016 in HEX). As always, it is
important to affect only those bits. The following POKE does this:

POKE 53270, (PEEK(53270> AND 248)+¥
where X is the X position of the screen from O to 7.

For scrolling in the Y direction, the scroll register is located in bits 2 to O of the
VIC-Il control register at location 53265 ($D011 in HEX). As always, it is
important to affect only those bits. The following POKE does this:

POKE 53265, (PEEK(53265> AND 248> + Y
where Y is the Y position of the screen from 0 to 7.

To scroll text onto the screen from the bottom, you would step the low-order 3
bits of location 53265 from 0 to 7, put more data on the covered line at the
bottom of the screen, and then repeat the process.

To scroll characters onto the screen from left to right, you would step the low-
order 3 bits of location 53270 from O to 7, print or POKE another column of new
data into column O of the screen, then repeat the process.

If you step the scroll bits by —1, your text will move in the opposite direction.
EXAMPLE: Text scrolling onto the bottom of the screen:

10 POKES3265, PEEK(53265)>AND247

20 PRINTCHR$(147)>

30 FORX=1T024:PRINTCHR$C17); : NEXT

40 POKES3265, (PEEK(53265>AND248)+7 : PRINT
S50 PRINT" HELLO";

60 FORY=6TOOSTEP-1

70 POKES3265, (PEEK(53265)AND248) +Y

80 FORX=1TO0S0:NEXT

90 GOTO040

130 PROGRAMMING GRAPHICS

SPRITES

A SPRITE is a special type of user definable character which can be displayed
anywhere on the screen. Sprites are maintained directly by the VIC-II chip. And

all you have to do is tell a sprite "what to look like," "what color to be," and
"where to appear.” The VIC-II chip will do the rest! Sprites can be any of the 16

colors available.

Sprites can be used with ANY of the other graphics modes: bitmapped,
character, multicolor, etc., and they'll keep their shape in all of them. The sprite
carries its own color definition, its own mode (HI-RES or multicolored), and its own
shape.

Up to 8 sprites at a time can be maintained by the VIC-Il chip automatically.
More sprites can be displayed using RASTER INTERRUPT techniques.

The features of SPRITES include:

. 24 horizontal dot by 21 vertical dot size.

. Individual color control for each sprite.

. Sprite multicolor mode.

. Magnification (2X) in horizontal, vertical, or both directions.
. Selectable sprite to background priority.

. Fixed sprite to sprite priorities.

. Sprite to sprite collision detection.

O NOOh AN WDN —

. Sprite to background collision detection.

These special sprite abilities make it simple to program many arcade style
games. Because the sprites are maintained by hardware, it is even possible to
write a good quality game in BASIC!

There are 8 sprites supported directly by the VIC-Il chip. They are numbered

from O to 7. Each of the sprites has its own definition location, position registers
and color register, and has its own bits for enable and collision detection.

DEFINING A SPRITE

Sprites are defined like programmable characters are defined. However, since
the size of the sprite is larger, more bytes are needed. A sprite is 24 by 21 dots,
or 504 dots. This works out to 63 bytes (504 /8 bits) needed to define a sprite.

PROGRAMMING GRAPHICS 131

0Z MOY

61 MOY

8L MO

L1 MOV

91 MO

S L MOY

vl MOY

€1 MOY

TL MOY

Ll MO

0oL MOY

& MO

8 MO

£ MOY

9 MOY

S MO

¥ MO

£ MOJ

T MO

L MOY

0 MOX

91l

[45

V9

8cCl

91

(4%

v9

8cl

9l

(4

ve

8cCl

(VAL = NO)
SINTVA
viva ud

19

€T

(44

(/14

61

8l

Ll

91

<l

14

€l

(43

oL

60

80

£0

90

S0

vo

€0

o

Lo

00

YIAWNN
NWN102

FIGURE 3-2. SPRITE DEFINITION BLOCK.

PROGRAMMING GRAPHICS

132

The 63 bytes are arranged in 21 rows of 3 bytes each. A sprite definition looks
like this:

BYTE O BYTE 1 BYTE 2
BYTE 3 BYTE 4 BYTE 5
BYTE 6 BYTE 7 BYTE 8
BYTE 60 BYTE 61 BYTE 62

Another way to view how a sprite is created is to take a look at the sprite
definition block on the bit level. It would look something like Figure 3-2.

In a standard (HI-RES) sprite, each bit set to 1 is displayed in that sprite's
foreground color. Each bit set to 0 is transparent and will display whatever data
is behind it. This is similar to a standard character.

Multicolor sprites are similar to multicolor characters. Horizontal resolution is
traded for extra color resolution. The resolution of the sprite becomes 12
horizontal dots by 21 vertical dots. Each dot in the sprite becomes twice as wide,
but the number of colors displayable in the sprite is increased to 4.

SPRITE POINTERS

Even though each sprite takes only 63 bytes to define, one more byte is needed
as a place holder at the end of each sprite. Each sprite, then, takes up 64 bytes.
This makes it easy to calculate where in memory your sprite definition is, since
64 bytes is an even number and in binary it's an even power.

Each of the 8 sprites has a byte associated with it called the SPRITE POINTER.
The sprite pointers control where each sprite definition is located in memory.
These 8 bytes are always located as the last 8 bytes of the1K chunk of screen
memory. Normally, on the Commodore 64, this means they begin at location
2040 ($07F8 in HEX). However, if you move the screen, the location of your
sprite pointers will also move.

Each sprite pointer can hold a number from 0 to 255. This number points to the
definition for that sprite. Since each sprite definition takes 64 bytes, that means
that the pointer can "see" anywhere in the 16K block of memory that the VIC-II
chip can access (since 256%64=16K).

PROGRAMMING GRAPHICS 133

If sprite pointer #0, at location 2040, contains the number 14, for example, this
means that sprite O will be displayed using the 64 bytes beginning at location
14%64=896 which is in the cassette buffer. The following formula makes this
clear:

LOCATION = (BANK * 16384) + (SPRITE POINTER VALUE * 64)

Where BANK is the 16K segment of memory that the VIC-Il chip is looking at
and is from O to 3.

The above formula gives the start of the 64 bytes of the sprite definition block.
When the VIC-Il chip is looking at BANK O or BANK 2, there is a ROM IMAGE of
the character set present in certain locations, as mentioned before. Sprite
definitions can NOT be placed there. If for some reason you need more than

128 different sprite definitions, you should use one of the banks without the ROM
IMAGE, 1 or 3.

TURNING SPRITES ON

The VIC-Il control register at location 53269 ($D015 in HEX) is known as the
SPRITE ENABLE register. Each of the sprites has a bit in this register which
controls whether that sprite is ON or OFF. The register looks like this:

$D01576543210

To turn on Sprite 1, for example, it is necessary to turn that bit to a 1. The
following POKE does this:

POKE 53269, PEEK(53269) OR 2

A more general statement would be the following:
POKE 53269, PEEK(53269> OR (21'SN)

where SN is the Sprite Number, from O to 7.

NOTE: A sprite must be turned ON before it can be seen.

134 PROGRAMMING GRAPHICS

TURNING SPRITES OFF

A sprite is turned off by setting its bit in the VIC-Il control register at 53269
($D015 in HEX) to a O. The following POKE will do this:

POKE 53269, PEEK(53269> AND (255-21SN)

where SN is the Sprite Number from O to 7.

COLORS

A sprite can be any of the 16 colors generated by the VIC-II chip. Each of the

sprites has its own sprite color register. These are the memory locations of the
color registers:

ADDRESS DESCRIPTION
53287 ($D027) SPRITE O COLOR REGISTER
53288 ($D028) SPRITE 1 COLOR REGISTER
53289 ($D029) SPRITE 2 COLOR REGISTER
53290 ($D02A) SPRITE 3 COLOR REGISTER
53291 ($D02B) SPRITE 4 COLOR REGISTER
53292 ($D02C) SPRITE 5 COLOR REGISTER
53293 ($D02D) SPRITE 6 COLOR REGISTER
53294 ($DO2E) SPRITE 7 COLOR REGISTER

All dots in the sprite will be displayed in the color contained in the sprite color
register. The rest of the sprite will be transparent, and will show whatever is
behind the sprite.

MULTICOLOR MODE

Multicolor mode allows you to have up to 4 different colors in each sprite.
However, just like other multicolor modes, horizontal resolution is cut in half. In
other words, when you're working with sprite multicolor mode (like in multicolor
character mode), instead of 24 dots across the sprite, there are 12 pairs of dots.
Each pair of dots is called a BIT PAIR. Think of each bit pair (pair of dots) as a
single dot in your overall sprite when it comes to choosing colors for the dots in

PROGRAMMING GRAPHICS 135

your sprites. The table below gives you the bit pair values needed to turn ON
each of the four colors you've chosen for your sprite:

BIT PAIR DESCRIPTION
00 TRANSPARENT, SCREEN COLOR
01 SPRITE MULTICOLOR REGISTER #0 (53285) ($D025)
10 SPRITE COLOR REGISTER
11 SPRITE MULTICOLOR REGISTER #1 (53286) ($D026)

NOTE: The sprite foreground color is a 10. The character foreground is an 11.

SETTING A SPRITE TO MULTICOLOR MODE

To switch a sprite into multicolor mode you must turn ON the VIC-Il control register
at location 53276 ($D01C). The following POKE does this:

POKE 53276, PEEK(53276> OR (27SN>
where SN is the Sprite Number (O to 7).

To switch a sprite out of multicolor mode you must turn OFF the VIC-Il control
register at location 53276 ($D01C). The following POKE does this:

POKE 53276, PEEK(53276> AND (255-21SN)

where SN is the Sprite Number (0 to 7).

EXPANDED SPRITES

The VIC-II chip has the ability to expand a sprite in the vertical direction, the
horizontal direction, or both at once. When expanded, each dot in the sprite is
twice as wide or twice as tall. Resolution doesn't actually increase... the sprite
just gets bigger.

To expand a sprite in the horizontal direction, the corresponding bit in the VIC-
Il control register at location 53277 ($DO1D in HEX) must be turned ON (set to
a 1). The following POKE expands a sprite in the X direction:

POKE 53277, PEEK(53277> OR (21 SN>

where SN is the Sprite Number from O to 7.

136 PROGRAMMING GRAPHICS

To unexpand a sprite in the horizontal direction, the corresponding bit in the VIC-
Il control register at location 53277 ($DO1D in HEX) must be turned OFF (set to
a 0). The following POKE "unexpands” a sprite in the X direction:

POKE 53277, PEEK(53277> AND(255-21SN>

where SN is the Sprite Number from O to 7.

To expand a sprite in the vertical direction, the corresponding bit in the VIC-II
control register at location 53271 ($D017 in HEX) must be turned ON (set to a
1). The following POKE expands a sprite in the Y direction:

POKE 53271, PEEK(53271> OR (21SN)

where SN is the Sprite Number from O to 7.

To unexpand a sprite in the vertical direction, the corresponding bit in the VIC-II
control register at location 53271($D017 in HEX) must be turned OFF (set to a
0). The following POKE "unexpands" a sprite in the Y direction:

POKE 53271, PEEK(53271> AND (255-21SN)
where SN is the Sprite Number from O to 7.

SPRITE POSITIONING

Once you've made a sprite you want to be able to move it around the screen.
To do this, your Commodore 64 uses three positioning registers:

1. SPRITE X POSITION REGISTER
2. SPRITE Y POSITION REGISTER
3. MOST SIGNIFICANT BIT X POSITION REGISTER

Each sprite has an X position register, a Y position register, and a bit in the X
most significant bit register. This lets you position your sprites very accurately.
You can place your sprite in 512 possible X positions and 256 possible Y
positions.

The X and Y position registers work together, in pairs, as a team. The locations

of the X and Y registers appear in the memory map as follows: first is the X
register for sprite 0, then the Y register for sprite 0. Next comes the X register

PROGRAMMING GRAPHICS 137

for sprite 1, the Y register for sprite 1, and so on. After all 16 X and Y registers
comes the most significant bit in the X position (X MSB) located in its own register.

The chart below lists the locations of each sprite position register. You use the
locations at their appropriate time through POKE statements:

LOCATION

DECIMAL HEX DESCRIPTION
53248 ($D000) SPRITE O X POSITION REGISTER
53249 ($D001) SPRITE O Y POSITION REGISTER
53250 ($D002) SPRITE 1 X POSITION REGISTER
53251 ($D003) SPRITE 1 Y POSITION REGISTER
53252 ($D004) SPRITE 2 X POSITION REGISTER
53253 ($D005) SPRITE 2 Y POSITION REGISTER
53254 ($D006) SPRITE 3 X POSITION REGISTER
53255 ($D007) SPRITE 3 Y POSITION REGISTER
53256 ($D008) SPRITE 4 X POSITION REGISTER
53257 ($D009) SPRITE 4 Y POSITION REGISTER
53258 ($DO0A) SPRITE 5 X POSITION REGISTER
53259 ($DOO0B) SPRITE 5 Y POSITION REGISTER
53260 ($D00C) SPRITE 6 X POSITION REGISTER
53261 ($DOOD) SPRITE 6 Y POSITION REGISTER
53262 ($DOOE) SPRITE 7 X POSITION REGISTER
53263 ($DOOF) SPRITE 7 Y POSITION REGISTER
53264 ($D010) SPRITE X MSB REGISTER

The position of a sprite is calculated from the TOP LEFT corner of the 24 dot by
21 dot area that your sprite can be designed in. It does NOT matter how many
or how few dots you use to make up a sprite. Even if only one dot is used as a
sprite, and you happen to want it in the middle of the screen, you must still
calculate the exact positioning by starting at the top left corner location.

VERTICAL POSITIONING

Setting up positions in the horizontal direction is a little more difficult than vertical
positioning, so we'll discuss vertical (Y) positioning first.

There are 200 different dot positions that can be individually programmed onto
your TV screen in the Y direction. The sprite Y position registers can handle
numbers up to 255. This means that you have more than enough register locations

138 PROGRAMMING GRAPHICS

to handle moving a sprite up and down. You also want to be able to smoothly
move a sprite on and off the screen. More than 200 values are needed for this.

The first on-screen value from the top of the screen, and in the Y direction for an
unexpanded sprite is 30. For a sprite expanded in the Y direction it would be 9.
(Since each dot is twice as tall, this makes a certain amount of sense, as the initial
position is STILL calculated from the top left corner of the sprite.)

The first Y value in which a sprite (expanded or not) is fully on the screen (all 21
possible lines displayed) is 50.

The last Y value in which an unexpanded sprite is fully on the screen is 229. The
last Y value in which an expanded sprite is fully on the screen is 208.

The first Y value in which a sprite is fully off the screen is 250.

EXAMPLE:

¢ Bl BEYERE

10 PRINT"L]": REM SHIFT CLR/HOME

20 POKE 2040,13

30 FOR I = O TO 62: POKE832+I,129: NEXT
40 V = 53248

50 POKE V + 21,1

60 POKE V + 39,1

70 POKE V + 1, 100

80 POKE V + 16,0: POKE V,100

HORIZONTAL POSITIONING

Positioning in the horizontal direction is more complicated because there are
more than 256 positions. This means that an extra bit, or 9th bit is used to control
the X position. By adding the extra bit when necessary a sprite now has 512
possible positions in the left/right, X, direction. This makes more possible
combinations than can be seen on the visible part of the screen. Each sprite can
have a position from 0 to 511. However, only those values between 24 and 343
are visible on the screen. If the X position of a sprite is greater than 255 (on the
right side of the screen), the bit in the X MOST SIGNIFICANT BIT (MSB) POSITION
register must be set to a 1 (turned ON). If the X position of a sprite is less than

PROGRAMMING GRAPHICS 139

‘AL SWOY INOK 10} SPIDPUDYS UOISSIWSUDI} UOISIAD[S} UDDLISWY YLION,

(851$) yre (ov1$) oze

(81%) ve (831$) 881
1

(v4$) 057 —— (v4$) osz
(¢3¢) 6z¢ ——
SMOY §C (oas$) soz
SNWN10D 0¥
+DJSIN
VIAV ONIMIIA FT14ISIA
(ze$) 05— ———(z€$) 0§
1
II“.IIIEE 34
1
(80¢) g =————= o
I I I
_ | o
(851%) vve (8z1$) 962 (81$) vz (00%$) 0

FIGURE 3-3 SPRITE

PROGRAMMING GRAPHICS

140

‘AL SWOY INOK 104 SPIOPUDLS UOISSIWSUDIL UOISIAD|S) UDDIIBWY YIION,

(4¥1$) se€ (LeL$) L1E
1

(948) VT == ——

(41%) 1€ (031$) o8y

— = (94%) 9vT

(13%) sZ¢ - ———

(9€8) G == =

SMOY ¥T
SNWN10D 8¢
*JSIN

VIV ONIMIIA JFT4ISIA

— —(2>2%) voc

———— (9€%) ¥S

bog)gl-=—=———=—

(4¥19$) see

(d11$) 282

I.“.IIII (1z$) €€
|
|
|
|

1
(41¢) 1e (£0%) £

POSITIONING CHARTS.

141

PROGRAMMING GRAPHICS

256 (on the left side of the screen), then the X MSB of that sprite must be O
(turned OFF). Bits O to 7 of the X MSB register correspond to sprites O to 7,
respectively.

The following program moves a sprite across the screen:

EXAMPLE:

10 PRINT"LI]"

20 POKE 2040,13

30 FOR I = O TO 62: POKE832+I,129: NEXT
40 V = 53248

50 POKE V + 21,1

60 POKE V + 39,1

70 POKE V + 1, 100

80 FOR J = 0 TO 347

90 HX = INT(Jr256>: LX = J — 256 X HX
100 POKE V,LX: POKE V + 16,HX: NEXT

When moving expanded sprites onto the left side of the screen in the X direction,
you have to start the sprite OFF SCREEN on the RIGHT SIDE. This is because an
expanded sprite is larger than the amount of space available on the left side of
the screen.

EXAMPLE:

v il BEYEENE

10 PRINT"LJ": REM SHIFT CLR/HOME

20 POKE 2040,13

30 FOR I = 0 TO 62: POKE832+I,129: NEXT
40 V = 53248

50 POKE V + 21,1

60 POKE V + 39,1: POKE V + 23,1: POKE V + 29,1
70 POKE V + 1, 100

80 J = 488

90 HX = INT(Jr256)>: LX = J — 256 X HX
100 POKE V, LX: POKE V + 16,HX

116 J=J+1: IF J > 511 THEN J = O
120 IF J > 488 OR J < 348 GOTO 90

The charts in Figure 3-3 explain sprite positioning.

By using these values, you can position each sprite anywhere. By moving the
sprite a single dot position at a time, very smooth movement is easy to achieve.

142 PROGRAMMING GRAPHICS

SPRITE POSITIONING SUMMARY

Unexpanded sprites are at least partially visible in the 40 column, by 25 row
mode within the following parameters:

1<=X<=343

30< =Y < =249

In the 38 column mode, the X parameters change to the following:
8<=X<=334

In the 24 row mode, the Y parameters change to the following:
34<=Y<=245

Expanded sprites are at least partially visible in the 40 column, by 25 row mode
within the following parameters:

489 > =X < =343

9>=Y < =249

In the 38 column mode, the X parameters change to the following:
496 >=X<=334

In the 24 row mode, the Y parameters change to the following:

13<=Y<=245

PROGRAMMING GRAPHICS 143

SPRITE DISPLAY PRIORITIES

Sprites have the ability to cross each other's paths, as well as cross in front of, or
behind other objects on the screen. This can give you a truly three dimensional
effect for games.

Sprite to sprite priority is fixed. That means that sprite O has the highest priority,
sprite 1 has the next priority, and so on, until we get to sprite 7, which has the
lowest priority. In other words, if sprite 1 and sprite 6 are positioned so that they
cross each other, sprite 1 will be in front of sprite 6.

So when you're planning which sprites will appear to be in the foreground of the
picture, they must be assigned lower sprite numbers than those sprites you want
to put towards the back of the scene. Those sprites will be given higher sprite
numbers.

NOTE: A "window" effect is possible. If a sprite with higher priority has "holes" in it (areas where
the dots are not set to 1 and thus turned ON), the sprite with the lower priority will show through.
This also happens with sprite and background data.

Sprite to background priority is controllable by the SPRITE-BACKGROUND
priority register located at 53275 ($DO01B). Each sprite has a bit in this register.
If that bit is O, that sprite has a higher priority than the background on the screen.
In other words, the sprite appears in front of background data. If that bit is a
1, that sprite has a lower priority than the background. Then the sprite appears
behind the background data.

COLLISION DETECTS

One of the more interesting aspects of the VIC-II chip is its collision detection
abilities. Collisions can be detected between sprites, or between sprites and
background data. A collision occurs when a non-zero part of a sprite overlaps a
non-zero portion of another sprite or characters on the screen.

144 PROGRAMMING GRAPHICS

SPRITE TO SPRITE COLLISIONS

Sprite to sprite collisions are recognized by the computer, or flagged, in the
sprite to sprite collision register at location 53278 ($DO1E in HEX) in the VIC-II
chip control register. Each sprite has a bit in this register. If that bit is a 1, then
that sprite is involved in a collision. The bits in this register will remain set until
read (PEEKed). Once read, the register is automatically cleared, so it is a good
idea to save the value in a variable until you are finished with it.

NOTE: Collisions can take place even when the sprites are off screen.

SPRITE TO DATA COLLISIONS

Sprite to data collisions are detected in the sprite to data collision register at
location 53279 ($DO1F in HEX) of the VIC-II chip control register.

Each sprite has a bit in this register. If that bit is a 1, then that sprite is involved
in a collision. The bits in this register remain set until read (PEEKed). Once read,
the register is automatically cleared, so it is a good idea to save the value in a
variable until you are finished with it.

NOTE: MULTICOLOR data 01 is considered transparent for collisions, even though it shows up on
the screen. When setting up a background screen, it is a good idea to make everything that
should not cause a collision 01 in multicolor mode.

PROGRAMMING GRAPHICS 145

10 REM X SPRITE EXAMPLE 1 X

20 REM THE HOT AIR BALLOON

30 VIC=13%4096

35 POKEVIC+21,1

36 POKEVIC+33, 14

37 POKEVIC+23,1

38 POKEVIC+29,1

40 POKE2040, 192

180 POKEVIC, 100

190 POKEVIC+1,100

220 POKEVIC+39,1

250 FORY=0TO063

300 READA

310 POKE192%64+Y,A

320 NEXTY

330 DX=1:D¥Y=1

340 X=PEEK(VIC>

350 Y=PEEK(VIC+1)>

360 IFY=500RY=208THENDY=-DY

380 IFX=P4ANDC(PEEK(VIC+16)AND1)>=0THENDX=—-D¥X
400 IFX=40ANDC(PEEK(VIC+16>AND1)>=1THENDX=—D¥X
420 IFX=255ANDDX=1THENX=-1:SIDE=1

440 IFX=0ANDDX=—1THENX=256:SIDE=0

460 X=X+DX

470 X=XAND255

480 Y=Y+DY

485 POKEVIC+16,SIDE

490 POKEVIC, X

510 POKEVIC+1,Y

530 GOT0340

600 REM XxxXxXXX SPRITE DATA XXxXxXxX

610 DATA 0,127,0,1,255, 192, 3,255,224, 3,231,224
620 DATA 7,217,240,7,223,240,7,217,240, 3,231,224
630 DATA 3,255,224, 3,255,224,2,255,160,1, 127,64
640 DATA 1,62,64,0,156,128,0,156,128,0,73,0,0,73,0
650 DATA 0,62,0,0,62,0,0,62,0,0,28,0,0

146 PROGRAMMING GRAPHICS

10
20
30
35
36
37
38
40
S0
60
70
80
90
100
110
120
130
140
150
160
170

175

176
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

REM X SPRITE EXAMPLE 2 X

REM THE HOT AIR BALLOON AGAIN

VIC=13%4096
POKEVIC+21,63
POKEVIC+33, 14
POKEVIC+23,3
POKEVIC+29, 3
POKE2040, 192
POKE2041, 193
POKE2042, 192
POKE2043, 193
POKE2044, 192
POKE2045, 193
POKEVIC+4, 30
POKEVIC+5, 58
POKEVIC+6, 65
POKEVIC+7,58
POKEVIC+8, 100
POKEVIC+9,58
POKEVIC+10, 100
POKEVIC+11,58

¢ ElA

PRINT[A]"TAB(15>"THIS IS TWO HIRES SPRITES"
PRINTTAB(S5>"ON TOP OF EACH OTHER"

POKEVIC, 100
POKEVIC+1,100
POKEVIC+2, 100
POKEVIC+3,100
POKEVIC+39,1
POKEVIC+41,1
POKEVIC+43,1
POKEVIC+40,6
POKEVIC+42,6
POKEVIC+44,6
FORX=192T0193
FORY=0T063
READA
POKEXX64+Y,A
NEXTY, X
DX=1:DY=1
X=PEEK(VIC>
Y=PEEK(VIC+1)

IFY=500RY=208THENDY=-DY

PROGRAMMING GRAPHICS

147

380 IFX=24ANDC(PEEK(VIC+16>AND1>=0THENDX=—DX

400 IFX=40ANDC(PEEK(VIC+16>AND1>=1THENDX=—DX

420 IFX=255ANDDX=1THENX=-1:SIDE=3

440 IFX=0ANDDX=—-1THENX=256:SIDE=0

460 X=X+DX

470 X=XAND255

480 Y=Y+DY

485 POKEVIC+16,SIDE

490 POKEVIC, X

500 POKEVIC+2,X

510 POKEVIC+1,Y

520 POKEVIC+3,Y

530 GOTO0340

600 REM xxxXX SPRITE DATA XXXXxX

610 DATA O, 255, O, 3, 153, 192, 7, 24, 224, 7, 56,
224, 14, 126, 112, 14, 126, 112, 14, 126, 112

620 DATA 6, 126, 96, 7, 56, 224, 7, 56, 224, 7, 56,
e24, 1, 56, 128, 0, 153, 0, O, 909, O, O, 56, O

630 DATA O, 56, 0, 0, 0, 0, 0, 0, O, O, 126, 0, 0O, 42,
0, 0, 84, 0, 0, 40, 0, O

640 DATA O, O, O, O, 102, O, O, 231, O, O, 195, 0O, 1,
129, 128, 1, 129, 128, 1, 129, 128

650 DATA 1, 129, 128, O, 195, 0O, 0O, 195, 0O, 4, 195, 32,
2, 102, 64, 2, 36, 64, 1, 0, 128

660 DATA 1, O, 128, O, 153, 0, O, 153, 0, O, O, O, O,
84, 0, 0, 42, 0, 0, 20, 0, O

148 PROGRAMMING GRAPHICS

10 REM X SPRITE EXAMPLE 3 X

20 REM THE HOT AIR GORF

30 VIC=53248

35 POKEVIC+21,1

36 POKEVIC+33, 14

37 POKEVIC+23,1

38 POKEVIC+29,1

40 POKE2040, 192

S50 POKEVIC+28,1

60 POKEVIC+37,7

70 POKEVIC+38,4

180 POKEVIC+0, 100

190 POKEVIC+1,100

220 POKEVIC+39,2

290 FORY=0TO063

300 READA

310 POKE12288+Y,A

320 NEXTY

330 DX=1:D¥Y=1

340 X=PEEK(VIC>

350 Y=PEEK(VIC+1)>

360 IFY=500RY=208THENDY=-DY

380 IFX=P4ANDC(PEEK(VIC+16)AND1)>=0THENDX=—-D¥X
400 IFX=40ANDC(PEEK(VIC+16>AND1)>=1THENDX=—D¥X
420 IFX=255ANDDX=1THENX=-1:SIDE=1

440 IFX=0ANDDX=—1THENX=256:SIDE=0

460 X=X+DX

470 X=XAND255

480 Y=Y+DY

485 POKEVIC+16,SIDE

490 POKEVIC, X

510 POKEVIC+1,Y

520 GETAS

521 IFA$="M"THENPOKEVIC+28,1

522 IFA$="H"THENPOKEVIC+28,0

530 GOT0340

600 REM XXxXXX SPRITE DATA XXXxXxX

610 DATA 64, 0O, 1, 16, 170, 4, 6, 170, 144, 10, 170, 160,
42, 170, 168, 41, 105, 104, 169, 235, 106
620 DATA 169, 235, 106, 169, 235, 106, 170, 170, 170,
170, 170, 170, 170, 170, 170, 170, 170, 170
630 DATA 166, 170, 154, 169, 85, 106, 170, 85, 170, 42,
170, 168, 10, 170, 160, 1, O, 64, 1, 0O, 64
640 DATA 5, O, 80, O

PROGRAMMING GRAPHICS 149

OTHER GRAPHICS FEATURES

SCREEN BLANKING

Bit 4 of the VIC-Il control register controls the screen blanking function. It is found
in the control register at location 53265 ($D011). When it is turned ON (in other
words, set to a 1) the screen is normal. When bit 4 is set to O (turned OFF), the
entire screen changes to border color.

The following POKE blanks the screen. No data is lost, it just isn't displayed:
POKE 53265, PEEK(53265)> AND 239

To bring back the screen, use the POKE shown below:

POKE 53265, PEEK(53265) OR 16

NOTE: Turning off the screen will speed up the processor slightly. This means that program
RUNning is also sped up.

RASTER REGISTER

The raster register is found in the VIC-II chip at location 53266 ($D012). The
raster register is a dual purpose register. When you read this register it returns
the lower 8 bits of the current raster position. The raster position of the most
significant bit is in register location 53265 ($D011). You use the raster register
to set up timing changes in your display so that you can get rid of screen flicker.
The changes on your screen should be made when the raster is not in the visible
display area, which is when your dot positions fall between 51 and 251.

When the raster register is written to (including the MSB) the number written to
is saved for use with the raster compare function. When the actual raster value
becomes the same as the number written to the raster register, a bit in the VIC-
Il chip interrupt register 53273 ($D019) is turned ON by setting it to 1.

NOTE: If the proper interrupt bit is enabled (turned on), an interrupt (IRQ) will occur.

150 PROGRAMMING GRAPHICS

INTERRUPT STATUS REGISTER

The interrupt status register shows the current status of any interrupt source. The
current status of bit 2 of the interrupt register will be a 1 when two sprites hit
each other. The same is true, in a corresponding 1 to 1 relationship, for bits O to
3 listed in the chart below. Bit 7 is also set with a 1, whenever an interrupt occurs.
The interrupt status register is located at 53273 ($D019) and is as follows:

LATCH BIT# DESCRIPTION
IRST 0 Set when the current raster count = stored raster count
IMDC 1 Set by SRITE-DATA collision (15t one only, until reset)
IMMC 2 Set by SPRITE-SPRITE collision (15" one only, until reset)
ILP 3 Set by negative transition of light pen (1 per frame)
IRQ 7 Set by latch set and enabled

Once an interrupt bit has been set, it's "latched" in and must be cleared by
writing a 1 to that bit in the interrupt register when you're ready to handle it.
This allows selective interrupt handling, without having to store the other interrupt
bits.

The INTERRUPT ENABLE REGISTER is located at 53274 ($DO1A). It has the
same format as the interrupt status register. Unless the corresponding bit in the
interrupt enable register is set to a 1, no interrupt from that source will take
place. The interrupt status register can still be polled for information, but no
interrupts will be generated.

To enable an interrupt request the corresponding interrupt enable bit (as shown
in the chart above) must be setto a 1.

This powerful interrupt structure lets you use split screen modes. For instance you
can have half of the screen bitmapped, half text, more than 8 sprites at a time,
etc. The secret is to use interrupts properly. For example, if you want the top half
of the screen to be bitmapped and the bottom to be text, just set the raster
compare register (as explained previously) for halfway down the screen. When
the interrupt occurs, tell the VIC-II chip to get characters from ROM, then set the
raster compare register to interrupt at the top of the screen. When the interrupt
occurs at the top of the screen, tell the VIC-II chip to get characters from RAM
(bitmap mode).

PROGRAMMING GRAPHICS 151

You can also display more than 8 sprites in the same way. Unfortunately BASIC
isn't fast enough to do this very well. So if you want to start using display
interrupts, you should work in machine language.

SUGGESTED SCREEN AND CHARACTER COLOR COMBINATIONS

Color TV sets are limited in their ability to place certain colors next to each other
on the same line. Certain combinations of screen and character colors produce
blurred images. This chart shows which color combinations to avoid, and which
work especially well together:

CHARACTER COLOR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o|x|®o|X|®o|0o|®| X|0|®0|X]| 0O|0O|OC(O|[O|O
1l@|X|@®|X|®0|0|(O0|X|O|O|O|O|(|O|X|(O|O®
2| X|@®| X|X|@®@| X|X|®|®| X|®[X|X|X|X]|®
3O | X|X|X| X|®@|@®|X]|X[X]|X|®]X|X]|®]|X
o |@]| X[X X|X|X[X]X]|X[X]|X|X|X]|X]|®
ms..XOXXXXXXX.XOXO
O glo|o|x|o| x| X|X|X|X|X|[Xx|X|X|0®|0]|®
870x0XXXOX00000xxx
E8.0.XXXXOXOXXXXX.
S o|lx|e|X|x|[x|x|x|e|e|x|e|x|X|[x|x]|e®
m]O...XXXXOX.XXXXXO
Mmjieje|X|e|X|X|X|®|X|X|X|X|0o|0o|@®]|®
12/ 0| 0| X|X|[X|®|X|X|®|X|®]|X|X]|X]|®
13l X[X|X|X|e|®[X|X[X]|X|[®]|X[X]|X]|X
1s|lele[x|e| x| x|eo|X|x[X|x|o|X[x]|x]|e®
15|o|(o|o|X|o|@(@o|X(X|o0o(/0(f0j0|X|®]|X
@ = EXCELLENT
@® =FAR
X = POOR

152 PROGRAMMING GRAPHICS

PROGRAMMING SPRITES — ANOTHER LOOK

For those of you having trouble with graphics, this section has been designed as
a more elementary tutorial approach to sprites.

MAKING SPRITES IN BASIC — A SHORT PROGRAM

There are at least three different BASIC programming techniques which let you
create graphic images and cartoon animations on the Commodore 64. You can
use the computer's built-in graphics character set (see Page 376). You can
program your own characters (see Page 108) or... best of all... you can use the
computer's built-in "sprite graphics." To illustrate how easy it is, here's one of the
shortest sprite making programs you can write in BASIC:

10 PRINT"LJ": REM SHIFT CLR/HOME
20 POKE2040, 13

30 FORS=832T0832+62:POKES, 255 :NEXT
40 V=53248

S50 POKEV+21,1

60 POKEV+39,1

70 POKEV,24

80 POKEV+1,100

This program includes the key "ingredients" you need to create any sprite. The
POKE numbers come from the SPRITE MAKING CHART on Page 176. This
program defines the first sprite... sprite O... as a solid white square on the
screen. Here's a line-by-line explanation of the program:

LINE 10 clears the screen.

LINE 20 sets the "sprite pointer" to where the Commodore 64 will read its sprite
data from. Sprite O is set at 2040, sprite 1 at 2041, sprite 2 at 2042, and so
on up to sprite 7 at 2047. You can set all 8 sprite pointers to 13 by using this
line in place of line 20:

20 FOR SP=2040T02047:POKE SP, 13:NEXT SP
LINE 30 puts the first sprite (sprite 0) into 63 bytes of the Commodore 64's RAM

memory starting at location 832 (each sprite requires 63 bytes of memory). The
first sprite (sprite 0) is "addressed" at memory locations 832 to 894.

PROGRAMMING GRAPHICS 153

LINE 40 sets the variable "V" equal to 53248, the starting address of the VIDEO
CHIP. This entry lets us use the form (V + number) for sprite settings. We're using
the form (V + number) when POKEing sprite settings because this format
conserves memory and lets us work with smaller numbers. For example, in line
50 we typed POKEV+21.This is the same as typing POKE 53248+21 or POKE
53269... but V+21 requires less space than 53269, and is easier to remember.

LINE 50 enables or "turns on" sprite 0. There are 8 sprites, numbered from O to
7. To turn on an individual sprite, or a combination of sprites, all you have to do
is POKEV+21 followed by a number from O (turn all sprites off) to 255 (turn all
8 sprites on). You can turn on one or more sprites by POKEing the following
numbers:

ALL ON SPRITEO SPRITE1 SPRITE2 SPRITE3 SPRITE4 SPRITES SPRITE6 SPRITE7 ALL OFF

V421,255 [V4+21,1 | V+21,2 | Vv+21,4 | v+21,8 | V421,16 | V+21,32 | V+21,64 | v+21,128 | V+21,0

POKE V+21, 1 turns on sprite 0. POKE V+21, 128 turns on sprite 7. You can
also turn on combinations of sprites. For example, POKE V+21, 129 turns on both
sprite O and sprite 7 by adding the two "turn on" numbers (1+128) together.
(See SPRITE MAKING CHART, Page 176.)

LINE 60 sets the COLOR of sprite 0. There are 16 possible sprite colors,
numbered from O (black) to 15 (grey). Each sprite requires a different POKE to
set its color, from V+39 to V+46. POKE V+39, 1 colors sprite O white. POKE V
+46, 15 colors sprite 7 grey. (See the SPRITE MAKING CHART for more
information.)

When you create a sprite, as you just did, the sprite will STAY IN MEMORY until
you POKE it off, redefine it, or turn off your computer. This lets you change the
color, position and even shape of the sprite in DIRECT or IMMEDIATE mode, which
is useful for editing purposes. As an example, RUN the program above, then
type this line in DIRECT mode (without a line number) and hit the key:

POKE V+39, 8
The sprite on the screen is now ORANGE. Try POKEing some other numbers from

0 to 15 to see the other sprite colors. Because you did this in DIRECT mode, if
you RUN your program the sprite will return to its original color (white).

154 PROGRAMMING GRAPHICS

LINE 70 determines the HORIZONTAL or "X" POSITION of the sprite on the
screen. This number represents the location of the UPPER LEFT CORNER of the
sprite. The farthest left horizontal (X) position which you can see on your television
screen is position number 24, although you can move the sprite OFF THE SCREEN
to position number 0.

LINE 80 determines the VERTICAL or "Y" POSITION of the sprite. In this program,
we placed the sprite at X (horizontal) position 24, and Y (vertical) position 100.
To try another location, type this POKE in DIRECT mode and hit :

POKE V, 24: POKE V+1, 50

This places the sprite at the upper left corner of the screen. To move the sprite
to the lower left corner, type this:

POKE V, 24: POKE V+1, 229

Each number from 832 to 895 in our sprite O address represents one block of 8
pixels, with three 8-pixel blocks in each horizontal row of the sprite. The loop in
line 80 tells the computer to POKE 832, 255 which makes the first 8 pixels solid...
then POKE 833, 255 to make the second 8 pixels solid, and so on to location
894 which is the last group of 8 pixels in the bottom right corner of the sprite.
To better see how this works, try typing the following in DIRECT mode, and notice
that the second group of 8 pixels is erased:

POKE 833, 0 (to put it back type POKE 833, 255 or RUN your program)

The following line, which you can add to your program, erases the blocks in the
MIDDLE of the sprite you created:

90 FOR A = 836 TO 891 STEP 3: POKE A, 0: NEXTA

Remember, the pixels that make up the sprite are grouped in blocks of eight.
This line erases the 5th group of eight pixels (block 836) and every third block
up to block 890. Try POKEing any of the other numbers from 832 to 894 with
either a 255 to make them solid or O to make them blank.

PROGRAMMING GRAPHICS 155

CRUNCHING YOUR SPRITE PROGRAMS

Here's a helpful "crunching” tip: The program described above is already short, but it
can be made even shorter by "crunching” it smaller. In our example we list the key
sprite settings on separate program lines so you can see what's happening in the
program. In actual practice, a good programmer would probably write this program
as a TWO LINE PROGRAM... by "crunching" it as follows:

10 PRINT CHR$(147)>: V=53248: POKEV+21, 1: POKE2040, 13:
POKEV+39, 1

20 FOR S = 832 TO 894: POKE S, 255: NEXT: POKE V, 24: POKE
V+1, 100

For more tips on how to crunch your programs so they fit in less memory and run more
efficiently, see the "crunching guide" on Page 24.

TV SCREEN
- X POSITION = HORIZONTAL -
<
v
-
("4
L
>
I
4
o
-
)
O
o
>
L |
/
/

A Sprite located here must have both its X-position (horizontal) and Y-position (vertical)
set so it can be displayed on the screen

FIGURE 3-4. THE DISPLAY SCREEN IS DIVIDED
INTO A GRID OF X AND Y COORDINATES

156 PROGRAMMING GRAPHICS

POSITIONING SPRITES ON THE SCREEN

The entire display screen is divided into a grid of X and Y coordinates, like a
graph. The X COORDINATE is the HORIZONTAL position across the screen and
the Y COORDINATE is the VERTICAL position up and down (see Figure 3-4).

To position any sprite on the screen, you must POKE TWO SETTINGS... the X
position and the Y position... these tell the computer where to display the UPPER
LEFT-HAND CORNER of the sprite. Remember that a sprite consists of 504
individual pixels, 24 across by 21 down... so if you POKE a sprite onto the
upper left corner of your screen, the sprite will be displayed as a graphic image
24 pixels ACROSS and 21 pixels DOWN starting at the X-Y position you
defined. The sprite will be displayed based on the upper left corner of the entire
sprite, even if you define the sprite using only a small part of the 24x21 pixel
sprite area.

To understand how X-Y positioning works, study the following diagram (Figure
3-5), which shows the X and Y numbers in relation to your display screen. Note
that the GREY AREA in the diagram shows your television viewing area... the
white area represents positions which are OFF your viewing screen...

X POSITIONS RUN FROM O T ,
0 24 THEN YOU MUST POKE V+16, 1 255
f——+—— AND START OVER AT 0 TO 9

0 91
- }
X = 255,Y =50 IpOKE v+16,1 AND!

04—

X = 24, Y = 50

| \\Ix=<55,Y=5oI
X =231,Y = 50 |
11 il \ﬁ

= I

2 1

w VIEWING SCREEN AREA

2 -

=8 |

20 :

=° I

(7]

0o _ _ |

& X = 24,Y =229 X =231,Y =229 |

> / \ I
o B

, -

X =124,Y =250 POKE V+16,1 AND

X = 65,Y = 229

FIGURE 3-5. DETERMINING X-Y SPRITE POSITIONS

PROGRAMMING GRAPHICS 157

To display a sprite in a given location, you must POKE the X and Y settings for
each SPRITE... remembering that every sprite has its own unique X POKE and Y
POKE. The X and Y settings for all 8 sprites are shown here:

POKE THESE VALUES TO SET X-Y SPRITE POSITIONS

SPRITE O | SPRITE 1 | SPRITE 2 | SPRITE 3 | SPRITE 4 | SPRITE 5 | SPRITE 6 | SPRITE7

SETX |VX V42X | VH4X [VH6X | V48X |VHIOX |VHI2X |VH+14X
SETY [V+1,Y [V43Y |V+5Y |V+7Y |V4+9,Y |v+11,Y |v+13Y |[v+15Y

RIGHTX |V+16,1 |V+16,2 |V+16,4 |V+16,8 |V+16,16|V+16,32|V+16,64|V+16,128

POKEING AN X POSITION: The possible values of X are 0 to 255, counting
from left to right. Values O to 23 place all or part of the sprite OUT OF THE
VIEWING AREA off the left side of the screen... values 24 to 255 place the
sprite IN THE VIEWING AREA up to the 255th position (see next paragraph for
settings beyond the 255th X position). To place the sprite at one of these
positions, just type the X-POSITION POKE for the sprite you're using. For
example, to POKE sprite 1 at the farthest left X position IN THE VIEWING AREA,
type: POKE V+2, 24.

X VALUES BEYOND THE 255TH POSITION: To get beyond the 255th position
across the screen, you need to make a SECOND POKE using the numbers in the
"RIGHT X" row of the chart (Figure 3-5). Normally, the horizontal (X) numbering
would continue past the 255th position to 256, 257, etc., but because registers
only contain 8 bits we must use a "second register" to access the RIGHT SIDE of
the screen and start our X numbering over again at 0. So to get beyond X
position 255, you must POKE V+ 16 and a number (depending on the sprite).
This gives you 65 additional X positions (renumbered from 0 to 65) in the viewing
area on the RIGHT side of the viewing screen. (You can actually POKE the right
side X value as high as 255, which takes you off the right edge of the viewing
screen.)

POKEING A Y POSITION: The possible values of Y are 0 to 255, counting from
top to bottom. Values O to 49 place all or part of the sprite OUT OF THE
VIEWING AREA off the TOP of the screen. Values 50 to 229 place the sprite IN
THE VIEWING AREA. Values 230 to 255 place all or part of the sprite OUT OF
THE VIEWING AREA off the BOTTOM of the screen.

158 PROGRAMMING GRAPHICS

Let's see how this X-Y positioning works, using sprite 1. Type this program:

10 PRINT"LJ]":V=53248:POKEV+21,2:POKE2041,13:
FORS=832T0895: POKES, 255 : NEXT

20 POKEV+40,7

30 POKEV+2,24

40 POKEV+3,50

This simple program establishes sprite 1 as a solid box and positions it at the
upper left corner of the screen. Now change line 40 to read:

40 POKE V+3, 229

This moves the sprite to the bottom left corner of the screen. Now let's test the
RIGHT X LIMIT of the sprite. Change line 30 as shown:

30 POKE V+2, 255

This moves the sprite to the RIGHT but reaches the RIGHT X LIMIT, which is 255.
At this point, the "most significant bit" in register 16 must be SET. In other words,
you must type POKE V+16 and the number shown in the "RIGHT X" column in the
X-Y POKE CHART above to RESTART the X position counter at the 256th
pixel/position on the screen. Change line 30 as follows:

30 POKE V+16, PEEK(V+16> OR 2: POKE V+2, O

POKE V+16, 2 sets the most significant bit of the X position for sprite 1 and
restarts it at the 256th pixel/position on the screen. POKE V+2, 0 displays the
sprite at the NEW POSITION ZERO, which is now reset to the 256th pixel.

To get back to the left side of the screen, you must reset the most significant bit of
the X position counter to O by typing (for sprite 1):

POKE V+16, PEEK(V+16)> AND 253

TO SUMMARIZE how the X positioning works... POKE the X POSITION for any
sprite with a number from O to 255. To access a position beyond the 255th
position/pixel across the screen, you must use an additional POKE (V+16) which
sets the most significant bit of the X position and start counting from O again at
the 256th pixel across the screen.

PROGRAMMING GRAPHICS 159

This POKE starts the X numbering over again from O at the 256th position
(Example: POKE V+16, PEEK(V+16) OR 1 and POKE V,1 must be included to
place sprite O at the 257th pixel across the screen.) To get back to the left side
X positions you have to TURN OFF the control setting by typing POKE V+16,
PEEK(V+16) AND 254.

POSITIONING MULTIPLE SPRITES ON THE SCREEN

Here's a program which defines THREE DIFFERENT SPRITES (O, 1, and 2) in
different colors and places them in different positions on the screen:

PRINT"I‘E'

10 ':V=53248: FORS=832T0895: POKES, 255 : NEXT
20 FORM=2040T02042:POKEM, 13:NEXT

30 POKEV+21,7

40 POKEV+39,1:POKEV+40,7:POKEV+41,8

S0 POKEV,24:POKEV+1,50

60 POKEV+2,12:POKEV+3,229

70 POKEV+4,255:POKEV+5, 50

For convenience, all 3 sprites have been defined as solid squares, getting their
data from the same place. The important lesson here is how the 3 sprites are
positioned. The white sprite O is at the top left-hand corner. The yellow sprite 1
is at the bottom left-hand corner but HALF the sprite is OFF THE SCREEN
(remember, 24 is the leftmost X position in the viewing area... an X position less
than 24 puts all or part of the sprite off the screen and we used an X position
12 here which put the sprite halfway off the screen). Finally, the orange sprite 2
is at the RIGHT X LIMIT (position 255)... but what if you want to display a sprite
in the area to the RIGHT of X position 2552

DISPLAYING A SPRITE BEYOND THE 255TH X-POSITION

Displaying a sprite beyond the 255th X position requires a special POKE which
SETS the most significant bit of the X position and starts over at the 256th pixel
position across the screen. Here's how it works...

First, you POKE V+16 with the number for the sprite you're using (check the
"RIGHT X" row in the X-Y chart... we'll use sprite 0). Now we assign an X position,
keeping in mind that the X counter starts over from O at the 256th position on
the screen. Change line 50 to read as follows:

S50 POKE V+16,1: POKE V, 24: POKE V+1, 75

160 PROGRAMMING GRAPHICS

This line POKEs V+16 with the number required to "open up" the right side of
the screen... the new X position 24 for sprite O now begins 24 pixels to the
RIGHT of position 255. To check the right edge of the screen, change line 60 to:

60 POKE V+16, 1: POKE V, 65: POKE V+1, 75

Some experimentation with the settings in the sprite chart will give you the
settings you need to position and move sprites on the left and right sides of the
screen. The section on "moving sprites" will also increase your understanding of
how sprite positioning works.

SPRITE PRIORITIES

You can actually make different sprites seem to move IN FRONT OF or BEHIND
each other on the screen. This incredible three dimensional illusion is achieved by
the built-in SPRITE PRIORITIES which determine which sprites have priority over
the others when 2 or more sprites OVERLAP on the screen.

The rule is "first come, first served" which means lower-numbered sprites
AUTOMATICALLY have priority over higher-numbered sprites. For example, if
you display sprite O and spritel so they overlap on the screen, sprite O will
appear to be IN FRONT OF sprite 1. Actually, sprite O always supersedes all
the other sprites because it's the lowest numbered sprite. In comparison, sprite 1
has priority over sprites 2 to 7; sprite 2 has priority over sprites 3 to 7, etc.
Sprite 7 (the last sprite) has LESS PRIORITY than any of the other sprites, and
will always appear to be displayed "BEHIND" any other sprites which overlap
its position.

To illustrate how priorities work, change lines 50, 60, and 70 in the program
above to the following:

10 PRINT"L]":V=53248: FORS=832T0895: POKES, 255 : NEXT
20 FORM=2040T02042:POKEM, 13:NEXT

30 POKEV+21,7

40 POKEV+39,1:POKEV+40, 7:POKEV+41,8

S0 POKEV,24:POKEV+1,50:POKEV+16,0

60 POKEV+2,34:POKEV+3,60

70 POKEV+4,44:POKEV+5,70

You should see a white sprite on top of a yellow sprite on top of an orange

sprite. Of course, now that you see how priorities work, you can also MOVE
SPRITES and take advantage of these priorities in your animation.

PROGRAMMING GRAPHICS 161

DRAWING A SPRITE

Drawing a Commodore sprite is like coloring the empty spaces in a coloring
book. Every sprite consists of tiny dots called pixels. To draw a sprite, all you
have to do is "color in" some of the pixels.

Look at the spritemaking grid in Figure 3-6. This is what a blank sprite looks like:

N =
N O
N W

1
6 8 4 2 1

FIGURE 3-6. SPRITEMAKING GRID

Each little "square” represents one pixel in the sprite. There are 24 pixels across
and 21 pixels up and down, or 504 pixels in the entire sprite. To make the sprite
look like something, you have to color in these pixels using a special
PROGRAM... but how can you control over 500 individual pixels? That's where
computer programming can help you. Instead of typing 504 separate numbers,
you only have to type 63 numbers for each sprite. Here's how it works...

162 PROGRAMMING GRAPHICS

CREATING A SPRITE... STEP BY STEP

To make this as easy as possible for you, we've put together this simple step by
step guide to help you draw your own sprites.

STEP 1:

Write the sprite making program shown here ON A PIECE OF PAPER... note that
line 100 starts a special DATA section of your program which will contain the 63
numbers you need to create your sprite.

¢ il BEYVEENE

10 PRINT"L4" :POKE53280,5: POKES3281, 6
20 V=53248:POKEV+34,3

30 POKES3269, 4:POKE2042, 13

40 FORN=0TO62:READQ: POKE832+N, Q:NEXT

128) 64| 32| 16f 8| 4| 2| 1 [128]6a]32] 16| 8| 4| 2|1 [128[6a]|32]16] 8] 4] 2]

100 DATA 255,255,255
101 DATA 128,0,1 —
102 DATA 128,0,1 —*
103 DATA 128,0,1 —*
104 DATA 144,0,1 —
105 DATA 144,0,1 —
106 DATA 144,0,1 —*
107 DATA 144,0,1 —
108 DATA 144,0,1 —*
109 DATA 144,0,1 —*
110 DATA 144,0,1 —*
111 DATA 144,0,1 —
112 DATA 144,0,1 —
113 DATA 144,0,1 —*
114 DATA 128,0,1 —
115 DATA 128,0,1 —
116 DATA 128,0,1 —*
117 DATA 128,0,1 —*
118 DATA 128,0,1 —*
119 DATA 128,0,1 —
120 DATA 255,255,255
200 X=200:Y=100:POKES3252, X : POKES3253, Y

STEP 2:

Color in the pixels on the spritemaking grid on Page 162 (or use a piece of
graph paper... remember, a sprite has 24 squares across and 21 squares
down). We suggest you use a pencil and draw lightly so you can reuse this grid.
You can create any image you like, but for our example we'll draw a simple
box.

STEP 3:
Look at the first EIGHT pixels. Each column of pixels has a number (128, 64, 32,

16, 8, 4, 2, 1). The special type of addition we are going to show you is a type
of BINARY ARITHMETIC which is used by most computers as a special way of

PROGRAMMING GRAPHICS 163

counting. Here's a close-up view of the first eight pixels in the top left-hand
corner of the sprite:

128 | 64 32 16 8 4 2 1

STEP 4:

Add up the numbers of the SOLID pixels. This first group of eight pixels is
completely solid, so the total number is 255.

STEP 5:

Enter that number as the FIRST DATA STATEMENT in line 100 of the Spritemaking
Program below. Enter 255 for the second and third groups of eight.

STEP 6:
Look at the FIRST EIGHT PIXELS IN THE SECOND ROW of the sprite. Add up the

values of the solid pixels. Since only one of these pixels is solid, the total value
is 128. Enter this as the first DATA number in line 101.

128 | 64 32 16 8 4 2 1

STEP 7:

Add up the values of the next group of eight pixels (which is O because they're
all BLANK) and enter in line 101. Now move to the next group of pixels and
repeat the process for each GROUP OF EIGHT PIXELS (there are 3 groups across
each row, and 21 rows). This will give you a total of 63 numbers. Each number
represents ONE group of 8 pixels, and 63 groups of eight equals 504 total
individual pixels. Perhaps a better way of looking at the program is like this...
each line in the program represents ONE ROW in the sprite. Each of the 3
numbers in each row represents ONE GROUP OF EIGHT PIXELS. And each
number tells the computer which pixels to make SOLID and which pixels to leave
blank.

164 PROGRAMMING GRAPHICS

STEP 8:

CRUNCH YOUR PROGRAM INTO A SMALLER SPACE BY RUNNING TOGETHER
ALL THE DATA STATEMENTS, AS SHOWN IN THE SAMPLE PROGRAM BELOW.
Note that we asked you to write your sprite program on a piece of paper. We
did this for a good reason. The DATA STATEMENT LINES 100 to 120 in the
program in STEP 1 are only there to help you see which numbers relate to which
groups of pixels in your sprite. Your final program should be "crunched" like this:

¢ il BEYEEE

10 PRINT"L]":POKE53280,5:POKES3281,6

20 V=53248:POKEV+34,3

30 POKES3269,4:POKE2042,13

40 FORN=0TO062:READQ:POKE832+N, Q:NEXT

160 DATA 255,255,255, 128,0,1,128,0,1,128,0,1, 144,
0,1,144,0,1,144,0,1, 144,01

101 DATA 144,0,1,144,0,1,144,0,1,144,0,1,144,0,1,
144,0,1,128,0,1,128,0,1

102 DATA 128,0,1,128,0,1,128,0,1,128,0,1,255,255,255
200 X=200:Y=100:POKES3252, ¥: POKES3253, Y

MOVING YOUR SPRITE ON THE SCREEN

Now that you've created your sprite, let's do some interesting things with it. To
move Yyour sprite smoothly across the screen, add these two lines to your
program:

S0 POKEV+5, 100:FORX=24T0255 :POKEV+4, X :NEXT :POKE V+16,4

S5 FORX=0T065:POKEV+4, X :NEXTX:POKEV+16,0:GOTOS0

LINE 50 POKEs the Y POSITION at 100 (try 50 or 229 instead for variety). Then
it sets up a FOR... NEXT loop which POKEs the sprite into X position O, to X
position 255, in order. When it reaches the 255th position, it POKEs the RIGHT
X POSITION (POKE V+16, 4) which is required to cross to the right side of the
screen.

LINE 55 has a FOR... NEXT loop which continues to POKE the sprite in the last
65 positions on the screen. Note that the X value was reset to zero but because
you used the RIGHT X setting (POKE V + 16, 2) X starts over on the right side of
the screen.

This line keeps going back to itself (GOTO 50). If you just want the sprite to
move ONCE across the screen and disappear then take out GOTO 50.

PROGRAMMING GRAPHICS 165

Here's a line which moves the sprite BACK AND FORTH:

S50 POKEV+S,100: FORX=24T0255:POKEV+4, X:NEXT:POKEV+16,4:
FORX=0TO65 : POKEV+4, X : NEXTX

55 FORX=65TOGSTEP-1:POKEV+4, X:NEXT:POKEV+16,0:
FORX=255T024STEP-1 : POKEV+4, X : NEXT

60 GOTOSO

Do you see how these programs work? This program is the same as the previous
one, except when it reaches the end of the right side of the screen, it REVERSES
ITSELF and goes back in the other direction. That is what the STEP -1
accomplishes... it tells the program to POKE the sprite into X values from 65 to
0 on the right side of the screen, then from 255 to O on the left side of the screen,
STEPping backwards minus =1 position at a time.

VERTICAL SCROLLING

This type of sprite movement is called "scrolling." To scroll your sprite up or down
in the Y position, you only have to use ONE LINE. ERASE LINES 50 and 55 by
typing the line numbers by themselves and hitting like this:

Sl RETURN |
SRR RETURN |

Now enter LINE 50 again as follows:

S0 POKE V+4, 24: FOR Y =0 TO 255: POKE V+5,Y: NEXT

THE DANCING MOUSE - A SPRITE PROGRAM EXAMPLE

Sometimes the techniques described in a programmer's reference manual are
difficult to understand, so we've put together a fun sprite program called
"Michael's Dancing Mouse." This program uses three different sprites in a cute
animation with sound effects — and to help you understand how it works we've
included an explanation of EACH COMMAND so you can see exactly how the
program is constructed:

166 PROGRAMMING GRAPHICS

S S§=54272:POKES+24, 15:POKES, 220 : POKES+1,68:
POKES+5, 15:POKES+6,215
10 POKES+7,120:POKES+8, 100: POKES+12, 15:POKES+13,215

PRINT"fE'

15 ':Y=53248: POKEV+21, 1

20 FORS1=12288T012350:READQ1 : POKES1, Q1 : NEXT
25 FORS2=12352T012414:READQ2: POKES2, Q2 : NEXT
30 FORS3=12416T012478:READQ3: POKES3, Q3: NEXT
35 POKEV+39, 15:POKEV+1,68

v A ol 17|

40 PRINTTAB(160)>"[AI AM THE DANCING MOUSE !'[3"

45 P=192

S0 FORX=0T0347STEP3

55 RX=INT(X/256) :LX=X-RX*256

60 POKEV,LX:POKEV+16,R¥X

70 IFP=192THENGOSUB200

75 IFP=193THENGOSUB300

80 POKE2040,P:FORT=1TO60:NEXT

85 P=P+1:IFP>194THENP=192

90 NEXT

95 END

100 DATA 30,0,120,63,0,252, 127,129,254, 127,129,
254, 127,189,254, 127,255,254

101 DATA 63,255,252,31,187,248,3,187,192, 1,255,
128,3,189,192,1,231,128,1,255,0

102 DATA 31,255,0,0,124,0,0,254,0,1,199,32,3,131,
e24,7,1,192,1,192,0,3,192,0

103 DATA 30,0,120,63,0,252, 127,129,254, 127,129,
254, 127,189,254, 127,255,254

104 DATA 63,255,252, 31,221,248, 3,221,192,1,255, 128,
3,255,192,1,195,128,1,231,3

165 DATA 31,255,255,0,124,0,0,254,0,1,199,0,7,1, 128,
7,0,204,1,128,124,7, 128,56

1066 DATA 30,0,120,63,0,252, 127,129,254, 127,129,254,
127,189,254, 127,235,254

167 DATA 63,255,252, 31,221,248,3,221,192,1,255,134,
3,189,204,1,199,152,1,255,48

168 DATA 1,255,224,1,252,0,3,254,0

109 DATA 7,14,0,204,14,0,248,56,0,112,112,0,0,60,0,-1
200 POKES+4, 129:POKES+4, 128 :RETURN

300 POKES+11,129:POKES+11,128:RETURN

PROGRAMMING GRAPHICS 167

LINE 5:

$=54272

POKES+24,15

POKES,220

POKES+1,68

POKES+5,15

POKES+6,215

LINE 10:
POKES+7,120
POKES+8,100

POKES+12,15

POKES+13,215

LINE 15:

PRINT"

V=53248

POKEV+21,1

Sets the variable S equal to 54272, which is the
beginning memory location of the SOUND CHIP.
From now on, instead of poking a direct memory
location, we will POKE S plus a value.

Same, as POKE 54296, 15 which sets VOLUME
to highest level.

Same as POKE 54272, 220 which sets Low
Frequency in Voice 1 for a note which
approximates high C in Octave 6.

Same as POKE 54273, 68 which sets High
Frequency in Voice 1 for a note which
approximates high C in Octave 6.

Same as POKE 54277,15 which sets
Attack/Decay for Voice 1 andin this case
consists of the maximum DECAY level with no
attack, which produces the "echo" effect.

Same as POKE 54278, 215 which sets
Sustain/Release for Voice 1 (215 represents a
combination of sustain and release values).

Same as POKE 54279, 120 which sets the Low
Frequency for Voice 2.

Same as POKE 54280, 100 which sets the High
Frequency for Voice 2.

Same as POKE 54284, 15 which sets
Attack/Decay for Voice 2 to same level as Voice
1 above.

Same as POKE 54285, 215, which sets
Sustain/Release for Voice 2 to same level as
Voice 1 above.

Clears the screen when the program begins.

Defines the variable "V" as the starting location
of the VIC chip which controls sprites. From now
on we will define sprite locations as V plus a
value.

Turns on (enables) sprite number 1

168 PROGRAMMING GRAPHICS

LINE 20:

FORS1=12288
TO 12350

READQI1

POKES1,Q1

NEXT

We are going to use ONE SPRITE (sprite 0) in this
animation, but we are going to use THREE sets of
sprite data to define three separate shapes. To
get our animation, we will switch the POINTERS
for sprite O to the three places in memory where
we have stored the data which defines our three
different shapes. The same sprite will be
redefined rapidly over and over again as 3
different shapes to produce the dancing mouse
animation. You can define dozens of sprite
shapes in DATA STATEMENTS, and rotate those
shapes through one or more sprites. So you see,
you don't have to limit one sprite to one shape or
vice-versa. One sprite can have many different
shapes, simply by changing the POINTER
SETTING FOR THAT SPRITE to different places in
memory where the sprite data for different
shapes is stored. This line means we have put the
DATA for "sprite shape 1" at memory locations
12288 to 12350.

Reads 63 numbers in order from the DATA
statements which begin at line 100. Q1 is an
arbitrary variable name. It could just as easily
be A, Z1 or another numeric variable.

Pokes the first number from the DATA statements
(the first "Q1" is 30) into the first memory
location (the first memory location is 12288). This
is the same as POKE 12288, 30.

This tells the computer to look BETWEEN the FOR
and NEXT parts of the loop and perform those in
between commands (READ Q1 and POKEST, Q1
using the NEXT numbers in order). In other words,
the NEXT statement makes the computer READ
the NEXT Q1 from the DATA STATEMENTS, which
is 0, and also increments S1 by 1 to the next
value, which is 12289. The result is POKE
12289,0... the NEXT command makes the loop
keep going back until the last values in the series,
which are POKE 12350, 0.

PROGRAMMING GRAPHICS 169

LINE 25:

FORS2=12352
TO 12414

READQ?2

POKES2,Q2

NEXT

LINE 30:

FORS3=12416
TO 12478

READQ3
POKES3,Q3

NEXT

LINE 35:

POKEV+39,15
POKEV+1,68

The second shape of sprite O is defined by the
DATA which is located at locations 12352 to
12414. NOTE that location 12351 is SKIPPED...
this is the 64th location which is used in the
definition of the first sprite group but does not
contain any of the sprite data numbers. Just
remember when defining sprites in consecutive
locations that you will use 64 locations, but only
POKE sprite data into the first 63 locations.
Reads the 63 numbers which follow the numbers
we used for the first sprite shape. This READ
simply looks for the very next number in the
DATA area and starts reading 63 numbers, one
at a time.

Pokes the data (Q2) into the memory locations
(S2) for our second sprite shape, which begins at
location 12352.

Same use as line 20 above.

The third shape of sprite zero is defined by the
DATA to be located at locations 12416 to
12478.

Reads last 63 numbers in order as Q3.

Pokes those numbers into locations 12416 to
12478.

Same as lines 20 and 25.

Sets color for sprite O to light grey.

Sets the upper right hand corner of the sprite
square to vertical (Y) position 68. For the sake of
comparison, position 50 is the top left-hand
corner Y position on the viewing screen.

170 PROGRAMMING GRAPHICS

LINE 40:

PRINTTAB(160)

"I AM THE
DANCING
MOUSE!

-7}

LINE 45:

P=192

LINE 50:

FORX=0TO347
STEP3

Tabs 160 spaces from the top left-hand
CHARACTER SPACE on the screen, which is the
same as 4 rows beneath the clear command...
this starts your PRINT message on the 6th line
down on the screen.

Hold down the key and press the key
marked at the same time. If you do this
inside quotation marks, a "reversed E" will
appear. This sets the color to everything PRINTed
from then on to WHITE.

This is a simple PRINT statement.

This sets the color back to light blue when the
PRINT statement ends. Holding down E
and g at the same time inside quotation marks
causes a "reversed diamond symbol" to appear.

Sets the variable P equal to 192. This number
192 is the pointer you must use, in this case to
"point" sprite O to the memory locations that
begin at location 12288. Changing this pointer
to the locations of the other two sprite shapes is
the secret of using one sprite to create an
animation that is actually three different shapes.

Steps the movement of your sprite 3 X positions
at a time (to provide fast movement) from
position O to position 347.

PROGRAMMING GRAPHICS 171

LINE 55:

RX=INT(X/256)

LX=X-RX*256

LINE 60:

POKEV,LX

POKEV+16,RX

LINE 70:

IFP=192THEN
GOSUB200

RX is the integer of X/256 which means that RX
is rounded off to O when X is less than 256, and
RX becomes 1 when X reaches position 256. We
will use RX in a moment to POKE V+16 with a O
or 1 to turn on the "RIGHT SIDE" of the screen.

When the sprite is at X position O, the formula
looks like this: LX=0—(0 times 256) OR 0. When
the sprite is at X position 1 the formula looks like
this: LX=1—(0 times 256) OR 1. When the sprite
is at X position 256 the formula looks like this: LX
=256—(1 times 256) OR O which resets X back
to O which must be done when you start over on
the RIGHT SIDE of the screen (POKEV+16, 1).

You POKE V by itself with a value to set the
Horizontal (X) Position of sprite O on the screen.
(See SPRITE MAKING CHART on Page 176). As
shown above, the value of LX, which is the
horizontal position of the sprite, changes from O
to 255 and when it reaches 255 it automatically
resets back to zero because of the LX equation
set up in line 55.

POKE V+16 always turns on the "right side" of
the screen beyond position 256, and resets the
horizontal positioning coordinates to zero. RX is
either a O or a 1 based on the position of the
sprite as determined by the RX formula in line
55.

If the sprite pointer is set to 192 (the first sprite
shape) the waveform control for the first sound
effect is set to 129 and 128 per line 200.

172 PROGRAMMING GRAPHICS

LINE 75:

IFP=193THEN
GOSUB300

LINE 80:

POKE2040,P

FORT=1TO60:

NEXT

LINE 85:

P=P+1

IFP>194THEN
P=192

If the sprite pointer is set to 193 (the second
sprite shape) the waveform control for the
second sound effect (Voice 2) is set to 129 and
128 per line 300.

Sets the SPRITE POINTER to location 192
(remember P=192 in line 452 Here's where we
use the P).

A simple time delay loop which sets the speed at
which the mouse dances. (Try a faster or slower
speed by increasing/decreasing the number 60.)

Now we increase the value, of the pointer by
adding 1 to the original value of P.

We only want to point the sprite to 3 memory
locations. 192 points to locations 12288 to
12350, 193 points to locations 12352 to 12414,
and 194 points to locations 12416 to 12478.
This line tells the computer to reset P back to 192
as soon as P becomes 195 so P never really
becomes 195.Pis 192, 193, 194 and then resets
back to 192 and the pointer winds up pointing
consecutively to the three sprite shapes in the
three 64-byte groups of memory locations
containing the DATA.

PROGRAMMING GRAPHICS 173

LINE 90:

NEXTX

LINE 95:

END

LINES 100-109:

DATA

After the sprite has become one of the 3
different shapes defined by the DATA, only then
is it allowed to move across the screen. It will
jump 3 X positions at a time (instead of scrolling
smoothly one position at a time, which is also
possible). STEPping 3 positions at a time makes
the mouse "dance" faster across the screen. NEXT
X matches the FOR... X position loop in line 50.

ENDs the program, which occurs when the sprite
moves off the screen.

The sprite shapes are read from the data
numbers, in order. First the 63 numbers which
comprise sprite shapel are read, then the 63
numbers for sprite shape 2, and then sprite
shape 3. This data is permanently read into the
3 memory locations and after it is read into these
locations, all the program has to do is point sprite
O at the 3 memory locations and the sprite
automatically takes the shape of the data in
those locations. We are pointing the sprite at 3
locations one at a time which produces the
"animation" effect. If you want to see how these
numbers affect each sprite, try changing the first
3 numbers in LINE 100 to 255, 255, 255. See
the section on defining sprite shapes for more
information.

174 PROGRAMMING GRAPHICS

LINE 200:

POKES+4,129

POKES+4,128

RETURN

LINE 300:

POKES+11,129

POKES+11,128

RETURN

Waveform control set to 129 turns on the sound
effect.

Waveform control set to 128 turns off the sound
effect.

Sends program back to end of line 70 after
waveform control settings are changed, to
resume program.

Waveform control set to 129 turns on the sound
effect.
Waveform control set to 128 turns off the sound
effect.
Sends program back to end of line 75 to resume.

PROGRAMMING GRAPHICS 175

EASY SPRITEMAKING CHART

SPRITE | SPRITE | SPRITE | SPRITE | SPRITE | SPRITE | SPRITE | SPRITE

[0} 1 2 3 4 5 6 7
Turn on Sprite V421,1 | V+21,2 | V+21,4 | V+21,8 | V+21,16 |V+21,32 | V421,64 | V+21,128
Put in Memory 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047,
(Set Pointers) 192 193 194 195 196 197 198 199
Locations for 12288 12352 12416 12480 12544 12608 12672 12736
Sprite Pixel to to to to to to to to
(12288-12798) 12350 12414 12478 12542 12606 12670 12734 12798
Sprite Color V+39,C |V+40,C |V+41,C |V+42,C |V+43,C [V+44C |[V+45C |V+46,C

Set LEFT X

- V+0,X V+2,X V+4,X V+6,X V+8,X VHI0X | VH12X | V414X
Position (0-255)

Set RIGHT X V+16,1 | V416,22 |V+16,4 |V+16,8 |V+16,16 [V+16,32 |V+16,64 |V+16,128
Position (0-255) |V+0X |V4+2X |V+4x V+6X | V+8X VHI0X | VH12X | Vv+14X

Set Y Position V+1,Y V+3,Y V+5,Y V+7,Y V+9,Y VHILY | V+13Y | V+15Y

Expand Sprite

. V+29,1 V+29,2 V+29,4 V+29,8 V+29,16 | V+29,32 | V+29,64 | V+29,128
Horizontally /X

Expand Sprite |\ o5 Ive2s2 |ve23a |v4238 | V423,06 | V423,32 |v423,64 V423,128

Vertically /Y
T”m.O” (Set) V+28,1 | V+28,2 |V+28,4 |V+28,8 |V+28,16 |Vv+28,32 |V+28,64 |V+28,128
Multicolor Mode
Multicolor 1

. V+37,C | V437,C |V+37C |V+37C |[V+37C |V+37C |V+37C |V+37C
(First Color)
Multicolor 2 V+38C |v+38C |v+38C |v+38C |Vv+38C |v+38C |v+38C |v+38C
(Second Color)
Set Priority The rule is that lower numbered sprites always have display priority over
of Sprites higher numbered sprites. For example, sprite O has priority over ALL other

sprites, sprite 7 has last priority. This means lower numbered sprites always
appear to move IN FRONT OF or ON TOP OF higher numbered sprites.

Collision (Sprite

. V+30 IF PEEK(V+30) AND X = X THEN [action]
to Sprite)

Collision (Sprite

to Background) v+31 IF PEEK(V+31) AND X = X THEN [action]

176 PROGRAMMING GRAPHICS

SPRITE MAKING NOTES

Alternative Sprite Memory Pointers and Memory Locations
Using Cassette Buffer

Put in Memory sPRITEO | sPRITET | sprite3 |'f youhre using 1 to 3| sprites you C:"
(Set Pointers) 2040, 13 | 2041,14 | 2042,15 |vse fhese memory locations in the
cassette buffer (832 to 1023) but for
ite Pixel more than 3 sprites we suggest usin
Sprite Pixe 832 896 960 . P 99 9
Locations for to 894 to 958 to 1022 locations from 12288 to 12798 (see
Blocks 13-15 ° ° ° chart)

TURNING ON SPRITES:

You can turn on any individual sprite by using POKE V+21 and the number from
the chart... BUT... turning on just ONE sprite will turn OFF any others. To turn on
TWO OR MORE sprites, ADD TOGETHER the numbers of the sprites you want to
turn on (Example: POKE V+21, 6 turns on sprites 1 and 2). Here is a method you
can use to turn one sprite off and on without affecting any of the others (useful
for animation).

EXAMPLE:

To turn off just sprite O type: POKE V+21, PEEK V+21 AND (255-1). Change
the number 1 in (255-1)to0 1,2, 4, 8, 16, 32, 64, or 128 (for sprites 0 to 7). To
re-enable the sprite and not affect the other sprites currently turned on, POKE V
+ 21, PEEK (V+21) OR 1 and change the OR 1 to OR 2 (sprite 2), OR 4 (sprite
3), etc.

X POSITION VALUES BEYOND 255:

X positions run from O to 255... and then START OVER from O to 255. To put a
sprite beyond X position 255 on the far right side of the screen, you must first
POKE V+16 as shown, THEN POKE a new X value from O to 63, which will place
the sprite in one of the X positions at the right side of the screen. To get back to
positions 0—255, POKE V+16, 0 and POKE in an X value from 0 to 255.

Y POSITION VALUES:
Y positions run from O to 255, including O to 49 off the TOP of the viewing areaq,

50 to 229 IN the viewing area, and 230 to 255 off the BOTTOM of the viewing

area.

PROGRAMMING GRAPHICS 177

SPRITE COLORS:

To make sprite 0 WHITE, type: POKE V+39, 1 (use COLOR POKE SETTING
shown in chart, and INDIVIDUAL COLOR CODES shown below):

0 - BLACK 4 — PURPLE 8 — ORANGE 12 — MED. GREY
1 — WHITE 5 — GREEN 9 —BROWN 13 = LT. GREEN
2 —RED 6 — BLUE 10 - LT. RED 14 - LT. BLUE

3 -CYAN 7 = YELLOW 11 —DARK GREY 15— LT. GREY

MEMORY LOCATION:

You must "reserve" a separate 64-BYTE BLOCK of numbers in the computer's
memory for each sprite of which 63 BYTES will be used for sprite data. The
memory settings shown below are recommended for the "sprite pointer" settings
in the chart above. Each sprite will be unique and you'll have to define it as you
wish. To make all sprites exactly the same, point the sprites you want to look the
same to the same register for sprites.

DIFFERENT SPRITE POINTER SETTINGS:
These sprite pointer settings are RECOMMENDATIONS ONLY.

Caution: you can set your sprite pointers anywhere in RAM memory but if you
set them too "low" in memory a long BASIC program may overwrite your sprite
data, or vice versa. To protect an especially LONG BASIC PROGRAM from
overwriting sprite data, you may want to set the sprites at a higher area of
memory (for example, 2040,192 for sprite O at locations 12288 to 12350...
2041, 193 at locations 12352 to 12414 for sprite 1 and so on... by adjusting
the memory locations from which sprites get their "data," you can define as many
as 64 different sprites plus a sizable BASIC program. To do this, define several
sprite "shapes" in your DATA statements and then redefine a particular sprite by
changing the "pointer” so the sprite you are using is "pointed” at different areas
of memory containing different sprite picture data. See the "Dancing Mouse" to
see how this works. If you want two or more sprites to have THE SAME SHAPE
(you can still change position and color of each sprite), use the same sprite pointer
and memory location for the sprites you want to match (for example, you can
point sprites O and 1 to the same location by using POKE 2040, 192 and POKE
2041, 192).

178 PROGRAMMING GRAPHICS

PRIORITY:

Priority means one sprite will appear to move "in front of" or "behind" another
sprite on the display screen. Sprites with more priority always appear to move
"in front of" or "on top of" sprites with less priority. The rule is that lower
numbered sprites have priority over higher numbered sprites. Sprite O has
priority over all other sprites. Sprite 7 has no priority in relation to the other
sprites. Sprite 1 has priority over sprites 2 to 7, etc. If you put two sprites in the
same position, the sprite with the higher priority will appear IN FRONT OF the
sprite with the lower priority. The sprite with lower priority will either be
obscured, or will "show through" (from "behind") the sprite with higher priority.

USING MULTICOLOR:

You can create multicolored sprites although using multicolor mode requires that
you use PAIRS of pixels instead of individual pixels in your sprite picture (in other
words each colored "dot" or "block" in the sprite will consist of two pixels side
by side). You have 4 colors to choose from: Sprite Color (chart above), Multicolor
1, Multicolor 2 and "Background Color" (background is achieved by using zero
settings which let the background color "show through"). Consider one horizontal
8-pixel block in a sprite picture. The color of each PAIR of pixels is determined
according to whether the left, right, or both pixels are solid, like this:

[] | BACKGROUND (Making BOTH PIXELS BLANK (zero) lets the INNER
SCREEN COLOR (background) show through.)

[] MULTICOLOR 1 (Making the RIGHT PIXEL SOLID in a pair of pixels
sets BOTH PIXELS to Multicolor 1.)

[[] | SPRITECOLOR (Making the LEFT PIXEL SOLID in a pair of pixels
sets BOTH PIXELS to Sprite Color.)

I:I:I MULTICOLOR 2 (Making BOTH PIXELS SOLID in a pair of pixels sets
BOTH PIXELS to Multicolor 2.)

PROGRAMMING GRAPHICS 179

Look at the horizontal 8-pixel row shown below. This block sets the first two pixels
to background color, the second two pixels to Multicolor 1, the third two pixels
to Sprite Color and the fourth two pixels to Multicolor 2. The color of each PAIR
of pixels depends on which bits in each pair are solid and which are blank,
according to the illustration above. After you determine which colors you want in
each pair of pixels, the next step is to add the values of the solid pixels in the
8-pixel block, and POKE that number into the proper memory location. For
example, if the 8-pixel row shown below is the first block in a sprite which begins
at memory location 832, the value of the solid pixels is 16+8+2+1 = 27, so
you would POKE 832, 27.

27
——
16+8+2+1
| 128 64 | 32| 16| 8 | 4 | 2| 1 |

L+

LOOKS LIKE THIS IN SPRITE

L

BACKGROUND | MULTICOLOR SPRITE MULTICOLOR
COLOR 1 COLOR 2

COLLISION:

You can detect whether a sprite has collided with another sprite by using this
line:

IF PEEK (V+30> AND X = X THEN [insert action here].

This line checks to see if a particular sprite has collided with ANY OTHER SPRITE,
where X equals 1 for sprite 0, 2 for sprite 1, 4 for sprite 2, 8 for sprite 3, 16
for sprite 4, 32 for sprite 5, 64 for sprite 6, and 128 for sprite 7. To check to
see if the sprite has collided with a "BACKGROUND CHARACTER" use this line:

IF PEEK (V+31)> AND X = X THEN [insert action here].

180 PROGRAMMING GRAPHICS

USING GRAPHIC CHARACTERS IN DATA STATEMENTS

The following program allows you to create a sprite using blanks and solid circles
(m) in DATA statements. The sprite and the numbers POKEd into the sprite
data registers are displayed:

ﬁ

10 PRINT"L]":FORI=0T063:POKE832+I,0:NEXT
20 GOSUB6600GO

999 END

60000 DATA" aaaaaas "
60001 DATA" saeaaaEORER "
60002 DATA" aaeaeERERREED "
60003 DATA" L1 1] 1) L 111l "
60004 DATA" 888 E 08 SDEES "
60005 DATA" 888 E 08 SDEES "
60006 DATA" 888 E 08 SDEES "
60007 DATA" L1 1] 1) L 111l "
60008 DATA" Ll 11l 111111]]) "
60009 DATA" aaeaeERERREED "
60010 DATA" * a0 EEE B "
60011 DATA" s SaaaaEaE & "
60012 DATA" & aeses @ "
60013 DATA" & a8 & "
60014 DATA" & a8 & "
60015 DATA" a =& =2 "
60016 DATA" a =& =2 "
60017 DATA" (11 1] "
60018 DATA" (11 1] "
60019 DATA" (11 1] "
60020 DATA" aaae "

60100 V=53248:POKEV,200:POKEV+1, 100:POKEV+21,1:
POKEV+39, 14 : POKE2040, 13

60105 POKEV+23,1:POKEV+29,1

60110 FORI=0TO20:READAS: FORK=0TO2: T=0:FORJ=0TO7 :B=0
60140 IFMID$C(A%, J+KX8+1,1>="m"THENB=1

60150 T=T+BX21 (7-J> :NEXT:PRINT T, : POKE832 + IX3+K,T:
NEXT : PRINT : NEXT

60200 RETURN

PROGRAMMING GRAPHICS 181

182 PROGRAMMING GRAPHICS

CHAPTER4

PROGRAMMING
SOUND AND
MUSIC ON YOUR
COMMODORE 64

Introduction
Volume Control
Frequencies of Sound Waves
Using Multiple Voices
Changing Waveforms
The Envelope Generator
Filtering
Advanced Techniques
Synchronisation and Ring Modulation

INTRODUCTION

Your Commodore computer is equipped with one of the most sophisticated
electronic music synthesizers available on any computer. It comes complete with
three voices, totally addressable, ATTACK/DECAY/SUSTAIN/RELEASE (ADSR),
filtering, modulation, and "white noise." All of these capabilities are directly
available for you through a few easy-to-use BASIC and/or assembly language
statements and functions. This means that you can make very complex sounds and
songs using programs that are relatively simple to design.

This section of your Programmer's Reference Guide has been created to help
you explore all the capabilities of the 6581 "SID" chip, the sound and music
synthesizer inside your Commodore computer. We'll explain both the theory
behind musical ideas and the practical aspects of turning those ideas into real
finished songs on your Commodore computer.

You need not be an experienced programmer nor a music expert to achieve
exciting results from the music synthesizer. This section is full of programming
examples with complete explanations to get you started.

You get to the sound generator by POKEing into specified memory locations. A
full list of the locations used is provided in Appendix O. We will go through each
concept, step by step. By the end you should be able to create an almost infinite
variety of sounds, and be ready to perform experiments with sound on your own.

Each section of this chapter begins by giving you an example and a full line-by-
line description of each program, which will show you how to use the
characteristic being discussed. The technical explanation is for you to read
whenever you are curious about what is actually going on.

The workhorse of your sound programs is the POKE statement. POKE sets the
indicated memory location (MEM) equal to a specified value (NUM).

POKE MEM,NUM

The memory locations (MEM) used for music synthesis start at 54272 ($D400) in
the Commodore 64. The memory locations 54272 to 54296 inclusive are the
POKE locations you need to remember when you're using the 6581 (SID) chip
register map. Another way to use the locations above is to remember only
location 54272 and then add a number from O through 24 to it. By doing this
you can POKE all the locations from 54272 to 54296 that you need from the

184 PROGRAMMING SOUND AND MUSIC

SID chip. The numbers (NUM) that you use in your POKE statement must be
between 0 and 255, inclusive.

When you've had a little more practice with making music, then you can get a
little more involved by using the PEEK function. PEEK is a function that is equal to
the value currently in the indicated memory location.

X=PEEK(MEM)

The value of the variable X is set equal to the current contents of memory location
MEM.

Of course, your programs include other BASIC commands, but for a full
explanation of them, refer to the BASIC Statements section of this manual.

Let's jump right in and try a simple program using only one of the three voices.
Computer ready? Type NEW, then type in this program, and save it on your
Commodore Datassette ™ or disk. Then, RUN it.

EXAMPLE PROGRAM 1:

S S=54272

10 FORL=STO0S+24:POKEL,Q:NEXT:REM CLEAR SOUND CHIP
20 POKES+5,9:POKES+6, 0O

30 POKES+24, 15 :REM SET VOLUME TO MAXIMUM
40 READHF,LF,DR

S50 IFHF<OTHENEND

60 POKES+1,HF:POKES, LF

70 POKES+4,33

80 FORT=1TODR:NEXT

90 POKES+4,32:FORT=1T0S0:NEXT

100 GOTO040

110 DATA 25,177,250,28,214,250

120 DATA 25,177,2350,25, 177,250

130 DATA 25,177,125,28,214, 125

140 DATA 32,94,730,25,177,2350

150 DATA 28,214,250,19,63,250

160 DATA 19,63,2350,19,63,250

170 DATA 21,154,63,24,63,63

180 DATA 25,177,250,24,63,125

190 DATA 19,63,250,-1,-1,-1

Here's a line-by-line description of the program you've just typed in. Refer to it

whenever you feel the need to investigate parts of the program that you don't
understand completely.

PROGRAMMING SOUND AND MUSIC 185

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 1:

Lines(s) Description
5 Set S to start of sound chip
10 Clear all sound chip registers.
20 Set Attack/Decay for voice 1 (A=0,D=9).
Set Sustain/Release for voice 1 (S=0,R=0).
30 Set volume at maximum.
40 Read high frequency, low frequency, duration of note.
50 When high frequency less than zero, song is over.
60 Poke high and low frequency of voice 1.
70 Gate sawtooth waveform for voice 1.
80 Timing loop for duration of note.
90 Release sawtooth waveform for voice 1.
100 Return for next note.

110-180 | Data for song: high frequency, low frequency, duration (number
of counts) for each note.
190 Last note of song and negative 1s signaling end of song.

VOLUME CONTROL

Chip register 24 contains the overall volume control. The volume can be set
anywhere between O and 15. The other four bits are used for purposes we'll get
into later. For now it is enough to know volume is O to 15. Look at line 30 to see
how it's set in Example Program 1.

FREQUENCIES OF SOUND WAVES

Sound is created by the movement of air in waves. Think of throwing a stone into
a pool and seeing the waves radiate outward. When similar waves are created
in air, we hear it. If we measure the time between one peak of a wave and the
next, we find the number of seconds for one cycle of the wave (n=number of
seconds). The reciprocal of this number (1/n) gives you the cycles per second.
Cycles per second are more commonly known as the frequency. The highness or
lowness of a sound (pitch) is determined by the frequency of the sound waves
produced.

The sound generator in your Commodore computer uses two locations to
determine the frequency. Appendix E gives you the frequency values you need
to reproduce a full eight octaves of musical notes. To create a frequency other

than the ones listed in the note table use "Fout" (frequency output) and the

186 PROGRAMMING SOUND AND MUSIC

following formula to represent the frequency (Fn) of the sound you want to
create. Remember that each note requires both a high and a low frequency
number.

Fn=Fouf/-06097

Once you've figured out what Fy, is for your "new" note the next step is to create
the high and low frequency values for that note. To do this you must first round
off Fn so that any numbers to the right of the decimal point are left off. You are
now left with an integer value. Now you can set the high frequency location (Fni)
by using the formula Fri=INT(F/256) and the low frequency location (Fio) should
be Flo=Fn—(256*Fhi).

At this point you have already played with one voice of your computer. If you
wanted to stop here you could find a copy of your favorite tune and become
the maestro conducting your own computer orchestra in your "at home" concert
hall.

USING MULTIPLE VOICES

Your Commodore computer has three independently controlled voices
(oscillators). Our first example program used only one of them. Later on, you'll
learn how to change the quality of the sound made by the voices. But right now,
let's get all three voices singing.

This example program shows you one way to translate sheet music for your
computer orchestra. Try typing it in and then SAVE it on your Datassette ™ or
disk. Don't forget to type NEW before typing in this program.

EXAMPLE PROGRAM 2:

10 S=54272:FORL=ST0S+24: POKEL, O:NEXT
20 DIMH(2,2005,L(2,200),C(2,200>

30 DIMFQ<¢11)>

40 V0>=17:V(1>=65:V(2)>=33

50 POKES+10,8:POKES+22, 128: POKES+23,244
60 FORI=0TO11:READFQCI) :NEXT

100 FORK=0TO2

110 I=0

120 READNM

130 IFNM=OTHEN250

140 WA=V (K :WB=WA-1: IFNM<OTHENNM=-NM: WA=0: WB=0
150 DR%=NMs128:0C%=(NM-128%DR%)>716

160 NT=NM-128%DR%-16X0C*%

170 FR=FQ(NT)>

PROGRAMMING SOUND AND MUSIC 187

180 IFOCZ%=7THEN200

190 FORJ=6TOOCZ%STEP-1:FR=FR/2:NEXT

200 HF%=FR/256:LF%=FR-256%HF

210 IFDR%=1THENHC(K, I>)=HFZ%:L(K, I>=LF%:CCK, I>=WA:
I=I+1:G0TO120

220 FORJ=1TODRZ%-1:HC(K, ID=HFZ%:L<(K, I>)=LFX%:

C(K, I>=WA: I=I+1:NEXT

230 HCK, ID=HFZ%:L<(K, I>=LFZ%:C<K, I>=WB

240 I=I+1:GOTO0120

250 IFI>IMTHENIM=I

260 NEXT

500 POKES+S5, 0:POKES+6,240

510 POKES+12,85:POKES+13, 133

520 POKES+19,10:POKES+20, 197

530 POKES+24,31

540 FORI=OTOIM

550 POKES,L(0O,I):POKES+7,L(1,I):POKES+14,L(2,I>

560 POKES+1,H(O, I>:POKES+8,H(1, I>:POKES+15,H(2, I>
570 POKES+4,C(0,I):POKES+11,C(1,I>:POKES+18,C(2,I>
580 FORT=1TO080:NEXT : NEXT

590 FORT=1T0200:NEXT :POKES+24,0

600 DATA 34334,36376,38539,40830

610 DATA 43258,45830,48556,51443

620 DATA 54502,57743,61176,64814

1000 DATA 594,3594,3594,596,596,1618,387,592,587,383,
331,336

1010 DATA 1097,583,585, 585, 585,587,587, 1609, 383, 331,
337,594,594,3593

1620 DATA 1618,594,596,594,592,587,1616,587,585,
331,336,841,327

1999 DATA 1607,0

2000 DATA 583, 3585,583,583,327,329,1611,583,585,3578,
578,578

2010 DATA 196,198,583, 326,578,326, 327,329, 327, 329, 326,
578,583

2020 DATA 1606,3582, 322, 324,582,587, 329, 327, 1606, 583,
327,329,587,331,329

2999 DATA 329, 328, 1609,578, 834, 324, 322, 327,585, 1602,0
3000 DATA 567,566,3567,304,306,308,310,1591,567,311,
310,567

3010 DATA 306,304,299,308,304,171,176,306,291,531,
306, 308

3020 DATA 310, 308,310,306,295,297,299, 304, 1586,562,
567,310,315,311

3030 DATA 308,313,297,1586,567,560,311, 309,308,309,
306, 308

3999 DATA 1577,299,293, 306,310,311, 304,562,546, 1575,0

188 PROGRAMMING SOUND AND MUSIC

Here is a line-by-line explanation of Example Program 2. For now, we are
interested in how the three voices are controlled.

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 2:

Line(s) Description

10 Set S equal to start of sound chip and clear all sound chip
registers.

20 Dimension arrays to contain activity of song, 1/16th of a
measure per location.

30 Dimension array to contain base frequency for each note.

40 Store waveform control byte for each voice.

50 Set high pulse width for voice 2.
Set high frequency for filter cutoff.
Set resonance for filter and filter voice 3.

60 Read in base frequency for each note.

100 Begin decoding loop for each voice.

110 Initialize pointer to activity array.

120 Read coded note.

130 If coded note is zero, then next voice.

140 Set waveform controls to proper voice.
If silence, set waveform controls to O.

150 Decode duration and octave.

160 Decode note.

170 Get base frequency for this note.

180 If highest octave, skip division loop.

190 Divide base frequency by 2 appropriate number of times.

200 Get high and low frequency bytes.

210 If sixteenth note, set activity array: high frequency, low
frequency, and waveform control (voice on).

220 For all but last beat of note, set activity array: high
frequency, low frequency, waveform control (voice on).

230 For last beat of note, set activity array: high frequency, low
frequency, waveform control (voice off).

240 Increment pointer to activity array. Get next note.

250 If longer than before, reset number of activities.

260 Go back for next voice.

500 Set Attack/Decay for voice 1 (A=0, D=0).

Set Sustain/Release for voice 1 (§=15, R=0).

PROGRAMMING SOUND AND MUSIC 189

Line(s) Description
510 Set Attack/Decay for voice 2 (A=5, D=5).
Set Sustain/Release for voice 2 (S=8, R=5).
520 Set Attack/Decay for voice 3 (A=0, D=10).
Set Sustain/Release for voice 3 (S=12, R=5).
530 Set volume 15, low-pass filtering.
540 Start loop for every 1/16th of a measure.
550 POKE low frequency from activity array for all voices.
560 POKE high frequency from activity array for all voices.
570 POKE waveform control from activity array for all voices.
580 Timing loop for 1/16th of a measure and back for next
1/16th measure.
590 Pause, then turn off volume.
600-620 Base frequency data.
1000-1999 | Voice 1 data.
2000-2999 | Voice 2 data.
3000-3999 | Voice 2 data.

The values used

in the data statements were found by using the note table in

Appendix E and the chart below:

NOTE TYPE DURATION
1/16 128
1/8 256

DOTTED 1/8 384
1/4 512

1/4+1/16 640

DOTTED 1/4 768
1/2 1024

1/2+1/16 1152

1/2+1/8 1280

DOTTED 1/2 1536

WHOLE 2048

190 PROGRAMMING SOUND AND MUSIC

The note number from the note table is added to the duration above. Then each
note can be entered using only one number which is decoded by your program.
This is only one method of coding note values. You may be able to come up with
one with which you are more comfortable.

The formula used here for encoding a note is as follows:

1) The duration (number of 1/16ths of a measure) is multiplied by 8.

2) The result of step 1 is added to the octave you've chosen (O to 7).

3) The result of step 2 is then multiplied by 16.

4) Add your note choice (0 to 11) to the result of the operation in step 3.

In other words:
(((D*8)+0) *16)+N)
Where D = Duration, O = Octave, and N = Note.

A silence is obtained by using the negative of the duration number (number of
1/16ths of a measure * 128).

CONTROLLING MULTIPLE VOICES

Once you have gotten used to using more than one voice, you will find that the
timing of the three voices needs to be coordinated. This is accomplished in this
program by:

1) Dividing each musical measure into 16 parts.
2) Storing the events that occur in each 1/16th measure interval in three separate
arrays.

The high and low frequency bytes are calculated by dividing the frequencies of
the highest octave by two (lines 180 and 190). The waveform control byte is a
start signal for beginning a note or continuing a note that is already playing. It
is a stop signal to end a note. The waveform choice is made once for each voice
in line 40.

Again, this is only one way to control multiple voices. You may come up with your

own methods. However, you should now be able to take any piece of sheet music
and figure out the notes for all three voices.

PROGRAMMING SOUND AND MUSIC 191

CHANGING WAVEFORMS

The tonal quality of a sound is called the timbre. The timbre of a sound is
determined primarily by its "waveform." If you remember the example of
throwing a pebble into the water you know that the waves ripple evenly across
the pond. These waves almost look like the first sound wave we're going to talk
about, the sinusoidal wave, or sine wave for short (shown below):

To make what we're talking about a bit more practical, let's go back to the first
example program to investigate different waveforms. The reason for this is that
you can hear the changes more easily using only one voice. LOAD the first music
program that you typed in earlier, from your Datassette ™ or disk, and RUN it
again. That program is using the sawtooth waveform (shown here):

from the 6581 SID chip's sound generating device. Try changing the note start
number in line 70 from 33 to 17 and the note stop number in line 90 from 32 to
16. Your program should now look like this:

192 PROGRAMMING SOUND AND MUSIC

EXA

5SS
10
20
30
40
S0
60
7’0
80
90
100
110
120
130
140
150
160
170
180
190

MPLE PROGRAM 3 (EXAMPLE 1 MODIFIED):

=54272

FORL=ST0S+24 : POKEL , O : NEXT

POKES+5, 9:POKES+6,0

POKES+24, 15

READHF, LF,DR

IFHF<OTHENEND

POKES+1,HF : POKES, LF

POKES+4, 17

FORT=1TODR : NEXT

POKES+4,16:FORT=1T0S0: NEXT
GOTO040
DATA25,177,2350,28,214,250
DATA2S,177,250,25,177,250
DATA25,177,125,28,214,1235
DATA32,94, 750,25, 177,250
DATA28,214,250,19,63,250
DATA19,63,250, 19,63,250
DATA21,154,63,24,63,63
DATA25,177,250,24,63, 125
DATA19,63,250,-1,-1,-1

Now RUN the program.

Notice how the sound quality is different, less twangy, more hollow. That's
because we changed the sawtooth waveform into a triangular waveform (shown

belo

w):

The third musical waveform is called a variable pulse wave (shown below):

|«—PULSE WIDTH—>

PROGRAMMING SOUND AND MUSIC 193

It is a rectangular wave and you determine the length of the pulse cycle by
defining the proportion of the wave which will be high. This is accomplished for
voice 1 by using registers 2 and 3. Register 2 is the low byte of the pulse width

(Low = O through 255). Register 3 is the high 4 bits (Hpow = O through 15).

Together these registers specify a 12-bit number for your pulse width, which you
can determine by using the following formula:

PWh = Hpw * 256 + Lpw
The pulse width is determined by the following equation:
PWout = (PWh / 40.95) %

When PW,, has a value of 2048, it will give you a square wave. That means
that register 2 (Lpw) = O and register 3 (Hpw) = 8.

Now try adding this line to your program:
15 POKES+3,8:POKES+2,0

Then change the start number in line 70 to 65 and the stop number in line 90 to
64, and RUN the program. Now change the high pulse width (register 3 in line
15) from an 8 to a 1. Notice how dramatic the difference in sound quality is?

The last waveform available to you is white noise (shown here):

Al
WV

It is used mostly for sound effects and such. To hear how it sounds, try changing
the start number in line 70 to 129 and the stop number in line 90 to 128.

UNDERSTANDING WAVEFORMS

When a note is played, it consists of a sine wave oscillating at the fundamental
frequency and the harmonics of that wave.

194 PROGRAMMING SOUND AND MUSIC

The fundamental frequency defines the overall pitch of the note. Harmonics are
sine waves having frequencies which are integer multiples of the fundamental
frequency. A sound wave is the fundamental frequency and all of the harmonics
it takes to make up that sound.

+«—— RESULTANT WAVE

— FUNDAMENTAL (1ST HARMONIC)

2ND HARMONIC 3RD HARMONIC

In musical theory let's say that the fundamental frequency is harmonic number 1.
The second harmonic has a frequency twice the fundamental frequency, the third
harmonic is three times the fundamental frequency, and so on. The amounts of
each harmonic present in a note give it its timbre.

An acoustic instrument, like a guitar or a violin, has a very complicated harmonic
structure. In fact, the harmonic structure may vary as a single note is played. You
have already played with the waveforms available in your Commodore music
synthesizer. Now let's talk about how the harmonics work with the triangular,
sawtooth, and rectangular waves.

A triangular wave contains only odd harmonics. The amount of each harmonic
present is proportional to the reciprocal of the square of the harmonic number.
In other words harmonic number 3 is 1/9 quieter than harmonic number 1,
because the harmonic 3 squared is 9 (3 X 3) and the reciprocal of 9 is 1/9.

As you can see, there is a similarity in shape of a triangular wave to a sine wave
oscillating at the fundamental frequency.

Sawtooth waves contain all the harmonics. The amount of each harmonic present
is proportional to the reciprocal of the harmonic number. For example, harmonic
number 2 is 1/2 as loud as harmonic number 1.

The square wave contains odd harmonics in proportion to the reciprocal of the
harmonic number. Other rectangular waves have varying harmonic content. By
changing the pulse width, the timbre of the sound of a rectangular wave can be
varied tremendously.

PROGRAMMING SOUND AND MUSIC 195

By choosing carefully the waveform used, you can start with a harmonic structure
that looks somewhat like the sound you want. To refine the sound, you can add
another aspect of sound quality available on your Commodore 64 called
filtering, which we'll discuss later in this section.

THE ENVELOPE GENERATOR

The volume of a musical tone changes from the moment you first hear it, all the
way through until it dies out and you can't hear it anymore. When a note is first
struck, it rises from zero volume to its peak volume. The rate at which this happens
is called the ATTACK. Then, it falls from the peak to some middle-ranged
volume. The rate at which the fall of the note occurs is called the DECAY. The
mid-ranged volume itself is called the SUSTAIN level. And finally, when the note
stops playing, it falls from the SUSTAIN level to zero volume. The rate at which
it falls is called the RELEASE. Here is a sketch of the four phases of a note:

SUSTAIN LEVEL ==

Each of the items mentioned above give certain qualities and restrictions to a
note. The bounds are called parameters.

The parameters ATTACK/DECAY/SUSTAIN/RELEASE and collectively called
ADSR, can be controlled by your use of another set of locations in the sound
generator chip. LOAD your first example program again. RUN it again and
remember how it sounds. Then, try changing line 20 so the program is like this:

196 PROGRAMMING SOUND AND MUSIC

EXAMPLE PROGRAM 4 (EXAMPLE 1 MODIFIED):

S5S
10
20
30
40
S0
60
70
80
90
100
110
120
130
140
150
160
170
180
190

=54272
FORL=STO0S+24 : POKEL , O : NEXT
POKES+5, 88:POKES+6, 195
POKES+24, 15

READHF, LF,DR

IFHF<OTHENEND
POKES+1,HF : POKES, LF
POKES+4, 33

FORT=1TODR : NEXT
POKES+4,32:FORT=1T0S0: NEXT
GOTO040
DATA25,177,2350,28,214,250
DATA2S,177,250,25,177,250
DATA25,177,125,28,214,1235
DATA32,94, 750,25, 177,250
DATA28,214,250,19,63,250
DATA19,63,250,19,63,250
DATA21,154,63,24,63,63
DATA2S,177,250,24,63, 125
DATA19,63,250,-1,-1,-1

Registers 5 and 6 define the ADSR for voice 1. The ATTACK is the high nybble
of register 5. Nybble is half a byte, in other words the lower 4 or higher 4 on/off

locations (bits) in each register. DECAY is the low nybble. You can pick any
number O through 15 for ATTACK, multiply it by 16 and add to any number O
through 15 for DECAY. The values that correspond to these numbers are listed

belo

W.

SUSTAIN level is the high nybble of register 6. It can be O through 15. It defines
the proportion of the peak volume that the SUSTAIN level will be. RELEASE rate
is the low nybble of register 6.

PROGRAMMING SOUND AND MUSIC

197

Here are the meanings of the values for ATTACK, DECAY, and RELEASE:

VALUE | ATTACK RATE (TIME/CYCLE) | DECAY/RELEASE RATE (TIME/CYCLE)

0] 2 ms 6 ms

1 8 ms 24 ms
2 16 ms 48 ms
3 24 ms 72 ms
4 38 ms 114 ms
5 56 ms 168 ms
6 68 ms 204 ms
7 80 ms 240 ms
8 100 ms 300 ms
9 250 ms 750 ms
10 500 ms 1.5s
11 800 ms 24s
12 1s 3s
13 3s 9s
14 5s 15s
15 8s 24 s

Here are a few sample settings to try in your example program. Try these and
a few of your own. The variety of sounds you can produce is astounding! For a
violin type sound, try changing line 20 to read:

20 POKES+5,88:POKES+6,89:REM A=5;D=8;5=5;R=9

Change the waveform to triangle and get a xylophone type sound by using

these lines:
20 POKES+5,9:POKES+6,9:REM A=0;D=9;S5=0,;R=9

70 POKES+4,17
90 POKES+4,16:FORT=1T0S0:NEXT

198 PROGRAMMING SOUND AND MUSIC

Change the waveform to square and try a piano type sound with these lines:

15 POKES+3,8:POKES+2,0

20 POKES+5,9:POKES+6,0: REM A=0;D=9;S=0;R=0
70 POKES+4,65

90 POKES+4,64:FORT=1T0S0:NEXT

The most exciting sounds are those unique to the music synthesizer itself, ones that
do not attempt to mimic acoustic instruments. For example try:

20 POKES+5, 144 :POKES+6,243:REM A=9;D=0;S=15;R=3

FILTERING

The harmonic content of a waveform can be changed by using a filter. The SID
chip is equipped with three types of filtering. They can be used separately or in
combination with one another. Let's go back to the sample program you've been
using to play with a simple example that uses a filter. There are several filter
controls to set.

You add line 15 in the program to set the cutoff frequency of the filter. The cutoff
frequency is the reference point for the filter. You SET the high and low frequency
cutoff points in registers 21 and 22. To turn ON the filter for voice 1, POKE
register 23.

Next change line 30 to show that a high-pass filter will be used (see the SID
register map).

PROGRAMMING SOUND AND MUSIC 199

EXA

5SS
10
15
20
30
40
S0
60
70
80
90
100
110
120
130
140
150
160
170
180
190

MPLE PROGRAM 5 (EXAMPLE 1 MODIFIED):

=54272

FORL=ST0S+24 : POKEL , O : NEXT

POKES+22, 128 : POKES+21, 0: POKES+23, 1

POKES+5,9:POKES+6, 0

POKES+24, 79

READHF, LF,DR

IFHF<OTHENEND

POKES+1,HF : POKES, LF

POKES+4, 33

FORT=1TODR : NEXT

POKES+4,32:FORT=1T0S0: NEXT
GOTO40
DATA2S,177,250,28,214,250
DATA25,177,2350,25,177,250
DATA2S,177,125,28,214, 125
DATA32,94,750,25,177,250
DATA28,214,250,19,63,250
DATA19,63,250,19,63,250
DATA21,154,63,24,63,63
DATA25,177,250,24,63, 125
DATA19,63,250,-1,-1,-1

Try RUNning the program now. Notice the lower tones have had their volume cut

dow

n. It makes the overall quality of the note sound tinny. This is because you

are using a high-pass filter which attenuates (cuts down the level of) frequencies

belo

Ther

w the specified cutoff frequency.

e are three types of filters in your Commodore computer's SID chip. We

have been using the high-pass filter. It will pass all the frequencies at or above
the cutoff, while attenuating the frequencies below the cutoff.

AMOUNT PASSED

CUTIOFF

FREQUENCY

The SID chip also has a low-pass filter. As its name implies, this filter will pass the

freq

200

vencies below cutoff and attenuate those above.

PROGRAMMING SOUND AND MUSIC

AMOUNT PASSED

CUTIOFF

FREQUENCY

Finally, the chip is equipped with a bandpass filter, which passes a narrow band
of frequencies around the cut off, and attenuates all others.

AMOUNT PASSED

CUTOFF
]

FREQUENCY

The high- and low-pass filters can be combined to form a notch reject filter which
passes frequencies away from the cutoff while attenuating at the cutoff
frequency.

—

AMOUNT PASSED

CUTOFF
]

FREQUENCY

PROGRAMMING SOUND AND MUSIC 201

Register 24 determines which type filter you want to use. This is in addition to
register 24's function as the overall volume control. Bit 6 controls the high-pass
filter (0 = off, 1 = on), bit 5 is the bandpass filter, and bit 4 is the low-pass
filter. The low 3 bits of the cutoff frequency are determined by register 21 (Lcf)
(Lef = O through 7). While the 8 bits of the high cutoff frequency are determined

by register 22 (Hcf) (Hef = O through 255).

Through careful use of filtering, you can change the harmonic structure of any
waveform to get just the sound you want. In addition, changing the filtering of a
sound as it goes through the ADSR phases of its life can produce interesting
effects.

ADVANCED TECHNIQUES

The SID chip's parameters can be changed dynamically during a note or sound
to create many interesting and fun effects. In order to make this easy to do,
digitized outputs from oscillator three and envelope generator three are available
for you in registers 27 and 28, respectively.

The output of oscillator 3 (register 27) is directly related to the waveform
selected. If you choose the sawtooth waveform of oscillator 3, this register will
present a series of numbers incremented (increased step by step) from 0 to 255
at a rate determined by the frequency of oscillator 3. If you choose the triangle
waveform, the output will increment from O up to 255, then decrement (decrease
step-by-step) back down to 0. If you choose the pulse wave, the output will jump
back-and-forth between 0 and 255. Finally, choosing the noise waveform will
give you a series of random numbers. When oscillator 3 is used for modulation,
you usually do NOT want to hear its output. Setting bit 7 of register 24 turns the
audio output of voice 3 off. Register 27 always reflects the changing output of
the oscillator and is not affected in any way by the envelope (ADSR) generator.

202 PROGRAMMING SOUND AND MUSIC

Register 25 gives you access to the output of the envelope generator of oscillator
3. It functions in much the same fashion that the output of oscillator 3 does. The
oscillator must be turned on to produce any output from this register.

Vibrato (a rapid variation in frequency) can be achieved by adding the output
of oscillator 3 to the frequency of another oscillator. Example Program 6
illustrates this idea.

EXAMPLE PROGRAM 6:

10 S=54272

20 FORL=0TO024:POKES+L ,0:NEXT
30 POKES+3,8

40 POKES+5,41:POKES+6,89

S0 POKES+14,117

60 POKES+18, 16

70 POKES+24,143

80 READFR,DR

90 IFFR=OTHENEND

100 POKES+4, 65

110 FORT=1TODRX2

120 FQ=FR+PEEK(S+27)/2

130 HF=INT(FQs/256) : LF=FQAND255
140 POKES+0,LF :POKES+1,HF

150 NEXT

160 POKES+4,64

170 GOTO80O

S00 DATA 4817,2,5103,2,5407,2
510 DATA 8583,4,5407,2,8583,4
520 DATA 5407,4,8383,12,9634,2
530 DATA 10207,2,10814,2,8583,2
540 DATA 9634,4,10814,2,8583,2
S50 DATA 9634,4,83583, 12

560 DATA 0,0

PROGRAMMING SOUND AND MUSIC 203

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 6:

Line(s) Description
10 Set S to beginning of sound chip.
20 Clear all sound chip locations.
30 Set high pulse width for voice 1.
40 Set Attack/Decay for voice 1 (A=2, D=9).
Set Sustain/Release for voice 1 (S=5, R=9).
50 Set low frequency for voice 3.
60 Set triangle waveform for voice 3.
70 Set volume 15, turn off audio output of voice 3.
80 Read frequency and duration of note.
90 If frequency equals zero, stop.
100 POKE start pulse waveform control voice 1.
110 Start timing loop for duration.
120 Get new frequency using oscillator 3 output.
130 Get high and low frequency.
140 POKE high and low frequency for voice 1.
150 End of timing loop.
160 POKE stop pulse waveform control voice 1.
170 Go back for next note.
500-550 | Frequencies and durations for song.
560 Zeros signal end of song.

A wide variety of sound effects can also be achieved using dynamic effects. For
example, the following siren program dynamically changes the frequency output
of oscillator 1 when it's based on the output of oscillator 3's triangular wave:

204 PROGRAMMING SOUND AND MUSIC

EXA

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

MPLE PROGRAM 7:

§=54272

FORL=0TO024 : POKES+L , 0 :NEXT

POKES+14,5

POKES+18, 16

POKES+3, 1

POKES+24, 143

POKES+6, 240

POKES+4, 65

FR=5389
FORT=1T0200
FQ=FR+PEEK(S+27>%3.5
HF=INT(FQs256) : LF=FQ-HF %256
POKES+0, LF : POKES+1, HF
NEXT
POKES+24,0

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 7:

Line(s) Description
10 Set S to start of sound chip.
20 Clear sound chip registers.
30 Set low frequency of voice 3.
40 Set triangular waveform voice 3.
50 Set high pulse width for voice 1.
60 Set volume 15, turn off audio output of voice 3.
70 Set Sustain/Release for voice 1 (S=15, R=0).
80 POKE start pulse waveform control voice 1.
90 Set lowest frequency for siren.
100 Begin timing loop.
110 Get new frequency using output of oscillator 3.
120 Get high and low frequencies.
130 POKE high and low frequencies for voice 1.
140 End timing loop.
150 Turn off volume.

PROGRAMMING SOUND AND MUSIC

205

The noise waveform can be used to provide a wide range of sound effects. This
example mimics a hand clap using a filtered noise waveform:

EXAMPLE PROGRAM 8:

10 S=54272

20 FORL=0TO024:POKES+L ,0:NEXT
30 POKES+0,240:POKES+1,33

40 POKES+5,8

S0 POKES+22, 104

60 POKES+23,1

70 POKES+24,79

80 FORN=1TO15

90 POKES+4,129

100 FORT=1TO250:NEXT : POKES+4, 128
110 FORT=1TO30:NEXT :NEXT

120 POKES+24,0

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 8:

Line(s) Description
10 Set S to start of sound chip.
20 Clear all sound chip registers.
30 Set high and low frequencies for voice 1.
40 Set Attack/Decay for voice 1 (A=0, D=8).
50 Set high cutoff frequency for filter.
60 Turn on filter for voice 1.
70 Set volume 15, high-pass filter.
80 Count 15 claps.
90 Set start noise waveform control.
100 Waait, then set stop noise waveform control.
110 Woait, then start next clap.
120 Turn off volume.

206 PROGRAMMING SOUND AND MUSIC

SYNCHRONIZATION AND RING MODULATION

The 6581 SID chip lets you create more complex harmonic structures through
synchronization or ring modulation of two voices.

The process of synchronization is basically a logical ANDing of two wave forms.
When either is zero, the output is zero. The following example uses this process
to create an imitation of a mosquito:

EXAMPLE PROGRAM 9:

10 S=54272

20 FORL=0TO024:POKES+L ,0:NEXT

30 POKES+1,100

40 POKES+5,219

S0 POKES+15,28

60 POKES+24, 15

70 POKES+4,19

80 FORT=1TO0S000:NEXT

90 POKES+4,18

100 FORT=1T01000:NEXT :POKES+24,0

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 9:

Line(s) Description
10 Set S to start of sound chip.
20 Clear sound chip registers.
30 Set high frequency voice 1.
40 Set Attack/Decay for voice 1 (A=13,D=11).
50 Set high frequency voice 3.
60 Set volume 15.
70 Set start triangle, sync waveform control for voice 1.
80 Timing loop.
90 Set stop triangle, sync waveform control for voice 1.
100 Woait, then turn off volume.

The synchronization feature is enabled (turned on) in line 70, where bits O, 1,
and 4 of register 4 are set. Bit 1 enables the syncing function between voice 1
and voice 3. Bits O and 4 have their usual functions of gating voice 1 and setting
the triangular waveform.

PROGRAMMING SOUND AND MUSIC 207

Ring modulation (accomplished for voice 1 by setting bit 3 of register 4 in line
70 of the program below) replaces the triangular output of oscillator 1 with a
"ring modulated" combination of oscillators 1 and 3. This produces non-harmonic
overtone structures for use in mimicking bell or gong sounds. This program
produces a clock chime imitation:

EXAMPLE PROGRAM 10:

10 S=54272

20 FORL=0TO24:POKES+L, 0:NEXT

30 POKES+1,130

40 POKES+5,9

50 POKES+15,30

60 POKES+24,15

70 FORL=1TO12:POKES+4,21

80 FORT=1TO1000:NEXT :POKES+4,20
90 FORT=1TO01000:NEXT :NEXT

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 10:

Line(s) Description

10 Set S to start of sound chip.

20 Clear sound chip registers.

30 Set high frequency voice 1.

40 Set Attack/Decay for voice 1 (A=0, D=9).

50 Set high frequency voice 3.

60 Set volume 15.

70 Count number of dings, set start triangle, ring mod
waveform control voice 1.

80 Timing loop, set stop triangle, ring mod.

90 Timing loop, next ding.

The effects available through the use of the parameters of your Commodore
64's SID chip are numerous and varied. Only through experimentation on your
own will you fully appreciate the capabilities of your machine. The examples in
this section of the Programmer's Reference Guide merely scratch the surface.

Watch for the book MAKING MUSIC ON YOUR COMMODORE COMPUTER
for everything from simple fun and games to professional-type musical
instruction.

208 PROGRAMMING SOUND AND MUSIC

CHAPTER 5

BASIC TO
MACHINE
LANGUAGE

What Is Machine Language

How Do You Write Machine
Language Programs

Hexadecimal Notation

Addressing Modes

Indexing

Subroutines

Useful Tips for the Beginner
Approaching a Large Task

MCS6510 Microprocessor Instruction Set
Memory Management on the
Commodore 64

The KERNAL

KERNAL Power-Up Activities

Using Machine Language From BASIC
Commodore 64 Memory Map

WHAT IS MACHINE LANGUAGE?

At the heart of every microcomputer, is a central microprocessor. It's a very
special microchip which is the "brain" of the computer. The Commodore 64 is no
exception. Every microprocessor understands its own language of instructions.
These instructions are called machine language instructions. To put it more
precisely, machine language is the ONLY programming language that your
Commodore 64 understands. It is the NATIVE language of the machine.

If machine language is the only language that the Commodore 64 understands,
then how does it understand the CBM BASIC programming language? CBM
BASIC is NOT the machine language of the Commodore 64. What, then, makes
the Commodore 64 understand CBM BASIC instructions like PRINT and GOTO?

To answer this question, you must first see what happens inside your Commodore
64. Apart from the microprocessor which is the brain of the Commodore 64, there
is a machine language program which is stored in a special type of memory so
that it can't be changed. And, more importantly, it does not disappear when the
Commodore 64 is turned off, unlike a program that you may have written. This
machine language program is called the OPERATING SYSTEM of the
Commodore 64. Your Commodore 64 knows what to do when it's turned on
because its OPERATING SYSTEM (program) is automatically "RUN."

210 BASIC TO MACHINE LANGUAGE

The OPERATING SYSTEM is in charge of "organizing" all the memory in your
machine for various tasks. It also looks at what characters you type on the
keyboard and puts them onto the screen, plus a whole number of other functions.
The OPERATING SYSTEM can be thought of as the "intelligence and personality"
of the Commodore 64 (or any computer for that matter). So when you turn on
your Commodore 64, the OPERATING SYSTEM takes control of your machine,
and after it has done its housework, it then says:

READY .

The OPERATING SYSTEM of the Commodore 64 then allows you to type on the
keyboard, and use the built-in SCREEN EDITOR on the Commodore 64. The
SCREEN EDITOR allows you to move the cursor, DELete, INSerT, etc., and is, in
fact, only one part of the operating system that is built in for your convenience.

All of the commands that are available in CBM BASIC are simply recognized by
another huge machine language program built into your Commodore 6é4. This
huge program "RUNs" the appropriate piece of machine language depending
on which CBM BASIC command is being executed. This program is called the
BASIC INTERPRETER, because it interprets each command, one by one, unless it
encounters a command it does not understand, and then the familiar message
appears:

?SYNTAX ERROR

READY .

WHAT DOES MACHINE CODE LOOK LIKE?

You should be familiar with the PEEK and POKE commands in the CBM BASIC
language for changing memory locations. You've probably used them for
graphics on the screen, and for sound effects. Each memory location has its own
number which identifies it. This number is known as the "address" of a memory
location. If you imagine the memory in the Commodore 64 as a street of
buildings, then the number on each door is, of course, the address. Now let's look
at which parts of the street are used for what purposes.

BASIC TO MACHINE LANGUAGE 211

SIMPLE MEMORY MAP OF THE COMMODORE 64

ADDRESS DESCRIPTION

0&1 — 6510 Registers.

up to: — Start of memory.
1023 — Memory used by the operating system.

1024
up to:

— Screen memory.
2039

2040

up to: — SPRITE pointers.
2047

2048
up to: — This is YOUR memory. This is where your BASIC or machine

40959 language programs, or both, are stored.

40960

up to: — 8K CBM BASIC interpreter.
49151

49152
up to:

— Special programs RAM area.
53247 peadlprog

53248

up fo: — VIC-II.
53294

54272
up to:

— SID Registers.
55295

55296

up to: — Color RAM.
56296

56320

up to: — 1/O Registers. (6526's
57343 / 9 (!

57344

up to: — 8K CBM KERNAL Operating system.
65535

212 BASIC TO MACHINE LANGUAGE

If you don't understand what the description of each part of memory means right
now, this will become clear from other parts of this manual.

Machine language programs consist of instructions which may or may not have
operands (parameters) associated with them. Each instruction takes up one
memory location, and any operand is contained in one or two locations following
the instruction.

In your BASIC programs, words like PRINT and GOTO do, in fact, only take up
one memory location, rather than one for each character of the word. The
contents of the location that represents a particular BASIC keyword is called a
token. In machine language, there are different tokens for different instructions,
which also take up just one byte (memory location=byte).

Machine language instructions are very simple. Therefore, each individual
instruction cannot achieve a great deal. Machine language instructions either
change the contents of a memory location, or change one of the internal registers
(special storage locations) inside the microprocessor. The internal registers form
the very basis of machine language.

THE REGISTERS INSIDE THE 6510 MICROPROCESSOR

THE ACCUMULATOR

This is THE most important register in the microprocessor. Various machine
language instructions allow you to copy the contents of a memory location into
the accumulator, copy the contents of the accumulator into a memory location,
modify the contents of the accumulator or some other register directly, without
affecting any memory. And the accumulator is the only register that has
instructions for performing math.

THE X INDEX REGISTER

This is a very important register. There are instructions for nearly all of the
transformations you can make to the accumulator. But there are other instructions
for things that only the X register can do. Various machine language instructions
allow you to copy the contents of a memory location into the X register, copy the
contents of the X register into a memory location, and modify the contents of the
X, or some other register directly.

BASIC TO MACHINE LANGUAGE 213

THE Y INDEX REGISTER

This is a very important register. There are instructions for nearly all of the
transformations you can make to the accumulator, and the X register. But there
are other instructions for things that only the Y register can do. Various machine
language instructions allow you to copy the contents of a memory location into
the Y register, copy the contents of the Y register into a memory location, and
modify the contents of the Y, or some other register directly.

THE STATUS REGISTER

This register consists of eight "flags" (a flag = something that indicates whether
something has, or has not occurred).

THE PROGRAM COUNTER

This contains the address of the current machine language instruction being
executed. Since the operating system is always "RUN"ning in the Commodore 64
(or, for that matter, any computer), the program counter is always changing. It
could only be stopped by halting the microprocessor in some way.

THE STACK POINTER

This register contains the location of the first empty place on the stack. The stack
is used for temporary storage by machine language programs, and by the
computer.

THE INPUT/OUTPUT PORT

This register appears at memory locations O (for the DATA DIRECTION REGISTER)
and 1 (for the actual PORT). It is an 8-bit input/output port. On the Commodore
64 this register is used for memory management, to allow the chip to control

more than 64K of RAM and ROM memory.

The details of these registers are not given here. They are explained as the
principles needed to explain them are explained.

HOW DO YOU WRITE MACHINE LANGUAGE PROGRAMS?

Since machine language programs reside in memory, and there is no facility in
your Commodore 64 for writing and editing machine language programs, you

214 BASIC TO MACHINE LANGUAGE

must use either a program to do this, or write for yourself a BASIC program that
"allows" you to write machine language.

The most common methods used to write machine language programs are
assembler programs. These packages allow you to write machine language
instructions in a standardized mnemonic format, which makes the machine
language program a lot more readable than a stream of numbers! Let's review:
A program that allows you to write machine language programs in mnemonic
format is called an assembler. Incidentally, a program that displays a machine
language program in mnemonic format is called a disassembler. Available for
your Commodore 64 is a machine language monitor cartridge (with
assembler/disassembler, etc.) made by Commodore:

64MON

The 64MON cartridge available from your local dealer, is a program that
allows you to escape from the world of CBM BASIC, into the land of machine
language. It can display the contents of the internal registers in the 6510
microprocessor, and it allows you to display portions of memory, and change
them on the screen, using the screen editor. It also has a built-in assembler and
disassembler, as well as many other features that allow you to write and edit
machine language programs easily. You don't HAVE to use an assembler to write
machine language, but the task is considerably easier with it. If you wish to write
machine language programs, it is strongly suggested that you purchase an
assembler of some sort. Without an assembler you will probably have to "POKE"
the machine language program into memory, which is totally unadvisable. This
manual will give its examples in the format that 64MON uses, from now on.
Nearly all assembler formats are the same, therefore the machine language
examples shown will almost certainly be compatible with any assembler. But
before explaining any of the other features of 64MON, the hexadecimal
numbering system must be explained.

HEXADECIMAL NOTATION

Hexadecimal notation is used by most machine language programmers when
they talk about a number or address in a machine language program.

Some assemblers let you refer to addresses and numbers in decimal (base 10),

binary (base 2), or even octal (base 8) as well as hexadecimal (base 16) (or just
"hex" as most people say). These assemblers do the conversions for you.

BASIC TO MACHINE LANGUAGE 215

Hexadecimal probably seems a little hard to grasp at first, but like most things,
it won't take long to master with practice.

By looking at decimal (base 10) numbers, you can see that each digit falls
somewhere in the range between zero and a number equal to the base less one
(e.g., 9). THIS IS TRUE OF ALL NUMBER BASES. Binary (base 2) numbers have
digits ranging from zero to one (which is one less than the base). Similarly,
hexadecimal numbers should have digits ranging from zero to fifteen, but we do
not have any single digit figures for the numbers ten to fifteen, so the first six
letters of the alphabet are used instead:

DECIMAL HEXADECIMAL BINARY
0 0 00000000
1 1 00000001
2 2 00000010
3 3 00000011
4 4 00000100
5 5 00000101
6 6 00000110
7 7 00000111
8 8 00001000
9 9 00001001
10 A 00001010
11 B 00001011
12 C 00001100
13 D 00001101
14 E 00001110
15 F 00001111
16 10 00010000

216 BASIC TO MACHINE LANGUAGE

Let's look at it another way; here's an example of how a base 10 (decimal
number) is constructed:

Base raised by

increasing powers: 103 102 10" 100
Equals: 1000 100 10 1
Consider 4569 (base 10) 4 5 6 9

=(4x1000)+(5x100)+(6x10)+9
Now look at an example of how a base 16 (hexadecimal number) is constructed:

Base raised by

increasing powers: 163 162 16" 169
Equals: 4096 256 16 1
Consider 11D9 (base 16) 1 1 D 9

=(1x4096)+(1x256)+(13x16)+9
Therefore, 4569 (base 10) = 11D9 (base 16)

The range for addressable memory locations is 0 — 65535 (as was stated
earlier). This range is therefore O — FFFF in hexadecimal notation.

Usually hexadecimal numbers are prefixed with a dollar sign ($). This is to
distinguish them from decimal numbers. Let's look at some "hex" numbers, using
64MON, by displaying the contents of some memory by typing:

SYS 8%4096 (or SYS 12%4096)
BX

PC SR AC ®XR VYR SP
.; 0401 32 04 5SE 00 F6 (these may be different)

Then if you type in:
.M 0000 0020 (and press).

you will see rows of 9 hex numbers. The first 4-digit number is the address of the
first byte of memory being shown in that row, and the other eight numbers are
the actual contents of the memory locations beginning at that start address.

BASIC TO MACHINE LANGUAGE 217

You should really try to learn to "think" in hexadecimal. It's not too difficult,
because you don't have to think about converting it back into decimal. For
example, if you said that a particular value is stored at $14ED instead of 5357,
it shouldn't make any difference.

YOUR FIRST MACHINE LANGUAGE INSTRUCTION
LDA - LOAD THE ACCUMULATOR

In 6510 assembly language, mnemonics are always three characters. LDA
represents "load accumulator with...," and what the accumulator should be
loaded with is decided by the parameter(s) associated with that instruction. The
assembler knows which token is represented by each mnemonic, and when it
"assembles" an instruction, it simply puts into memory (at whatever address has
been specified), the token, and what parameters, are given. Some assemblers
give error messages, or warnings when you try to assemble something that either
the assembler, or the 6510 microprocessor, cannot do.

If you put a "#" symbol in front of the parameter associated with the instruction,
this means that you want the register specified in the instruction to be loaded
with the "value" after the "#". For example:

LDA #$05 «—— ($=HEX)

This instruction will put $05 (decimal 5) into the accumulator register. The
assembler will put into the specified address for this instruction, $A9 (which is the
token for this particular instruction, in this mode), and it will put $05 into the next
location after the location containing the instruction ($A9).

If the parameter to be used by an instruction has "#" before it; i.e., the
parameter is a "value," rather than the contents of a memory location, or another
register, the instruction is said to be in the "immediate" mode. To put this into
perspective, let's compare this with another mode:

If you want to put the contents of memory location $102E into the accumulator,
you're using the "absolute" mode of instruction:

LDA $102E

The assembler can distinguish between the two different modes because the
latter does not have a "#" before the parameter. The 6510 microprocessor can
distinguish between the immediate mode, and the absolute mode of the LDA
instruction, because they have slightly different tokens. LDA (immediate) has $A9
as its token, and LDA (absolute), has $AD as its token.

218 BASIC TO MACHINE LANGUAGE

The mnemonic representing an instruction usually implies what it does. For
instance, if we consider another instruction, LDX, what do you think this does?

If you said "load the X register with...," go to the top of the class. If you didn't,
then don't worry, learning machine language does take patience, and cannot be
learned in a day.

The various internal registers can be thought of as special memory locations,
because they too can hold one byte of information. It is not necessary for us to
explain the binary numbering system (base 2) since it follows the same rules as
outlined for hexadecimal and decimal outlined previously, but one "bit" is one
binary digit and eight bits make up one bytel This means that the maximum
number that can be contained in a byte is the largest number that an eight digit
binary number can be. This number is 11111111 (binary), which equals $FF
(hexadecimal), which equals 255 (decimal). You have probably wondered why
only numbers from zero to 255 could be put into a memory location. If you try
POKE 7680, 260 (which is a BASIC statement that "says": "Put the number two
hundred and sixty, into memory location seven thousand, six hundred and
eighty," the BASIC interpreter knows that only numbers O to 255 can be put in a
memory location, and your Commodore 64 will reply with:

?ILLEGAL QUANTITY ERROR

READY .
H

If the limit of one byte is $FF (hex), how is the address parameter in the absolute
instruction "LDA $102E" expressed in memory? li's expressed in two bytes (it
won't fit into one, of course). The lower (rightmost) two digits of the hexadecimal
address form the "low byte" of the address, and the upper (leftmost) two digits
form the "high byte."

The 6510 requires any address to be specified with its low byte first, and then
the high byte. This means that the instruction "LDA $102E" is represented in
memory by the three consecutive values:

$AD, $2E, $10

Now all you need to know is one more instruction and then you can write your
first program. That instruction is BRK. For a full explanation of this instruction,
refer to M.O.S. 6502 Programming Manual. But right now, you can think of it as
the END instruction in machine language.

BASIC TO MACHINE LANGUAGE 219

If we write a program with 64MON and put the BRK instruction at the end, then
when the program is executed, it will return to 64MON when it is finished. This
might not happen if there is a mistake in your program, or the BRK instruction is
never reached (just like an END statement in BASIC may never get executed).
This means that if the Commodore 64 didn't have a STOP key, you wouldn't be
able to abort your BASIC programs!

WRITING YOUR FIRST PROGRAM

If you've used the POKE statement in BASIC to put characters onto the screen,
you're aware that the character codes for POKEing are different from CBM
ASCII character values. For example, if you enter:

PRINT ASC("A") (and press [TEIEN)

the Commodore 64 will respond with:

65

READY .
H

However, to put an "A" onto the screen by POKEing, the code is 1, enter:

Nilial [eNYA0lYIS to clear the screen

POKE 1024, 1:POKE 55296, 14 (and [N) (1024 is the start of screen
memory)

The "P" in the POKE statement should now be an "A."

Now let's try this in machine language. Type the following in 64MON: (Your

cursor should be flashing alongside a "." right now.)

.A 1400 LDA#$01 (and press TGN)

220 BASIC TO MACHINE LANGUAGE

The Commodore 64 will prompt you with:

.A 1400 A9 01 LDA #$01
.A 1402 N

Type:
.A 1402 STA $0400

(The STA instruction stores the contents of the accumulator in a specified memory
location.)

The Commodore 64 will prompt you with:
.A 1405 W

Now type in:

.A 1405 LDA #$OE
.A 1407 STA $D80OO
.A 140A BRK

Clear the screen, and type:

G 1400

The G should turn into an "A" if you've done everything correctly.

You have now written your first machine language program. lts purpose is to

store one character ("A") at the first location in the screen memory. Having
achieved this, we must now explore some of the other instructions, and principles.

ADDRESSING MODES

ZERO PAGE
As shown earlier, absolute addresses are expressed in terms of a high and a
low order byte. The high order byte is often referred to as the page of memory.

For example, the address $1637 is in page $16 (22), and $0277 is in page
$02 (2). There is, however, a special mode of addressing known as zero page

BASIC TO MACHINE LANGUAGE 221

addressing and is, as the name implies, associated with the addressing of
memory locations in page zero. These addresses, therefore, ALWAYS have a
high order byte of zero. The zero page mode of addressing only expects one
byte to describe the address, rather than two when using an absolute address.
The zero page addressing mode tells the microprocessor to assume that the high
order address is zero. Therefore zero page addressing can reference memory
locations whose addresses are between $0000 and $00FF. This may not seem
too important at the moment, but you'll need the principles of zero page
addressing soon.

THE STACK

The 6510 microprocessor has what is known as a stack. This is used by both the
programmer and the microprocessor to temporarily remember things, and to
remember, for example, an order of events. The GOSUB statement in BASIC,
which allows the programmer to call a subroutine, must remember where it is
being called from, so that when the RETURN statement is executed in the
subroutine, the BASIC interpreter "knows" where to go back to continue
executing. When a GOSUB statement is encountered in a program by the BASIC
interpreter, the BASIC interpreter "pushes" its current position onto the stack
before going to do the subroutine, and when a RETURN is executed, the
interpreter "pulls" off the stack the information that tells it where it was before
the subroutine call was made. The interpreter uses instructions like PHA, which
pushes the contents of the accumulator onto the stack, and PLA (the reverse)
which pulls a value off the stack and into the accumulator. The status register can
also be pushed and pulled with the PHP and PLP, respectively.

The stack is 256 bytes long, and is located in page one of memory. It is therefore
from $0100 to $O1FF. It is organized backwards in memory. In other words, the
first position in the stack is at $O1FF, and the last is at $0100. Another register
in the 6510 microprocessor is called the stack pointer, and it always points to the
next available location in the stack. When something is pushed onto the stack, it
is placed where the stack pointer points to, and the stack pointer is moved down
to the next position (decremented). When something is pulled off the stack, the
stack pointer is incremented, and the byte pointed to by the stack pointer is
placed into the specified register.

222 BASIC TO MACHINE LANGUAGE

Up to this point, we have covered immediate, zero page, and absolute mode
instructions. We have also covered, but have not really talked about, the
"implied" mode. The implied mode means that information is implied by an
instruction itself. In other words, what registers, flags, and memory the instruction
is referring to. The examples we have seen are PHA, PLA, PHP, and PLP, which
refer to stack processing and the accumulator and status registers, respectively.

NOTE: The X register will be referred to as X from now on, and similarly A (Accumulator), Y (Y
Index Register), S (Stack Pointer), and P (Processor Status).

INDEXING

Indexing plays an extremely important part in the running of the 6510
microprocessor. It can be defined as "creating an actual address from a base
address plus the contents of either the X or Y index registers."

For example, if X contains $05, and the microprocessor executes an LDA
instruction in the "absolute X indexed mode" with base address (e.g., $9000),
then the actual location that is loaded into the A register is $9000 + $05 =
$9005. The mnemonic format of an absolute indexed instruction is the same as
an absolute instruction except a ",X" or ",Y" denoting the index is added to the
address.

EXAMPLE:
LDA $9000, X

There are absolute indexed, zero page indexed, indirect indexed, and indexed
indirect modes of addressing available on the 6510 microprocessor.

INDIRECT INDEXED

This only allows usage of the Y register as the index. The actual address can only
be in zero page, and the mode of instruction is called indirect because the zero
page address specified in the instruction contains the low byte of the actual
address, and the next byte to it contains the high order byte.

BASIC TO MACHINE LANGUAGE 223

EXAMPLE:

Let us suppose that location $02 contains $45, and location $03 contains $1E. If
the instruction to load the accumulator in the indirect indexed mode is executed
and the specified zero page address is $02, then the actual address will be:

Low order = contents of $02
High order = contents of $03
Y register = $00

Thus the actual address = $1E45 + Y = $1E45.

The title of this mode does in fact imply an indirect principle, although this may
be difficult to grasp at first sight. Let's look at it another way:

"I am going to deliver this letter to the post office at address $02, MEMORY ST.,
and the address on the letter is $05 houses past $1600, MEMORY street." This
is equivalent to the code:

LDA #$00 — load low order actual base address
STA $02 — set the low byte of the indirect address
LDA #$16 — load high order indirect address

STA $03 — set the high byte of the indirect address
LDY #$05 — set the indirect index (Y)

LDA ($02),Y — load indirectly indexed by Y

INDEXED INDIRECT

Indexed indirect only allows usage of the X register as the index. This is the same
as indirect indexed, except it is the zero page address of the pointer that is
indexed, rather than the actual base address. Therefore, the actual base
address IS the actual address because the index has already been used for the
indirect. Index indirect would also be used if a table of indirect pointers were
located in zero page memory, and the X register could then specify which
indirect pointer to use.

224 BASIC TO MACHINE LANGUAGE

EXAMPLE:

Let us suppose that location $02 contains $45, and location $03 contains $10. If
the instruction to load the accumulator in the indexed indirect mode is executed
and the specified zero page address is $02, then the actual address will be:

Low order = contents of ($02+X)
High order = contents of ($03+X)
X register = $00

Thus the actual pointer is in = $02 + X = $02.

Therefore, the actual address is the indirect address contained in $02 which is
again $1045.

The title of this mode does in fact imply the principle, although it may be difficult
to grasp at first sight. Look at it this way:

"I am going to deliver this letter to the fourth post office at address $01,
MEMORY ST., and the address on the letter will then be delivered to $1600,
MEMORY Street." This is equivalent to the code:

LDA #$00 — load low order actual base address
STA $06 — set the low byte of the indirect address
LDA #$16 — load high order indirect address

STA $07 — set the high byte of the indirect address
LDX #$05 — set the indirect index (X)

LDA ($01,%X> — load indirectly indexed by X

NOTE: Of the two indirect methods of addressing, the first (indirect indexed) is far more widely
used.

BASIC TO MACHINE LANGUAGE 225

BRANCHES AND TESTING

Another very important principle in machine language is the ability to test, and
detect certain conditions, in a similar fashion to the "IF... THEN, IF... GOTO"
structure in CBM BASIC.

The various flags in the status register are affected by different instructions in
different ways. For example, there is a flag that is set when an instruction has
caused a zero result, and is reset when a result is not zero. The instruction:

LDA #$00

will cause the zero result flag to be set, because the instruction has resulted in the
accumulator containing a zero.

There are a set of instructions that will, given a particular condition, branch to
another part of the program. An example of a branch instruction is BEQ, which
means Branch if result EQual to zero. The branch instructions branch if the condition
is true, and if not, the program continues onto the next instruction, as if nothing
had occurred. The branch instructions branch not by the result of the previous
instruction(s), but by internally examining the status register. As was just
mentioned, there is a zero result flag in the status register. The BEQ instruction
branches if the zero result flag (known as Z) is set. Every branch instruction has
an opposite branch instruction. The BEQ instruction has an opposite instruction
BNE, which means Branch on result Not Equal to zero (i.e., Z not set).

The index registers have a number of associated instructions which modify their
contents. For example, the INX instruction INcrements the X index register. If the
X register contained $FF before it was incremented (the maximum number the X
register can contain), it will "wrap around" back to zero. If you wanted a
program to continue to do something until you had performed the increment of
the X index that pushed it around to zero, you could use the BNE instruction to
continue "looping" around, until X became zero.

The reverse of INX, is DEX, which is DEcrement the X index register. If the X index

register is zero, DEX wraps around to $FF. Similarly, there are INY and DEY for
the Y index register.

226 BASIC TO MACHINE LANGUAGE

But what if a program didn't want to wait until X or Y had reached (or not
reached) zero? Well there are comparison instructions, CPX and CPY, which
allow the machine language programmer to test the index registers with specific
values, or even the contents of memory locations. If you wanted to see if the X
register contained $40, you would use the instruction:

CPX #%$40 — compare X with the "value" $40.
BEQ — branch to somewhere else in the
(some other program, if this condition is "true."
part of the

program)

The compare, and branch instructions play a major part in any machine language
program.

The operand specified in a branch instruction when using 64MON is the address
of the part of the program that the branch goes to when the proper conditions
are met. However, the operand is only an offset, which gets you from where the
program currently is to the address specified. This offset is just one byte, and
therefore the range that a branch instruction can branch to is limited. It can
branch from 128 bytes backward, to 127 bytes forward.

NOTE: This is a total range of 255 bytes which is, of course, the maximum range of values one
byte can contain.

64MON will tell you if you "branch out of range" by refusing to "assemble" that
particular instruction. But don't worry about that now because it's unlikely that
you will have such branches for quite a while. The branch is a "quick" instruction
by machine language standards because of the "offset" principle as opposed to
an absolute address. 64MON allows you to type in an absolute address, and it
calculates the correct offset. This is just one of the "comforts" of using an
assembler.

NOTE: It is NOT possible to cover every single branch instruction. For further information, refer
to the Bibliography section in Appendix F.

BASIC TO MACHINE LANGUAGE 227

SUBROUTINES

In machine language (in the same way as using BASIC), you can call subroutines.
The instruction to call a subroutine is JSR (Jump to SubRoutine), followed by the
specified absolute address.

Incorporated in the operating system, there is a machine language subroutine
that will PRINT a character to the screen. The CBM ASCIl code of the character
should be in the accumulator before calling the subroutine. The address of this
subroutine is $FFD2.

Therefore, to print "HI" to the screen, the following program should be entered:

.A 1400 LDA #%$48 — load the CBM ASCII code of "H"

.A 1402 JSR $FFD2 — print it

.A 1405 LDA #%$49 — load the CBM ASCIl code of "I"

.A 1407 JSR $FFD2 — print that too

.A 140A LDA #$O0D — print a carriage return as well

.A 140C JSR $FFD2

.A 140F BRK — return to 64MON

.G 1400 — will print "HI" and return to 64MON

The "PRINT a character” routine we have just used is part of the KERNAL jump
table. The instruction similar to GOTO in BASIC is JMP, which means JuMP to the
specified absolute address. The KERNAL is a long list of "standardized" subroutines
that control ALL input and output of the Commodore 64. Each entry in the KERNAL
JMPs to a subroutine in the operating system. This "jump table" is found between
memory locations $FF84 to $FFF5 in the operating system. A full explanation of
the KERNAL is available in the "KERNAL Reference Section" of this manual.
However, certain routines are used here to show how easy and effective the
KERNAL is.

Let's now use the new principles you've just learned in another program. It will
help you to put the instructions into context:

228 BASIC TO MACHINE LANGUAGE

This program will display the alphabet using a KERNAL routine. The only new
instruction introduced here is TXA Transfer the contents of the X index register,
into the Accumulator.

.A 1400 LDX #%$41 — X = CBM ASCIl of "A"

.A 1402 TXA —A=X

.A 1403 JSR $FFD2 — print character

.A 1406 INX — bump count

.A 1407 CPX #$5B — have we gone past "Z"2
.A 1409 BNE $1402 — no, go back and do more
.A 140B BRK — yes, return to 64MON

To see the Commodore 64 print the alphabet, type the familiar command:

.G 1400

The comments that are beside the program, explain the program flow and logic.
If you are writing a program, write it on paper first, and then test it in small parts
if possible.

USEFUL TIPS FOR THE BEGINNER

One of the best ways to learn machine language is to look at other peoples'
machine language programs. These are published all the time in magazines and
newsletters. Look at them even if the article is for a different computer, which
also uses the 6510 (or 6502) microprocessor. You should make sure that you
thoroughly understand the code that you look at. This will require perseverance,
especially when you see a new technique that you have never come across
before. This can be infuriating, but if patience prevails, you will be the victor.

Having looked at other machine language programs, you MUST write your own.

These may be utilities for your BASIC programs, or they may be an all machine
language program.

BASIC TO MACHINE LANGUAGE = 229

You should also use the utilities that are available, either IN your computer, or in
a program, that aid you in writing, editing, or tracking down errors in a machine
language program. An example would be the KERNAL, which allows you to check
the keyboard, print text, control peripheral devices like disk drives, printers,
modems, etc., manage memory and the screen. It is extremely powerful and it is
advised strongly that it is used (refer to KERNAL section, Page 268).

Advantages of writing programs in machine language:

1. Speed — Machine language is hundreds, and in some cases thousands of times
faster than a high level language such as BASIC.

2. Tightness — A machine language program can be made totally "watertight,”
i.e., the user can be made to do ONLY what the program allows, and no more.
With a high level language, you are relying on the user not "crashing" the BASIC
interpreter by entering, for example, a zero which later causes a:

?DIVISION BY ZERO ERROR IN LINE 830

READY .
|

In essence, the computer can only be maximized by the machine language
programmer.

APPROACHING A LARGE TASK

When approaching a large task in machine language, a certain amount of
subconscious thought has usually taken place. You think about how certain
processes are carried out in machine language. When the task is started, it is
usually a good idea to write it out on paper. Use block diagrams of memory
usage, functional modules of code required, and a program flow. Let's say that
you wanted to write a roulette game in machine language. You could outline it
something like this:

230 BASIC TO MACHINE LANGUAGE

Display title

Ask if player requires instructions
YES — display them — Go to START
NO - Go to START

START Initialize everything

MAIN display roulette table

Take in bets

Spin wheel

Slow wheel to stop

Check bets with result

Inform player

Player any money left?

YES — Go to MAIN

NO - Inform user, and go to START

This is the main outline. As each module is approached, you can break it down
further. If you look at a large indigestible problem as something that can be
broken down into small enough pieces to be eaten, then you'll be able to
approach something that seems impossible, and have it all fall into place.

This process only improves with practice, so KEEP TRYING.

BASIC TO MACHINE LANGUAGE 231

MCS6510 MICROPROCESSOR

ADC Add Memory to Accumulator with Carry
AND "AND" Memory with Accumulator
ASL Shift Left One Bit (Memory or Accumulator)

BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break
BVC Branch on Overflow Clear
BVS Branch on Overflow Set

CLC Clear Carry Flag
CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit
CLv Clear Overflow Flag
CMP Compare Memory and Accumulator

CPX Compare Memory and Index X
CPY Compare Memory and Index Y

DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One

EOR "Exclusive-Or" Memory with Accumulator
INC Increment Memory by One

INX Increment Index X by One

INY Increment Index Y by One

JMP Jump to New Location

232 BASIC TO MACHINE LANGUAGE

INSTRUCTION SET — ALPHABETIC SEQUENCE

JSR

LDA
LDX
LDY
LSR

NOP

ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI
RTS

SBC
SEC
SED
SEI

STA
STX
STY

TAX
TAY
TsX
TXA
TXS
TYA

Jump to New Location Saving Return Address

Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift Right One Bit (Memory or Accumulator)

No Operation
"OR" Memory with Accumulator

Push Accumulator on Stack

Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

BASIC TO MACHINE LANGUAGE

233

THE FOLLOWING NOTATION APPLIES TO THIS SUMMARY:

x >
=<

<o vz

Accumulator

Index Registers
Memory

Processor Status Register
Stack Pointer

Change

No Change

Add

Logical AND

Subtract

Logical Exclusive OR
Transfer from Stack
Transfer to Stack
Transfer to

Transfer from

Logical OR

Program Counter
Program Counter High
Program Counter Low
Operand

Immediate Addressing Mode

NOTE: At the top of each table is located in parenthesis a reference number (Ref: XX) which
directs the user to that Section in the MCS6500 Microcomputer Family Programming Manual in
which the instruction is defined and discussed.

234

BASIC TO MACHINE LANGUAGE

ADC Add Memory to Accumulator with Carry ADC

N Z I DV

Operation: A+ M+ C— A, C v v _ _ 7
(Ref: 2.2.1)

Ads\roeosling Assembly Language Form C8PDE Bj:e's C:‘cc?;es
Immediate ADC # Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper, X 75 2 4
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X 7D 3 4*
Absolute, Y ADC Oper, Y 79 3 4%
(Indirect, X) ADC (Oper, X) 61 2 6
(Indirect), Y ADC (Oper), Y 71 2 5%
*Add 1 if page boundary is crossed
AND "AND" Memory with Accumulator AND
Logical AND to the accumulator N Z I D V
Operation: AAM — A v v -

(Ref: 2.2.4.1)

i A
Immediate AND # Oper 29 2 2
Zero Page AND Oper 25 2 3
Zero Page, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X 3D 3 4%
Absolute, Y AND Oper, Y 39 3 4%
(Indirect, X) AND (Oper, X) 21 2 6
(Indirect), Y AND (Oper), Y 31 2 5

*Add 1 if page boundary is crossed

BASIC TO MACHINE LANGUAGE 235

ASL Shift Left One Bit (Memory or Accumulator) ASL

N 2 C I DV

Operation: C <+« Ea <0 v v
(Ref: 10.2)

M ade | Assembly Languoge Form | c3oe | gnes | cyes
Accumulator ASL A 0A 1 2
Zero Page ASL Oper 06 2 5
Zero Page, X ASL Oper, X 16 2 6
Absolute ASL Oper OE 3 6
Absolute, X ASL Oper, X 1E 3 7
BCC Branch on Carry Clear BCC

N 2 C I DV
Operation: Branch on C =0 .,
(Ref: 4.1.2.3)
Ad;l\fjseing Assembly Language Form CngE B?Se.s C';lcol‘es
Relative BCC Oper 90 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BCS Branch on Carry Set BCS
N Z C I DV
Operation: Branch on C =1 .,
(Ref: 4.1.2.4)

Ads\roe;:ng Assembly Language Form C8PDE Bj:e's C:‘cci;es

Relative BCS Oper BO 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

236 BASIC TO MACHINE LANGUAGE

BEQ Branch on Result Zero BEQ
z I DV
Operation: Branch on 2 = 1 _ -
(Ref: 4.1.2.5)
Addressing Assembly Language Form oP No. No.
Mode CODE Bytes Cycles
Relative BEQ Oper FoO 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BIT Test Bits in Memory with Accumulator BIT
Bit 6 and 7 are transferred to the Status Register.

If the result of A A M is zero then Z = 1, otherwise Z = 0. Z I DV
Operation: A AM, M7 = N, Mg = V v _ o~ M
(Ref: 4.2.2.1)

Ads\':;:ng Assembly Language Form CgPDE Bj:e's C:‘;‘es
Zero Page BIT Oper 24 2 3
Absolute BIT Oper 2C 3 4
BMI Branch on Result Minus BMI

z I DV
Operation: Branch on N = 1 _ o
(Ref: 4.1.2.1)
Addressing Assembly Language Form oP No. No.
Mode CODE Bytes Cycles
Relative BMI Oper 30 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BASIC TO MACHINE LANGUAGE 237

BNE Branch on Result Not Zero BNE
z I DV
Operation: Branch on 2= 0 - - -
(Ref: 4.1.2.6)
Addressing O°P No. No.
A bly L F
Mode ssembly tanguage Form CODE Bytes Cycles
Relative BNE Oper Do 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BPL Branch on Result Plus BPL
z I DV
Operation: Branch on N = 0 - -
(Ref: 4.1.2.2)
Addressing OoP No. No.
A bly L F
Mode ssembly tanguage Form CODE Bytes Cycles
Relative BPL Oper 10 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BRK BRK
Force Break
z I DV
Operation: Forced Interrupt PC+2 P | - 1 _
(Ref: 9.11)
Addressing O°P No. No.
A bly L F
Mode ssembly tanguage Form CODE Bytes Cycles
Implied BRK 00 1 7

1. A BRK command cannot be masked by setting I.

238 BASIC TO MACHINE LANGUAGE

BVC Branch on Overflow Clear BVC

Operation: Branch on V = 0 - - - - - =

(Ref: 4.1.2.8)

Addressing Assembly Lanauade Form O°P No. No.
u
Mode Y guag CODE Bytes Cycles

Relative BVC Oper 50 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

BVS Branch on Overflow Set BVS

Operation: Branch on V = 1 - - - - - =

(Ref: 4.1.2.7)
Addressing A bly L F OoP No. No.
m n rm
Mode ssembly tanguage o CODE Bytes Cycles
Relative BVS Oper 70 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

CLC Clear Carry Flag CLC

N Z I DV

Operation: @ - C - - e _ _ _
(Ref: 3.0.2)

Addressing A bly L F OoP No. No.
m n rm
Mode ssembly tanguage o CODE Bytes Cycles
Implied CLC 18 1 2

BASIC TO MACHINE LANGUAGE 239

CLD Clear Decimal Mode CLD
N 2 C I DV
Operation: @ = D [- -
(Ref: 3.3.2)
Addressing O°P No. No.
A bly L F
Mode ssembly tanguage Form CODE Bytes Cycles
Implied CLD D8 1 2
CLI Clear Interrupt Disable Bit CLI
N Z C I DV
Operation: @ — I - - 0 _ _
(Ref: 3.2.2)
Addressing O°P No. No.
A bly L F
Mode ssembly tanguage Form CODE Bytes Cycles
Implied CLl 58 1 2
CLv Clear Overflow Flag CLvV
N 2 C I DV
Operation: @ = V - - _ _ ©
(Ref: 3.6.1)
Addressing A bly L F OoP No. No.
m n rm
Mode ssembly tanguage o CODE Bytes Cycles
Implied CcLv B8 1 2

240 BASIC TO MACHINE LANGUAGE

CMP Compare Memory and Accumulator CMP

Z I DV

Operation: A— M v o
(Ref: 4.2.1)

M ade | Asembly Languoge Form | 3o | guey | cyes
Immediate CMP # Oper c9 2 2
Zero Page CMP Oper C5 2 3
Zero Page, X CMP Oper, X D5 2 4
Absolute CMP Oper CD 3 4
Absolute, X CMP Oper, X DD 3 4%
Absolute, Y CMP Oper, Y D9 3 4*
(Indirect, X) CMP (Oper, X) Cl1 2 6
(Indirect), Y CMP (Oper), Y D1 2 5%
*Add 1 if page boundary is crossed.

CPX Compare Memory and Index X CPX

Z I DV

Operation: X — M v o
(Ref: 7.8)

D | ety erportorn | S | g |
Immediate CPX # Oper EO 2 2
Zero Page CPX Oper E4 2 3
Absolute CPX Oper EC 3 4
CPY Compare Memory and Index Y CPY

z I DV
Operation: Y = M v o
(Ref: 7.9)

Ad;jl\t;)ecslseing Assembly Language Form CngE ije's C;‘:T‘es
Immediate CPY # Oper co 2 2
Zero Page CPY Oper C4 2 3
Absolute CPY Oper CC 3 4

BASIC TO MACHINE LANGUAGE 241

DEC

Decrement Memory by One

DEC

N Z C I DV

Operationn M =1 —> M v v o
(Ref: 10.8)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Zero Page DEC Oper C6 2 5
Zero Page, X DEC Oper, X D6 2 6
Absolute DEC Oper CE 3 6
Absolute, X DEC Oper, X DE 3 7
DEX Decrement Index X by One DEX
CcC I DV
Operation: X =1 — X v)
(Ref: 7.6)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied DEX CA 1 2
DEY DEY

Decrement Index Y by One

N 2 C I DV

Operation: Y =1 = Y v v
(Ref: 7.7)
Addressing O°P No. No
Mode Assembly Language Form CODE Bytes Cycles
Implied DEY 88 1 2

242 BASIC TO MACHINE LANGUAGE

EOR "Exclusive-OR" Memory with Accumulator EOR

Z I DV

Operationn AY M — A v -
(Ref: 2.2.4.3)

M ade | Asembly Languoge Form | 3o | guey | cyes
Immediate EOR # Oper 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4*
Absolute, Y EOR Oper, Y 59 3 4%
(Indirect, X) EOR (Oper, X) 41 2 6
(Indirect), Y EOR (Oper), Y 51 2 5%

* Add 1 if page boundary is crossed.
INC Increment Memory by One INC
z I DV
Operationn M+ 1 > M o
(Ref: 10.7)

M ose | Asembly language Form | Ope | gyt | cyes
Zero Page INC Oper E6 2 5
Zero Page, X INC Oper, X F6 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7
INX Increment Index X by One INX

z I DV
Operation: X + 1 = X v -
(Ref: 7.4)

Adﬁl\fj:ng Assembly Language Form CngE B??e.s C,;l:;‘es

Implied INX E8 1 2

BASIC TO MACHINE LANGUAGE 243

INY

Increment Index Y by One

INY

N Z C I DV

Operation: Y +1 = Y v v o
(Ref: 7.5)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied INY c8 1 2
JMP JMP

Jump to New Location

Operation: (PC + 1) - PCL
(PC+2) - PCH

(Ref: 4.0.2)
(Ref: 9.8.1)
Addressing OoP No. No
Mode Assembly Language Form CODE Bytes Cycles
Absolute JMP Oper 4C 3 3
Indirect JMP (Oper) 6C 3 5
JSR JSR

Jump to New Location Saving Return Address

Operation: PC+ 2!, (PC+ 1) » PCL
(PC +2) > PCH

N 2 C I DV

(Ref: 8.1)
Addressing (o] No. No
Mode Assembly Language Form CODE Bytes Cycles
Absolute JSR Oper 20 3 6

244 BASIC TO MACHINE LANGUAGE

LDA Load Accumulator with Memory LDA

C I DV

Operation: M — A VR
(Ref: 2.1.1)

Ad;jl\t;)ecslseing Assembly Language Form CngE ije's C;‘:T‘es
Immediate LDA # Oper A9 2 2
Zero Page LDA Oper A5 2 3
Zero Page, X LDA Oper, X B5 2 4
Absolute LDA Oper AD 3 4
Absolute, X LDA Oper, X BD 3 4%
Absolute, Y LDA Oper, Y B9 3 4%
(Indirect, X) LDA (Oper, X) Al 2 6
(Indirect), Y LDA (Oper), Y B1 2 5%

* Add 1 if page boundary is crossed.
LDX LDX

Load Index X with Memory

Operation: M — X o
(Ref: 7.0)

Ads\roe;:ng Assembly Language Form C8PDE Bj:e's C:‘cci;es
Immediate LDX # Oper A2 2 2
Zero Page LDX Oper Ab 2 3
Zero Page, Y LDX Oper, Y B6 2 4
Absolute LDX Oper AE 3 4
Absolute, Y LDX Oper, Y BE 3 4%

* Add 1 when page boundary is crossed.

BASIC TO MACHINE LANGUAGE 245

LDY Load Index Y with Memory LDY

N 2 C I DV

Operation: M — Y v v o
(Ref: 7.1)

Ad;l\roej:ng Assembly Language Form C8PDE Bs:e.s C';lcol;es
Immediate LDY # Oper AQ 2 2
Zero Page LDY Oper A4 2 3
Zero Page, X LDY Oper, X B4 2 4
Absolute LDY Oper AC 3 4
Absolute, X LDY Oper, X BC 3 4%

* Add 1 when page boundary is crossed.
LSR Shift Right One Bit (Memory or Accumulator) LSR
Z I DV
Operation: @ — Ea -C v o
(Ref: 10.1)

Ad;jl\t;)ecslseing Assembly Language Form CngE ije's C;‘:T‘es
Accumulator LSR A 4A 1 2
Zero Page LSR Oper 46 2 5
Zero Page, X LSR Oper, X 56 2 6
Absolute LSR Oper 4E 3 6
Absolute, X LSR Oper, X 5E 3 7
NOP No Operation NOP

Zz I DV
Operation: No Operation (2 cycles) ~ o

Ad;l\roej:ng Assembly Language Form C8PDE Bs:e.s C';lcol;es

Implied NOP EA 1 2

246 BASIC TO MACHINE LANGUAGE

ORA "OR" Memory with Accumulator ORA

Operation: AVM > A oo DL
(Ref: 2.2.4.2)

M ode | Asembly language Form | Spe | gy | Coos
Immediate ORA # Oper 09 2 2
Zero Page ORA Oper 05 2 3
Zero Page, X ORA Oper, X 15 2 4
Absolute ORA Oper ob 3 4
Absolute, X ORA Oper, X 1D 3 4%
Absolute, Y ORA Oper, Y 19 3 4%
(Indirect, X) ORA (Oper, X) 01 2 6
(Indirect), Y ORA (Oper), Y 11 2 5%

* Add 1 on page crossing.
PHA Push Accumulator on Stack PHA

Operation: A |

(Ref: 8.5)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied PHA 48 1 3
PHP Push Processor Status on Stack PHP

Operation: P |

(Ref: 8.11)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied PHP 08 1 3

BASIC TO MACHINE LANGUAGE 247

PLA Pull Accumulator from Stack PLA
N Z C I DV
Operation: A T v v - - -
(Ref: 8.6)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied PLA 68 1 4
PLP Pull Processor Status from Stack PLP
N Z C I DV
Operation: P T From Stack
(Ref: 8.12)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied PLP 28 1 4
ROL Rotate One Bit Left (Memory or Accumulator) ROL
or A ‘ N 2 C1I DYV
Operation: t Enﬂ « [« v v
(Ref: 10.3)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Accumulator ROL A 2A 1 2
Zero Page ROL Oper 26 2 5
Zero Page, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7

248 BASIC TO MACHINE LANGUAGE

ROR Rotate One Bit Right (Memory or Accumulator) ROR
N Z C I DV
opmation: e} TS TaTsTaaTe T
(Ref: 10.4)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Accumulator ROR A 6A 1 2
Zero Page ROR Oper 66 2 5
Zero Page, X ROR Oper, X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute, X ROR Oper, X 7E 3 7
NOTE: ROR instruction is available on MCS650X microprocessors after June, 1976.
RTI Return from Interrupt RTI
N 2 C I DV
Operation: P TPC T From Stack
(Ref: 9.6)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied RTI 40 1 6
RTS Return from Subroutine RTS
N Z C I D V
Operation: PCT,PC+ 1 - PC - - o
(Ref: 8.2)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied RTS 60 1 6

BASIC TO MACHINE LANGUAGE = 249

SBC Subtract Memory from Accumulator with Borrow SBC

Operation: A—M — C > A z I DV

Note: C = Borrow Y - -7
(Ref: 2.2.2)

Ad;jl\t;)ecslseing Assembly Language Form CngE ije's C;‘:T‘es
Immediate SBC # Oper E9 2 2
Zero Page SBC Oper ES 2 3
Zero Page, X SBC Oper, X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 4%
Absolute, Y SBC Oper, Y Fo 3 4%
(Indirect, X) SBC (Oper, X) E1 2 6
(Indirect), Y SBC (Oper), Y F1 2 5%
*Add 1 when page boundary is crossed.

SEC Set Carry Flag SEC

Z I DV

Operation: 1 - C - - -
(Ref: 3.0.1)

Ad;jl\t;)ecslseing Assembly Language Form CngE ije's C;‘:T‘es
Implied SEC 38 1 2
SED Set Decimal Mode SED

N Z C I DV
Operation: 1 = D _ N
(Ref: 3.3.1)

Ad;l\fjseing Assembly Language Form CngE B?Se.s C';lcol‘es

Implied SED F8 1 2

250 BASIC TO MACHINE LANGUAGE

SEI Set Interrupt Disable Status SEI
N Z C I DV

Operation: 1 —» I S

(Ref: 3.2.1)
Addressing (o] No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied SEI 78 1 2
STA STA

Operation: A > M

Store Accumulator in Memory

(Ref: 2.1.2)

Ad;jl\t;)ecslseing Assembly Language Form CngE Bjre's C;‘:T‘es
Zero Page STA Oper 85 2 3
Zero Page, X STA Oper, X 95 2 4
Absolute STA Oper 8D 3 4
Absolute, X STA Oper, X 9D 3 5
Absolute, Y STA Oper, Y 99 3 5
(Indirect, X) STA (Oper, X) 81 2 6
(Indirect), Y STA (Oper), Y 91 2 6
STX Store Index X in Memory STX

N 2 C I DV
Operation: X = M - o
(Ref: 7.2)

Ad;jl\t;)ecslseing Assembly Language Form CngE Bjre's C;‘:T‘es
Zero Page STX Oper 86 2 3
Zero Page, Y STX Oper, Y 96 2 4
Absolute STX Oper 8E 3 4

BASIC TO MACHINE LANGUAGE 251

STY

Operation: Y = M

Store Index Y in Memory

(Ref: 7.3)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Zero Page STY Oper 84 2 3
Zero Page, X STY Oper, X 94 2 4
Absolute STY Oper 8C 3 4
TAX TAX

Transfer Accumulator to Index X

N Z C I DV

Operation: A —> X v v -
(Ref: 7.11)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied TAX AA 1 2
TAY Transfer Accumulator to Index Y TAY
N Z C I DV
Operation: A > Y Vv oC L
(Ref: 7.13)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied TAY A8 1 2

252 BASIC TO MACHINE LANGUAGE

TSX Transfer Stack Pointer to Index X TSX
Z I DV
Operation: S — X v -
(Ref: 8.9)
Addressing (o] No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied TSX BA 1 2
TXA Transfer Index X to Accumulator TXA
z I DV
Operation: X = A v -
(Ref: 7.12)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied TXA 8A 1 2
TXS Transfer Index X to Stack Pointer TXS
z I DV
Operation: X = S _ - -
(Ref: 8.8)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied XS 9A 1 2
TYA Transfer Index Y to Accumulator TYA
Z I DV
Operation: Y = A v -
(Ref: 7.14)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied TYA 98 1 2

BASIC TO MACHINE LANGUAGE

253

INSTRUCTION ADDRESSING MODES AND

§) o >a<7 :} ><~ >'~ < >: -_g
3 £ 8 8 5 228 28T 8
S £ ¢ ¢ o & 8 ¢ = & 35 35 2
2 E & 8 8 2 2 2 E & £ £ 2

ADC 2 3 4 4 4% 4% 5%

AND 2 3 4 4 4* 4% 6 5%

ASL 2 5 6 [} 7

BCC %%

BCS %%

BEQ %%

BIT 3 4

BMI 2%%

BNE 2%%

BPL i

BRK

BVC 2%%

BVS 2%%

cLc 2

CLD 2

CLI 2

CLV 2

CMP 2 3 4 4 4* 4% 6 5%

CPX 2 3 4

CPY 2 3 4

DEC 5 6 6 7

DEX 2

DEY 2

EOR 2 3 4 4 4% 4% 6 5%

INC 5 6 [} 7

INX 2

INY 2

JMP 3 5

* Add one cycle if indexing across page boundary.
**Add one cycle if branch is taken. Add one additional cycle if branching

254 BASIC TO MACHINE LANGUAGE

RELATED EXECUTION TIMES (in clock cycles)

13llpu| ainjosqy
A ‘(0311pu))
(X “p211pu))
SAlD|SY
patjdwi

A ‘einjosqy
X ‘einjosqy
ainjosqy

A ‘ebpod oiaz
X ‘obpd olo7
abpy ooz
Slbipawuwy|

Joyp|nwnoy

JSR

5*

4%

4%

LDA

4%

LDX

4%

LDY
LSR

NOP
ORA
PHA
PHP
PLA
PLP

5*

4%

4%

MmO M T X

ROL
ROR

RTI

0

RTS

5*

4%

SBC
SEC

N

SED
SEl

STA
STX
STY

N N AN AN NN

TAX
TAY
TSX
TXA
XS
TYA

operation crosses page boundary.

255

BASIC TO MACHINE LANGUAGE

OPERATION CODE INSTRUCTION LISTING

00 — BRK

01 — ORA — (Indirect, X)
02 — Future Expansion
03 — Future Expansion
04 — Future Expansion
05 — ORA — Zero Page
06 — ASL — Zero Page
07 — Future Expansion
08 — PHP

09 — ORA — Immediate
OA — ASL — Accumulator
OB — Future Expansion
0C — Future Expansion
0D — ORA — Absolute
OE — ASL — Absolute

OF — Future Expansion
10 — BPL

11 — ORA — (Indirect), Y
12 — Future Expansion
13 — Future Expansion
14 — Future Expansion
15 — ORA — Zero Page, X
16 — ASL — Zero Page, X
17 — Future Expansion
18 = CLC

19 — ORA = Absolute, Y
1A — Future Expansion
1B — Future Expansion
1C — Future Expansion
1D — ORA — Absolute, X
1E — ASL — Absolute, X

1F — Future Expansion

256

BASIC TO MACHINE LANGUAGE

20 - JSR

21 — AND - (Indirect, X)
22 — Future Expansion
23 — Future Expansion
24 — BIT — Zero Page
25 — AND - Zero Page
26 —ROL - Zero Page
27 — Future Expansion
28 — PLP

29 — AND - Immediate
2A — ROL — Accumulator
2B — Future Expansion
2C — BIT — Absolute

2D — AND - Absolute
2E — ROL — Absolute

2F — Future Expansion
30 — BMI

31 — AND - (Indirect), Y
32 — Future Expansion
33 — Future Expansion
34 — Future Expansion
35 — AND - Zero Page, X
36 —ROL - Zero Page, X
37 — Future Expansion
38 — SEC

39 — AND — Absolute, Y
3A — Future Expansion
3B — Future Expansion
3C — Future Expansion
3D — AND = Absolute, X
3E — ROL — Absolute, X

3F — Future Expansion

40 — RTI

41 — EOR - (Indirect, X)
42 — Future Expansion
43 — Future Expansion
44 — Future Expansion
45 — EOR - Zero Page
46 — LSR — Zero Page
47 — Future Expansion
48 — PHA

49 — EOR - Immediate
4A — LSR — Accumulator
4B — Future Expansion
4C — JMP — Absolute
4D — EOR — Absolute
4E — LSR — Absolute

4F — Future Expansion
50 - BVC

51 — EOR - (Indirect), Y
52 — Future Expansion
53 — Future Expansion
54 — Future Expansion
55 —EOR - Zero Page, X
56 — LSR — Zero Page, X
57 — Future Expansion
58 —CLI

59 — EOR = Absolute, Y
5A — Future Expansion
5B — Future Expansion
5C — Future Expansion
5D — EOR — Absolute, X
5E — LSR — Absolute, X

5F — Future Expansion

60 — RTS

61 — ADC — (Indirect, X)
62 — Future Expansion
63 — Future Expansion
64 — Future Expansion
65 — ADC — Zero Page
66 — ROR — Zero Page
67 — Future Expansion
68 — PLA

69 — ADC — Immediate
6A — ROR — Accumulator
6B — Future Expansion
6C — JMP — Indirect

6D — ADC — Absolute
6E — ROR — Absolute

6F — Future Expansion
70 — BVS

71 = ADC — (Indirect), Y
72 — Future Expansion
73 — Future Expansion
74 — Future Expansion
75— ADC — Zero Page, X
76 — ROR — Zero Page, X
77 — Future Expansion
78 — SEl

79 — ADC — Absolute, Y
7A — Future Expansion
7B — Future Expansion
7C — Future Expansion
7D — ADC - Absolute, X
7E — ROR — Absolute, X

7F — Future Expansion

BASIC TO MACHINE LANGUAGE

257

80 — Future Expansion
81 — STA — (Indirect, X)
82 — Future Expansion
83 — Future Expansion
84 — STY — Zero Page
85 — STA — Zero Page
86 — STX — Zero Page
87 — Future Expansion
88 — DEY

89 — Future Expansion
8A — TXA

8B — Future Expansion
8C — STY — Absolute
8D — STA — Absolute
8E — STX — Absolute

8F — Future Expansion
90 — BCC

91 — STA — (Indirect), Y
92 — Future Expansion

93 — Future Expansion

AQ — LDY — Immediate
Al — LDA — (Indirect, X)
A2 — LDX — Immediate
A3 = Future Expansion
A4 — LDY — Zero Page
A5 — LDA — Zero Page
A6 — LDX — Zero Page
A7 = Future Expansion
A8 — TAY

A9 — LDA — Immediate
AA — TAX

AB — Future Expansion
AC — LDY — Absolute
AD — LDA - Absolute
AE — LDX — Absolute
AF — Future Expansion
BO — BCS

B1 — LDA — (Indirect), Y
B2 — Future Expansion

B3 — Future Expansion

94 — STY — Zero Page, X
95 — STA — Zero Page, X
96 — STX — Zero Page, Y

B4 — LDY — Zero Page, X
B5 — LDA — Zero Page, X
B6 — LDX — Zero Page, Y

97 — Future Expansion
98 = TYA

99 — STA — Absolute, Y
9A — TXS

9B — Future Expansion
9C — Future Expansion
9D — STA — Absolute, X
QE — Future Expansion

9F — Future Expansion

258

BASIC TO MACHINE LANGUAGE

B7 — Future Expansion
B8 — CLV

B9 — LDA — Absolute, Y
BA — TSX

BB — Future Expansion
BC — LDY — Absolute, X
BD — LDA - Absolute, X
BE — LDX — Absolute, Y

BF — Future Expansion

CO — CPY — Immediate
C1 — CMP — (Indirect, X)
C2 — Future Expansion
C3 — Future Expansion
C4 — CPY = Zero Page
C5 — CMP = Zero Page
Cé — DEC — Zero Page
C7 — Future Expansion
C8 — INY

C9 — CMP — Immediate
CA — DEX

CB — Future Expansion
CC — CPY — Absolute
CD — CMP — Absolute
CE — DEC — Absolute

CF — Future Expansion
DO — BNE

D1 — CMP — (Indirect), Y
D2 — Future Expansion
D3 — Future Expansion

D4 — Future Expansion

D5 — CMP — Zero Page, X
D6 — DEC — Zero Page, X

D7 — Future Expansion
D8 — CLD

D9 — CMP — Absolute, Y
DA — Future Expansion
DB — Future Expansion
DC - Future Expansion
DD — CMP — Absolute, X
DE — DEC — Absolute, X

DF — Future Expansion

EQ — CPX — Immediate
E1 — SBC — (Indirect, X)
E2 — Future Expansion
E3 — Future Expansion
E4 — CPX — Zero Page
E5 — SBC — Zero Page
E6 — INC — Zero Page
E7 — Future Expansion
E8 — INX

E9 — SBC — Immediate
EA — NOP

EB — Future Expansion
EC — CPX — Absolute
ED — SBC — Absolute
EE — INC — Absolute

EF — Future Expansion
FO — BEQ

F1 — SBC — (Indirect), Y
F2 — Future Expansion
F3 — Future Expansion

F4 — Future Expansion

F5 — SBC — Zero Page, X
F6 — INC — Zero Page, X

F7 — Future Expansion
F8 — SED

FQ — SBC — Absolute, Y
FA — Future Expansion
FB — Future Expansion
FC — Future Expansion
FD — SBC — Absolute, X
FE — INC — Absolute, X

FF — Future Expansion

BASIC TO MACHINE LANGUAGE

259

MEMORY MANAGEMENT ON THE COMMODORE 64

The Commodore 64 has 64K bytes of RAM. It also has 20K bytes of ROM,
containing BASIC, the operating system, and the standard character set. It also
accesses input/output devices as a 4K chunk of memory. How is this all possible
on a computer with a 16-bit address bus, that is normally only capable of
addressing 64K?2

The secret is in the 6510 processor chip itself. On the chip is an input/output port.
This port is used to control whether RAM or ROM or I/O will appear in certain
portions of the system's memory. The port is also used to control the Datassette™,
so it is important to affect only the proper bits.

The 6510 input/output port appears at location 1. The data direction register
for this port appears at location 0. The port is controlled like any of the other
input/output ports in the system... the data direction controls whether a given
bit will be an input or an output, and the actual data transfer occurs through the
port itself.

The lines in the 6510 control port are defined as follows:

NAME BIT DIRECTION DESCRIPTION
LORAM 0 OUTPUT Control for RAM/ROM at
$A000 to $BFFF (BASIC)
HIRAM 1 OUTPUT Control for RAM/ROM at
$EO00O to $FFFF (KERNAL)
CHAREN 2 OUTPUT Control for I/O ROM at
$D000 to $DFFF
3 OUTPUT Cassette write line
4 INPUT Cassette switch sense
5 OUTPUT Cassette motor control

The proper value for the data direction register is as follows:

BIIS 5 4 3 2 1 O
1T 0 1 1 1 1

(where 1 is an output, and 0 is an input).

260 BASIC TO MACHINE LANGUAGE

This gives a value of 47 decimal. The Commodore 64 automatically sets the data
direction register to this value.

The control lines, in general, perform the function given in their descriptions.
However, a combination of control lines are occasionally used to get a particular
memory configuration.

LORAM (bit 0) can generally be thought of as a control line which banks the 8K
byte BASIC ROM in and out of the microprocessor address space. Normally, this
line is HIGH for BASIC operation. If this line is programmed LOW, the BASIC
ROM will disappear from the memory map and be replaced by 8K bytes of
RAM from $A000 to $BFFF.

HIRAM (bit 1) can generally be thought of as a control line which banks the 8K
byte KERNAL ROM in and out of the microprocessor address space. Normally,
this line is HIGH for BASIC operation. If this line is programmed LOW, the
KERNAL ROM will disappear from the memory map and be replaced by 8K
bytes of RAM from $E00O to $FFFF.

CHAREN (bit 2) is used only to bank the 4K byte character generator ROM in
or out of the microprocessor address space. From the processor point of view,
the character ROM occupies the same address space as the 1/O devices ($D000
to $DFFF). When the CHAREN line is set to 1 (as is normal), the 1/O devices
appear in the microprocessor address space, and the character ROM is not
accessible. When the CHAREN bit is cleared to O, the character ROM appears
in the processor address space, and the |/O devices are not accessible. (The
microprocessor only needs to access the character ROM when downloading the
character set from ROM to RAM. Special care is needed for this... see the section
on PROGRAMMABLE CHARACTERS in the GRAPHICS chapter). CHAREN can be
overridden by other control lines in certain memory configurations. CHAREN will
have no effect on any memory configuration without 1/O devices. RAM will
appear from $D000 to $DFFF instead.

NOTE: In any memory map containing ROM, a WRITE (a POKE) to a ROM location will store data
in the RAM "under" the ROM. Writing to a ROM location stores data in the "hidden" RAM. For
example, this allows a hi-resolution screen to be kept underneath a ROM, and be changed without
having to bank the screen back into the processor address space. Of course a READ of a ROM
location will return the contents of the ROM, not the "hidden" RAM.

BASIC TO MACHINE LANGUAGE 261

COMMODORE 64 FUNDAMENTAL MEMORY MAP

8K KERNAL ROM
$EO00 to $FFFF OR
RAM
4K 1/O OR RAM OR
$D000 to $DFFF CHQRACTER ROM
$C000 to $CFFF 4K RAM
8K BASIC ROM
OR
$A000 to $BFFF RAM
OR
ROM PLUG-IN
8K RAM
$8000 to $9FFF OR
ROM PLUG-IN
$4000 1o $7FFF 16K RAM
$0000 o $3FFF 16K RAM
1/0 BREAKDOWN
$D000 to $D3FF VIC (Video Controller) 1K Bytes
$D400 to $D7FF SID (Sound Synthesizer) 1K Bytes
$D800 to $DBFF Color RAM 1K Nybbles
$DCO0 to $DCFF CIA 1 (Keyboard) 256 Bytes
$DDOO0 to $DDFF CIA 2 (Serial Bus, User Port/RS-232) 256 Bytes
$DEOO to $DEFF Open |/O slot #1 (CP/M Enable) 256 Bytes
$DFOO0 to $DFFF Open I/O slot #2 (Disk) 256 Bytes

262 BASIC TO MACHINE LANGUAGE

The two open 1/O slots are for general purpose user 1/O, special purpose |/O
cartridges (such as IEEE), and have been tentatively designated for enabling the
Z-80 cartridge (CP/M option) and for interfacing to a low-cost high-speed disk

system.

The system provides for "auto-start" of the program in a Commodore 64
Expansion Cartridge. The cartridge program is started if the first nine bytes of
the cartridge ROM starting at location 32768 ($8000) contain specific data.
The first two bytes must hold the Cold Start vector to be used by the cartridge
program. The next two bytes at 32770 ($8002) must be the Warm Start vector
used by the cartridge program. The next three bytes must be the letters, CBM,
with bit 7 set in each letter. The last two bytes must be the digits "80" in PET
ASCIL.

COMMODORE 64 MEMORY MAPS

The following table lists the various memory configurations available on the
COMMODORE 64, the states of the control lines which select each memory map,
and the intended use of each map.

8K KERNAL ROM X = DON'T CARE
0 =LOW
EOO0O
$ 4K 1/0 1 = HIGH
$D000
4K RAM (BUFFER)
$C000 LORAM =1
8K BASIC ROM HIRAM
A GAME =1
$A000 EXROM =1
8K RAM
$8000
16K RAM
$4000
This is the default BASIC memory
16K RAM . .
map which provides BASIC 2.0 and
38K contiguous bytes of user RAM.
$0000

BASIC TO MACHINE LANGUAGE 263

$E000
$D000
$C000

$8000

$4000

$0000

$E000
$D000
$C000

$8000

$4000

$0000

264 BASIC TO MACHINE LANGUAGE

8K RAM

4K 1/0

4K RAM

16K RAM

16K RAM

16K RAM

8K KERNAL ROM

4K 1/0

4K RAM

16K RAM

16K RAM

16K RAM

X = DON'T CARE

0=LOW

1 = HIGH
LORAM =1
HIRAM =0
GAME =1
EXROM =X
OR
LORAM =1
HIRAM =0
GAME =0

(THE CHARACTER ROM IS NOT
ACCESSIBLE BY THE CPU IN THIS MAP)
EXROM =0

This map provides 60K bytes of
RAM and 1/O devices. The user must
write his own /O driver routines.

X = DON'T CARE

0= LOW

1 = HIGH
LORAM =0
HIRAM =1
GAME =1
EXROM =X

This map is intended for use with
Softload languages (including
CP/M), providing 52K contiguous
bytes of user RAM, |/O devices,
and /O driver routines.

$C000

$8000

$4000

$0000

$E000
$D000
$C000

$A000

$8000

$4000

$0000

16K RAM

16K RAM

16K RAM

16K RAM

8K KERNAL ROM

4K 1/0

4K RAM (BUFFER)

8K BASIC ROM

8K ROM CARTRIDGE
(BASIC EXP)

16K RAM

16K RAM

X = DON'T CARE

0=LOW

1 = HIGH
LORAM =0
HIRAM =0
GAME =1
EXROM =X
OR
LORAM =0
HIRAM =0
GAME =X
EXROM =0

This map gives access to all 64K
bytes of RAM. The |/O devices
must be banked back into the

processor's address space for any

|/O operation.

X = DON'T CARE

0= LOW

1 = HIGH
LORAM =1
HIRAM =1
GAME =1
EXROM =0

This is the standard configuration
for a BASIC system with a BASIC

expansion ROM. This map provides
32K contiguous bytes of user RAM

and up to 8K bytes of BASIC
"enhancement."

BASIC TO MACHINE LANGUAGE

265

8K KERNAL ROM
$E000
4K 1/0O
$D000
4K RAM (BUFFER)
$C000
8K ROM (CARTRIDGE)
$A000
8K RAM
$8000
16K RAM
$4000
16K RAM
$0000
8K KERNAL ROM
$E000
4K 1/O
$D000
4K RAM (BUFFER)
$C000
16K ROM (CARTRIDGE)
$8000
16K RAM
$4000
16K RAM
$0000

266

BASIC TO MACHINE LANGUAGE

X = DON'T CARE

0=LOW

1 = HIGH
LORAM =0
HIRAM =1
GAME =0
EXROM =0

This map provides 40K contiguous
bytes of user RAM and up to 8K
bytes of plug-in ROM for special
ROM-based applications which
don't require BASIC.

X = DON'T CARE

0= LOW

1 = HIGH
LORAM =1
HIRAM =1
GAME =0
EXROM =0

This map provides 32K contiguous
bytes of user RAM and up to 16K
bytes of plug-in ROM for special
ROM-based applications which
don't require BASIC (word
processors, other languages, etc.).

$E000
$D000
$C000

$A000

$8000

$4000

$1000
$0000

8K CARTRIDGE ROM

4K 1/0

4K OPEN

8K OPEN

8K CARTRIDGE ROM

16K OPEN

12K OPEN

4K RAM

X = DON'T CARE

0=LOW

1 = HIGH
LORAM =X
HIRAM =X
GAME =
EXROM =1

This is the ULTIMAX video game
memory map. Note that the 2K
byte "expansion RAM" for the
ULTIMAX, if required, is accessed
out of the COMMODORE 64 and
any RAM in the cartridge is
ignored.

BASIC TO MACHINE LANGUAGE

267

THE KERNAL

One of the problems facing programmers in the microcomputer field is the
question of what to do when changes are made to the operating system of the
computer by the company. Machine language programs which took much time to
develop might no longer work, forcing major revisions in the program. To
alleviate this problem, Commodore has developed a method of protecting
software writers called the KERNAL.

Essentially, the KERNAL is a standardized JUMP TABLE to the input, output, and
memory management routines in the operating system. The locations of each
routine in ROM may change as the system is upgraded. But the KERNAL jump
table will always be changed to match. If your machine language routines only
use the system ROM routines through the KERNAL, it will take much less work to
modify them, should that need ever arise.

The KERNAL is the operating system of the Commodore 64 computer. All input,
output, and memory management is controlled by the KERNAL.

To simplify the machine language programs you write, and to make sure that
future versions of the Commodore 64 operating system don't make your machine
language programs obsolete, the KERNAL contains a jump table for you to use.
By taking advantage of the 39 input/output routines and other utilities available
to you from the table, not only do you save time, you also make it easier to
translate your programs from one Commodore computer to another.

The jump table is located on the last page of memory, in read-only memory

(ROM).

To use the KERNAL jump table, first you set up the parameters that the KERNAL
routine needs to work. Then JSR (Jump to SubRoutine) to the proper place in the
KERNAL jump table. After performing its function, the KERNAL transfers control
back to your machine language program. Depending on which KERNAL routine
you are using, certain registers may pass parameters back to your program. The
particular registers for each KERNAL routine may be found in the individual
descriptions of the KERNAL subroutines.

268 BASIC TO MACHINE LANGUAGE

A good question at this point is why use the jump table at all2 Why not just JSR
directly to the KERNAL subroutine involved? The jump table is used so that if the
KERNAL or BASIC is changed, your machine language programs will still work. In
future operating systems the routines may have their memory locations moved
around to a different position in the memory map... but the jump table will still
work correctly!

KERNAL POWER-UP ACTIVITIES

1. On power-up, the KERNAL first resets the stack pointer, and clears
decimal mode.

2. The KERNAL then checks for the presence of an autostart ROM cartridge
at location $8000 HEX (32768 decimal). If this is present, normal
initialization is suspended, and control is transferred to the cartridge
code. If an autostart ROM is not present, normal system initialization
continues.

3. Next, the KERNAL initializes all INPUT/OUTPUT devices. The serial bus
is initialized. Both 6526 CIA chips are set to the proper values for
keyboard scanning, and the 60-Hz timer is activated. The SID chip is
cleared. The BASIC memory map is selected and the cassette motor is
switched off.

4. Next, the KERNAL performs a RAM test, setting the top and bottom of
memory pointers. Also, page zero is initialized, and the tape buffer is
set up.

The RAM TEST routine is a nondestructive test starting at location $0300
and working upward. Once the test has found the first non-RAM
location, the top of RAM has its pointer set. The bottom of memory is
always set to $0800, and the screen setup is always set at $0400.

5. Finally, the KERNAL performs these other activities. /O vectors are set
to default values. The indirect jump table in low memory is established.
The screen is then cleared, and all screen editor variables reset. Then
the indirect at $A000 is used to start BASIC.

BASIC TO MACHINE LANGUAGE 269

HOW TO USE THE KERNAL

When writing machine language programs it is often convenient to use the
routines which are already part of the operating system for input/output, access
to the system clock, memory management, and other similar operations. It is an
unnecessary duplication of effort to write these routines over and over again, so
easy access to the operating system helps speed machine language
programming.

As mentioned before, the KERNAL is a jump table. This is just a collection of JMP
instructions fo many operating system routines.

To use a KERNAL routine you must first make all of the preparations that the
routine demands. If one routine says that you must call another KERNAL routine
first, then that routine must be called. If the routine expects you to put a number
in the accumulator, then that number must be there. Otherwise your routines have
little chance of working the way you expect them to work.

After all preparations are made, you must call the routine by means of the JSR
instruction. All KERNAL routines you can access are structured as SUBROUTINES,
and must end with an RTS instruction. When the KERNAL routine has finished its
task, control is returned to your program at the instruction after the JSR.

Many of the KERNAL routines return error codes in the status word or the
accumulator if you have problems in the routine. Good programming practice
and the success of your machine language programs demand that you handle
this properly. If you ignore an error return, the rest of your program might
"bomb."

That's all there is to do when you're using the KERNAL. Just these three simple
steps:

1. Set up

2. Call the routine
3. Error handling

270 BASIC TO MACHINE LANGUAGE

The following conventions are used in describing the KERNAL routines:

FUNCTION NAME: Name of the KERNAL routine.

CALL ADDRESS: This is the call address of the KERNAL routine, given in
hexadecimal.

COMMUNICATION REGISTERS: Registers listed under this heading are
used to pass parameters to and from the KERNAL routines.

PREPARATORY ROUTINES: Certain KERNAL routines require that data
be set up before they can operate. The routines needed are listed here.

ERROR RETURNS: A return from a KERNAL routine with the CARRY set
indicates that an error was encountered in processing. The accumulator
will contain the number of the error.

STACK REQUIREMENTS: This is the actual number of stack bytes used
by the KERNAL routine.

REGISTERS AFFECTED: All registers used by the KERNAL routine are
listed here.

DESCRIPTION: A short tutorial on the function of the KERNAL routine is
given here.

The list of the KERNAL routines follows.

BASIC TO MACHINE LANGUAGE 271

USER CALLABLE KERNAL ROUTINES

ADDRESS
NAME FUNCTION
HEX DECIMAL

ACPTR $FFA5 65445 Input byte from serial port

CHKIN $FFC6 65478 Open channel for input

CHKOUT $FFC9 65481 Open channel for output

CHRIN $FFCF 65487 Input character from channel

CHROUT $FFD2 65490 Output character to channel

ClouT $FFA8 65448 Output byte to serial port

CINT $FF81 65409 Initialize screen editor

CLALL $FFE7 65511 Close all channels and files

CLOSE $FFC3 65475 Close a specified logical file

CLRCHN $FFCC 65484 Close input and output channels

GETIN $FFE4 65508 Get character from keyboard queue
(keyboard buffer)

IOBASE $FFF3 65523 Returns base address of 1/O devices

IOINIT $FF84 65412 | Initialize input/output

LISTEN $FFB1 65457 Command devices on the serial bus to
LISTEN

LOAD $FFD5 65493 Load RAM from a device

MEMBOT $FFQC 65436 Read/set the bottom of memory

MEMTOP $FF99 65433 | Read/set the top of memory

OPEN $FFCO 65472 Open a logical file

PLOT $FFFO 65520 Read/set X,Y cursor position

RAMTAS $FF87 65415 Initialize RAM, allocate tape buffer,
set screen $0400

RDTIM $FFDE 65502 Read real time clock

272 BASIC TO MACHINE LANGUAGE

ADDRESS

NAME HEX DECIMAL FUNCTION
READST $FFB7 65463 Read 1/O status word
RESTOR $FFSA 65418 Restore default 1/O vectors
SAVE $FFD8 65496 | Save RAM to device
SCNKEY $FFOF 65439 Scan keyboard
SCREEN $FFED 65517 Return X,Y organization of screen
SECOND $FF93 65427 Send secondary address after LISTEN
SETLFS $FFBA 65466 Set logical, first, and second addresses
SETMSG $FF90 65424 | Control KERNAL messages
SETNAM $FFBD 65469 Set file name
SETTIM $FFDB 65499 | Set real time clock
SETTMO $FFA2 65442 Set timeout on serial bus
STOP $FFE1 65505 Scan stop key
TALK $FFB4 65460 Command serial bus device to TALK
TKSA $FF96 65430 Send secondary address after TALK
UDTIM $FFEA 65514 Increment real time clock
UNLSN $FFAE 65454 Command serial bus to UNLISTEN
UNTLK $FFAB 65451 Command serial bus to UNTALK
VECTOR $FF8D 65421 Read/set vectored 1/O

BASIC TO MACHINE LANGUAGE 273

B-1. Function Name: ACPTR

Purpose: Get data from the serial bus
Call address: $FFAS5 (hex) 65445 (decimal)
Communication registers: A

Preparatory routines: TALK, TKSA

Error returns: See READST

Stack requirements: 13

Registers affected: A, X

Description:

This is the routine to use when you want to get information from a device on
the serial bus, like a disk. This routine gets a byte of data off the serial bus
using full handshaking. The data is returned in the accumulator. To prepare
for this routine the TALK routine must be called first to command the device on
the serial bus to send data through the bus. If the input device needs a
secondary command, it must be sent by using the TKSA KERNAL routine before
calling this routine. Errors are returned in the status word. The READST routine
is used to read the status word.

How to Use:

1. Command a device on the serial bus to prepare to send data to the
Commodore 64. (Use the TALK and TKSA KERNAL routines.)

2. Call this routine (using JSR).

3. Store or otherwise use the data.

EXAMPLE:

;GET A BYTE FROM THE BUS
JSR ACPTR
STA DATA

274 BASIC TO MACHINE LANGUAGE

B-2. Function Name: CHKIN

Purpose: Open a channel for input
Call address: $FFC6 (hex) 65478 (decimal)
Communication registers: X

Preparatory routines: (OPEN)

Error returns:

Stack requirements: None

Registers affected: A, X

Description:

Any logical file that has already been opened by the KERNAL OPEN routine
can be defined as an input channel by this routine. Naturally, the device on
the channel must be an input device. Otherwise an error will occur, and the
routine will abort.

If you are getting data from anywhere other than the keyboard, this routine
must be called before using either the CHRIN or the GETIN KERNAL routines
for data input. If you want to use the input from the keyboard, and no other
input channels are opened, then the calls to this routine, and to the OPEN
routine are not needed.

When this routine is used with a device on the serial bus, it automatically sends
the talk address (and the secondary address if one was specified by the
OPEN routine) over the bus.

How to Use:

1. OPEN the logical file (if necessary; see description above).
2. Load the .X register with number of the logical file to be used.
3. Call this routine (using a JSR command).

Possible errors are:

#3: File not open
#5: Device not present
#6: File not an input file

EXAMPLE:

;PREPARE FOR INPUT FROM LOGICAL FILE 2
LDX #2
JSR CHKIN

BASIC TO MACHINE LANGUAGE 275

B-3. Function Name: CHKOUT

Purpose: Open a channel for output
Call address: $FFC9 (hex) 65481 (decimal)
Communication registers: X

Preparatory routines: (OPEN)

Error returns: 0, 3, 5, 7 (See READST)
Stack requirements: 4+

Registers affected: A, X

Description:

Any logical file number that has been created by the KERNAL routine OPEN
can be defined as an output channel. Of course, the device you intend opening
a channel to must be an output device. Otherwise an error will occur, and the
routine will be aborted.

This routine must be called before any data is sent to any output device unless
you want to use the Commodore 64 screen as your output device. If screen
output is desired, and there are no other output channels already defined,
then calls to this routine, and to the OPEN routine are not needed.

When used to open a channel to a device on the serial bus, this routine will
automatically send the LISTEN address specified by the OPEN routine (and a

secondary address if there was one).

How to Use:

REMEMBER: this routine is NOT NEEDED to send data to the screen

1. Use the KERNAL OPEN routine to specify a logical file number, a LISTEN
address, and a secondary address (if needed).

2. Load the .X register with the logical file number used in the open
statement.

3. Call this routine (by using the JSR instruction).

EXAMPLE:

LDX #3 ;DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL
JSR CHKOUT

Possible errors are:
#3: File not open

#5: Device not present
#7: Not an output file

276 BASIC TO MACHINE LANGUAGE

B-4. Function Name: CHRIN

Purpose: Get a character from the input channel
Call address: $FFCF (hex) 65487 (decimal)
Communication registers: A

Preparatory routines: (OPEN, CHKIN)

Error returns: O (See READST)

Stack requirements: 7+

Registers affected: A, X

Description:

This routine gets a byte of data from a channel already set up as the input
channel by the KERNAL routine CHKIN. If the CHKIN has NOT been used to
define another input channel, then all your data is expected from the
keyboard. The data byte is returned in the accumulator. The channel remains
open after the call.

Input from the keyboard is handled in a special way. First, the cursor is turned
on, and blinks until a carriage return is typed on the keyboard. All characters
on the line (up to 88 characters) are stored in the BASIC input buffer. These
characters can be retrieved one at a time by calling this routine once for each
character. When the carriage return is retrieved, the entire line has been
processed. The next time this routine is called, the whole process begins again,
i.e., by flashing the cursor.

How to Use:

FROM THE KEYBOARD

1. Retrieve a byte of data by calling this routine.
2. Store the data byte.

3. Check if it is the last data byte (is it a CR?)

4. If not, go to step 1.

EXAMPLE:

LDY $#00 ;PREPARE THE .Y REGISTER TO STORE THE DATA
RD JSR CHRIN
STA DATA,Y ;STORE THE YTH DATA BYTE IN THE YTH
;LOCATION IN THE DATA AREA.

INY
CMP #CR ;IS IT A CARRIAGE RETURN?
BNE RD ;NO, GET ANOTHER DATA BYTE

BASIC TO MACHINE LANGUAGE 277

EXAMPLE:

JSR CHRIN
STA DATA

FROM OTHER DEVICES

1. Use the KERNAL OPEN and CHKIN routines.
2. Call this routine (using a JSR instruction).

3. Store the data.

EXAMPLE:

JSR CHRIN
STA DATA

B-5. Function Name: CHROUT

Purpose: Output a character

Call address: $FFD2 (hex) 65490 (decimal)
Communication registers: .A

Preparatory routines: (CHKOUT, OPEN)

Error returns: O (See READST)

Stack requirements: 8+

Registers affected: A

Description:

This routine outputs a character to an already opened channel. Use the
KERNAL OPEN and CHKOUT routines to set up the output channel before
calling this routine, If this call is omitted, data is sent to the default output
device (number 3, the screen). The data byte to be output is loaded into the
accumulator, and this routine is called. The data is then sent to the specified
output device. The channel is left open after the call.

NOTE: Care must be taken when using this routine to send data to a specific serial device
since data will be sent to all open output channels on the bus. Unless this is desired, all open
output channels on the serial bus other than the intended destination channel must be closed

by a call to the KERNAL CLRCHN routine.

278 BASIC TO MACHINE LANGUAGE

How to Use:

1. Use the CHKOUT KERNAL routine if needed, (see description above).
2. Load the data to be output into the accumulator.

3. Call this routine

EXAMPLE:

;DUPLICATE THE BASIC INSTRUCTION CMD 4,"A";

LDX #4 ;LOGICAL FILE #4
JSR CHKOUT ;OPEN CHANNEL OUT
LDA #'A

JSR CHROUT ; SEND CHARACTER

B-6. Function Name: CIOUT

Purpose: Transmit a byte over the serial bus
Call address: $FFA8 (hex) 65448 (decimal)
Communication registers: .A

Preparatory routines: LISTEN, [SECOND]

Error returns: See READST

Stack requirements: 5

Registers affected: None

Description:

This routine is used to send information to devices on the serial bus. A call to
this routine will put a data byte onto the serial bus using full serial
handshaking. Before this routine is called, the LISTEN KERNAL routine must be
used to command a device on the serial bus to get ready to receive data. (If
a device needs a secondary address, it must also be sent by using the
SECOND KERNAL routine.) The accumulator is loaded with a byte to
handshake as data on the serial bus. A device must be listening or the status
word will return a timeout. This routine always buffers one character. (The
routine holds the previous character to be sent back.) So when a call to the
KERNAL UNLSN routine is made to end the data transmission, the buffered
character is sent with an End Or Identify (EOI) set. Then the UNLSN command
is sent to the device.

BASIC TO MACHINE LANGUAGE 279

How to Use:

1. Use the LISTEN KERNAL routine (and the SECOND routine if needed).
2. Load the accumulator with a byte of data.

3. Call this routine to send the data byte.

EXAMPLE:

LDA #'X ;SEND AN X TO THE SERIAL BUS

JSR CIOUT

B-7. Function Name: CINT

Purpose: Initialize screen editor & 6567 video chip
Call address: $FF81 (hex) 65409 (decimal)
Communication registers: ~ None

Preparatory routines: None

Error returns: None

Stack requirements: 4

Registers affected: A, X, .Y

Description:

This routine sets up the 6567 video controller chip in the Commodore 64 for
normal operation. The KERNAL screen editor is also initialized. This routine
should be called by a Commodore 64 program cartridge.

How to Use:

1. Call this routine.

EXAMPLE:

JSR CINT
JMP RUN ;BEGIN EXECUTION

280 BASIC TO MACHINE LANGUAGE

B-8. Function Name: CLALL

Purpose: Close all files

Call address: $FFE7 (hex) 65511 (decimal)
Communication registers: None

Preparatory routines: None

Error returns: None

Stack requirements: 11

Registers affected: A, X

Description:

This routine closes all open files. When this routine is called, the pointers into
the open file table are reset, closing all files. Also, the CLRCHN routine is
automatically called to reset the 1/O channels.

How to Use:

1. Call this routine.

EXAMPLE:

JSR CLALL ;CLOSE ALL FILES AND SELECT DEFAULT I/O
; CHANNELS

JMP RUN ;BEGIN EXECUTION

B-9. Function Name: CLOSE

Purpose: Close a logical file

Call address: $FFC3 (hex) 65475 (decimal)
Communication registers: .A

Preparatory routines: None

Error returns: 0, 240 (See READST)

Stack requirements: 2+

Registers affected: A, XY

Description:

This routine is used to close a logical file after all 1/O operations have been
completed on that file. This routine is called after the accumulator is loaded
with the logical file number to be closed (the same number used when the file
was opened using the OPEN routine).

BASIC TO MACHINE LANGUAGE 281

How to Use:

1. Load the accumulator with the number of the logical file to be closed.
2. Call this routine.

EXAMPLE:

;CLOSE 15
LDA #15
JSR CLOSE

B-10. Function Name: CLRCHN

Purpose: Clear 1/O channels

Call address: $FFCC (hex) 65484 (decimal)
Communication registers: None

Preparatory routines: None

Error returns:

Stack requirements: 9

Registers affected: A, X

Description:

This routine is called to clear all open channels and restore the 1/O channels
to their original default values. It is usually called after opening other 1/O
channels (like a tape or disk drive) and using them for input/output operations.
The default input device is O (keyboard). The default output device is 3 (the
Commodore 64 screen).

If one of the channels to be closed is to the serial port, an UNTALK signal is
sent first to clear the input channel or an UNLISTEN is sent to clear the output
channel. By not calling this routine (and leaving listener(s) active on the serial
bus) several devices can receive the same data from the Commodore 64 at
the same time. One way to take advantage of this would be to command the
printer to TALK and the disk to LISTEN. This would allow direct printing of a
disk file.

This routine is automatically called when the KERNAL CLALL routine is
executed.

How to Use:
1. Call this routine using the JSR instruction.
EXAMPLE:

JSR CLRCHN

282 BASIC TO MACHINE LANGUAGE

B-11. Function Name: GETIN

Purpose: Get a character

Call address: $FFE4 (hex) 65508 (decimal)
Communication registers: A

Preparatory routines: CHKIN, OPEN

Error returns: See READST

Stack requirements: 7+

Registers affected: A (X, .Y)

Description:

If the channel is the keyboard, this subroutine removes one character from the
keyboard queue and returns it as an ASCIl value in the accumulator. If the
queue is empty, the value returned in the accumulator will be zero. Characters
are put info the queue automatically by an interrupt driven keyboard scan
routine which calls the SCNKEY routine. The keyboard buffer can hold up to
ten characters. After the buffer is filled, additional characters are ignored
until at least one character has been removed from the queue. If the channel
is RS-232, then only the .A register is used and a single character is returned.
See READST to check validity. If the channel is serial, cassette, or screen, call
BASIN routine.

How to Use:

1. Call this routine using a JSR instruction.
2. Check for a zero in the accumulator (empty buffer).
3. Process the data.

EXAMPLE:

;WAIT FOR A CHARACTER
WAIT JSR GETIN

CMP #0

BEQ WAIT

BASIC TO MACHINE LANGUAGE 283

B-12. Function Name: IOBASE

Purpose: Define |/O memory page
Call address: $FFF3 (hex) 65523 (decimal)
Communication registers: X, .Y

Preparatory routines: None

Error returns:

Stack requirements: 2

Registers affected: X, .Y

Description:

This routine sets the X and Y registers to the address of the memory section
where the memory mapped 1/O devices are located. This address can then
be used with an offset to access the memory mapped |/O devices in the
Commodore 64. The offset is the number of locations from the beginning of
the page on which the 1/O register you want is located. The .X register
contains the low order address byte, while the .Y register contains the high
order address byte.

This routine exists to provide compatibility between the Commodore 64, VIC-
20, and future models of the Commodore 64. If the 1/O locations for a
machine language program are set by a call to this routine, they should still
remain compatible with future versions of the Commodore 64, the KERNAL
and BASIC.

How to Use:

1. Call this routine by using the JSR instruction.

2. Store the .X and the .Y registers in consecutive locations.
3. Load the .Y register with the offset.

4. Access that 1/O location

EXAMPLE:

;SET THE DATA DIRECTION REGISTER OF THE USER PORT TO O
; CINPUT)

JSR IOBASE

STX POINT ;SET BASE REGISTERS

STY POINT+1

LDY #2

LDA #0O ;OFFSET FOR DDR OF THE USER PORT

STA (POINT),Y ;SET DDR TO O

284 BASIC TO MACHINE LANGUAGE

B-13. Function Name: IOINIT

Purpose: Initialize 1/O devices

Call address: $FF84 (hex) 65412 (decimal)
Communication registers: ~ None

Preparatory routines: None

Error returns:

Stack requirements: None

Registers affected: A, X, .Y

Description:

This routine initializes all input/output devices and routines. It is normally
called as part of the initialization procedure of a Commodore 64 program
cartridge.

EXAMPLE:

JSR IOINIT

B-14. Function Name: LISTEN

Purpose: Command a device on the serial bus to listen
Call address: $FFB1 (hex) 65457 (decimal)
Communication registers: A

Preparatory routines: None

Error returns: See READST

Stack requirements: None

Registers affected: A

Description:

This routine will command a device on the serial bus to receive data. The
accumulator must be loaded with a device number between O and 31 before
calling the routine. LISTEN will OR the number bit by bit to convert to a listen
address, then transmits this data as a command on the serial bus. The specified
device will then go into listen mode, and be ready to accept information.

How to Use:
1. Load the accumulator with the number of the device to command to LISTEN.
2. Call this routine using the JSR instruction.

EXAMPLE:
;COMMAND DEVICE #8 TO LISTEN

LDA #8
JSR LISTEN

BASIC TO MACHINE LANGUAGE 285

B-15. Function Name: LOAD

Purpose: Load RAM from device

Call address: $FFD5 (hex) 65493 (decimal)
Communication registers: A, X, .Y

Preparatory routines: SETLFS, SETNAM

Error returns: 0, 4, 5, 8, 9, READST

Stack requirements: None

Registers affected: A, XY

Description:

This routine LOADs data bytes from any input device directly into the memory
of the Commodore 64. It can also be used for a verify operation, comparing
data from a device with the data already in memory, while leaving the data
stored in RAM unchanged.

The accumulator (.A) must be set to O for a LOAD operation, or 1 for a verify.
If the input device is OPENed with a secondary address (SA) of O the header
information from the device is ignored. In this case, the .X and .Y registers must
contain the starting address for the load. If the device is addressed with a
secondary address of 1, then the data is loaded into memory starting at the
location specified by the header. This routine returns the address of the highest
RAM location loaded.

Before this routine can be called, the KERNAL SETLFS, and SETNAM routines
must be called.

NOTE: You can NOT LOAD from the keyboard (0), RS-232 (2), or the screen (3).

How to Use:

1. Call the SETLFS, and SETNAM routines. If a relocated load is desired, use
the SETLFS routine to send a secondary address of O.

2. Set the .A register to O for load, 1 for verify.

3. If a relocated load is desired, the .X and .Y registers must be set to the
start address for the load.

4. Call the routine using the JSR instruction.

286 BASIC TO MACHINE LANGUAGE

EXAMPLE:

;LOAD A FILE FROM TAPE

LDA #FILENO ;SET LOGICAL FILE NUMBER

LDX #DEVICE1 ;SET DEVICE NUMBER

LDY CMD1 ;SET SECONDARY ADDRESS

JSR SETLFS

LDA #NAME1-NAME ;LOAD .A WITH NUMBER OF
;CHARACTERS IN FILE NAME

LDX #<NAME ;LOAD X AND Y WITH ADDRESS OF

LDY #>NAME ;FILE NAME

JSR SETNAM

LDA #0 ;SET FLAG FOR A LOAD

LDX #$FF ;ALTERNATE START

LDY #$FF

JSR LOAD

STX VARTAB ;END OF LOAD

STY VARTAB+1

JMP START

NAME .BYT 'FILE NAME'

NAME1 ;

B-16. Function Name: MEMBOT

Purpose: Set bottom of memory

Call address: $FFOC (hex) 65436 (decimal)
Communication registers: X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: X, .Y

Description:

This routine is used to set the bottom of the memory. If the accumulator carry
bit is set when this routine is called, a pointer to the lowest byte of RAM is
returned in the .X and .Y registers. On the unexpanded Commodore 64 the
initial value of this pointer is $0800 (2048 in decimal). If the accumulator
carry bit is clear (=0) when this routine is called, the values of the .X and .Y
registers are transferred to the low and high bytes, respectively, of the
pointer to the beginning of RAM.

BASIC TO MACHINE LANGUAGE 287

How to Use:

TO READ THE BOTTOM OF RAM
1. Set the carry.
2. Call this routine

TO SET THE BOTTOM OF MEMORY
1. Clear the carry.
2. Call this routine

EXAMPLE:

;MOVE BOTTOM OF MEMORY UP 1 PAGE

SEC ;READ MEMORY BOTTOM

JSR MEMBOT

INY

CLC ;SET MEMORY BOTTOM TO NEW VALUE
JSR MEMBOT

B-17. Function Name: MEMTOP

Purpose: Set the top of RAM

Call address: $FF99 (hex) 65433 (decimal)
Communication registers: X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: X, .Y

Description:

This routine is used to set the top of RAM. When this routine is called with the
carry bit of the accumulator set, the pointer to the top of RAM will be loaded
into the .X and .Y registers. When this routine is called with the accumulator
carry bit clear, the contents of the .X and .Y registers are loaded in the top
of memory pointer, changing the top of memory.

EXAMPLE:

;DEALLOCATE THE RS-232 BUFFER

SEC

JSR MEMTOP ;READ TOP OF MEMORY
DEX

CLC

JSR MEMTOP ;SET NEW TOP OF MEMORY

288 BASIC TO MACHINE LANGUAGE

B-18. Function Name: OPEN

Purpose:

Call address:
Communication registers:

Preparatory routines:

Error returns:

Stack requirements:

Registers affected:

Description:

Open a logical file

$FFCO (hex) 65472 (decimal)
None

SETLFS, SETNAM

1,2,4,5, 6,240, READST
None

A, X, .Y

This routine is used to OPEN a logical file. Once the logical file is set up, it can
be used for input/output operations. Most of the |/O KERNAL routines call on

this routine to create the logical files to operate on. No arguments need to be
set up to use this routine, but both the SETLFS and SETNAM KERNAL routines
must be called before using this routine.

How to Use:

1. Use the SETLFS routine.
2. Use the SETNAM routine.
3. Call this routine.

EXAMPLE:

This is an implementation of the BASIC statement: OPEN 15,8,15,"l /O"

LDA
LDY
LDX
JSR
LDA
LDX
LDY
JSR
JSR

NAME .BYT

NAME?2

#NAME2-NAME
#>NAME
#<NAME
SETNAM
#15
#8
#15
SETLFS
OPEN

'Is0'

;LENGTH OF FILE NAME FOR SETLFS

;ADDRESS OF FILE NAME

BASIC TO MACHINE LANGUAGE

289

B-19. Function Name: PLOT

Purpose: Set cursor location

Call address: $FFFO (hex) 65520 (decimal)
Communication registers: A, X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A, X, .Y

Description:

A call to this routine with the accumulator carry flag set loads the current
position of the cursor on the screen (in X, Y coordinates) into the .Y and .X
registers. Y is the column number of the cursor location (O to 39), and X is the
row number of the location of the cursor (0 to 24). A call with the carry bit
clear moves the cursor to X, Y as determined by the .Y and .X registers.

How to Use:

READING CURSOR LOCATION

1. Set the carry flag.

2. Call this routine.

3. Get the X and Y position from the .Y and .X registers, respectively.

SETTING CURSOR LOCATION

1. Clear carry flag.

2. Set the .Y and .X registers to the desired cursor location.
3. Call this routine

EXAMPLE:

;MOVE THE CURSOR TO ROW 10, COLUMN S (5,10)
LDX #10

LDY #5

CLC

JSR PLOT

290 BASIC TO MACHINE LANGUAGE

B-20. Function Name: RAMTAS

Purpose: Perform RAM test

Call address: $FF87 (hex) 65415 (decimal)
Communication registers: .A, X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A, X, .Y

Description:

This routine is used to test RAM and set the top and bottom of memory pointers
accordingly. It also clears locations $0000 to $0101 and $0200 to $03FF. It
also allocates the cassette buffer, and sets the screen base to $0400.
Normally, this routine is called as part of the initialization process of a
Commodore 64 program cartridge.

EXAMPLE:

JSR RAMTAS

B-21. Function Name: RDTIM

Purpose: Read system clock

Call address: $FFDE (hex) 65502 (decimal)
Communication registers: A, X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A, XY

Description:

This routine is used to read the system clock. The clock's resolution is a 60th of
a second. Three bytes are returned by the routine. The accumulator contains
the most significant byte, the X index register contains the next most significant
byte, and the Y index register contains the least significant byte.

EXAMPLE:

JSR RDTIM
STY TIME

STX TIME+1
STA TIME+2

TIME %=%+3

BASIC TO MACHINE LANGUAGE = 291

B-22. Function Name: READST

Purpose:
Call address:

Communication registers:

Preparatory routines:

Error returns:

Stack requirements:

Registers affected:

Description:

Read status word
$FFB7 (hex) 65463 (decimal)
A
None
None
2
A

This routine returns the current status of the 1/O devices in the accumulator.

The routine is usually called after new communication to an 1/O device. The

routine gives you information about device status, or errors that have occurred

during the |/O operation.

The bits returned in the accumulator contain the following information: (see

table below)

ST TAPE
POS;-I:IILN NUMERIC CA;ES::;TE SERIAL R/W VERIFY +
VALUE LOAD
0 1 Time out
write
1 2 Time out
read
Short block Short block
8 Long block Long block
16 Unrecoverable Any
read error mismatch
5 32 Checksum Checksum
error error
6 64 End of file EOI line
-128 End of tape Device not End of tape
present

292

BASIC TO MACHINE LANGUAGE

How to Use:

1. Call this routine.
2. Decode the information in the .A register as it refers to your program

EXAMPLE:

;CHECK FOR END OF FILE DURING READ

JSR READST

AND #64 ;CHECK EOF BIT (EOF=END OF FILE)>
BNE EOF ;BRANCH ON EOF

B-23. Function Name: RESTOR

Purpose: Restore default system and interrupt vectors
Call address: $FF8A (hex) 65418 (decimal)

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A, XY

Description:

This routine restores the default values of all system vectors used in KERNAL
and BASIC routines and interrupts. (See the Memory Map for the default
vector contents). The KERNAL VECTOR routine is used to read and alter
individual system vectors

How to Use:

1. Call this routine.

EXAMPLE:

JSR RESTOR

B-24. Function Name: SAVE

Purpose: Save memory to a device
Call address: $FFD8 (hex) 65496 (decimal)
Communication registers: .A, X, .Y

Preparatory routines: SETLFS, SETNAM

Error returns: 5, 8, 9, READST

Stack requirements: None

Registers affected: A, XY

BASIC TO MACHINE LANGUAGE 293

Description:

This routine saves a section of memory. Memory is saved from an indirect
address on page O specified by the accumulator to the address stored in the
X and Y registers. It is then sent to a logical file on an input/output device.
The SETLFS and SETNAM routines must be used before calling this routine.
However, a file name is not required to SAVE to device 1 (the Datasette™
recorder). Any attempt to save to other devices without using a file name
results in an error.

NOTE: Device O (the keyboard), device 2 (RS-232), and device 3 (the screen) cannot be
SAVEd to. If the attempt is made, an error occurs, and the SAVE is stopped.

How to Use:

1. Use the SETLFS routine and the SETNAM routine (unless a SAVE with no
file name is desired on "a save to the tape recorder").

2. Load two consecutive locations on page 0 with a pointer to the start of
your save (in standard 6502 low byte first, high byte next format).

3. Load the accumulator with the single byte page zero offset to the pointer.

4. Load the .X and .Y registers with the low byte and high byte respectively
of the location of the end of the save.

5. Call this routine.

EXAMPLE:

LDA #1 ;DEVICE = 1:CASSETTE

JSR SETLFS

LDA #0 ;NO FILE NAME

JSR SETNAM

LDA PROG ;LOAD START ADDRESS OF SAVE

STA TXTTAB ; (LOW BYTED

LDA PROG+1

STA TXTTAB+1 ; CHIGH BYTED

LDX VARTAB ;LOAD .X WITH LOW BYTE OF END OF SAVE

LDY VARTAB+1 ;LOAD .Y WITH HIGH BYTE
LDA #<TXTTAB ;LOAD ACCUMULATOR WITH PAGE O OFFSET
JSR SAVE

294 BASIC TO MACHINE LANGUAGE

B-25. Function Name: SCNKEY

Purpose: Scan the keyboard

Call address: $FFOF (hex) 65439 (decimal)
Communication registers: ~ None

Preparatory routines: IOINIT

Error returns: None

Stack requirements: 5

Registers affected: A, X, .Y

Description:

This routine scans the Commodore 64 keyboard and checks for pressed keys.
It is the same routine called by the interrupt handler. If a key is down, its ASCII
value is placed in the keyboard queue. This routine is called only if the normal
IRQ interrupt is bypassed.

How to Use:

1. Call this routine.

EXAMPLE:

GET JSR SCNKEY ;SCAN KEYBOARD
JSR GETIN ;GET CHARACTER
CMP #0 ;IS IT NULL?
BEQ GET ;YES. .. SCAN AGAIN
JSR CHROUT ;PRINT IT

B-26. Function Name: SCREEN

Purpose: Return screen format

Call address: $FFED (hex) 65517 (decimal)
Communication registers: X, .Y

Preparatory routines: None

Stack requirements: 2

Registers affected: X, .Y

Description:

This routine returns the format of the screen, e.g., 40 columns in .X and 25 lines
in.Y. The routine can be used to determine what machine a program is running
on. This function has been implemented on the Commodore 64 to help upward
compatibility of your programs.

BASIC TO MACHINE LANGUAGE 295

How to Use:

1. Call this routine.

EXAMPLE:

JSR SCREEN
STX MAXCOL
STY MAXROW

B-27. Function Name: SECOND

Purpose: Send secondary address for LISTEN
Call address: $FF93 (hex) 65427 (decimal)
Communication registers: .A

Preparatory routines: LISTEN

Error returns: See READST

Stack requirements: 8

Registers affected: A

Description:

This routine is used to send a secondary address to an |/O device after a call
to the LISTEN routine is made, and the device is commanded to LISTEN. The
routine can NOT be used to send a secondary address after a call to the TALK
routine.

A secondary address is usually used to give setup information to a device
before 1/O operations begin.

When a secondary address is to be sent to a device on the serial bus, the
address must first be ORed with $60.

How to Use:

1. Load the accumulator with the secondary address to be sent.
2. Call this routine.

EXAMPLE:

;ADDRESS DEVICE #8 WITH COMMAND (SECONDARY ADDRESS) #15
LDA #8

JSR LISTEN

LDA #15

JSR SECOND

296 BASIC TO MACHINE LANGUAGE

B-28. Function Name: SETLFS

Purpose: Set up a logical file

Call address: $FFBA (hex) 65466 (decimal)
Communication registers: A, X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

Description:

This routine sets the logical file number, device address, and secondary
address (command number) for other KERNAL routines.

The logical file number is used by the system as a key to the file table created
by the OPEN file routine. Device addresses can range from O to 31. The
following codes are used by the Commodore 64 to stand for the CBM devices
listed below:

ADDRESS DEVICE
0 Keyboard
Datasette ™ #1
RS-232C device
CRT display
Serial bus printer
CBM serial bus disk drive

o N WN =

Device numbers 4 or greater automatically refer to devices on the serial bus.

A command to the device is sent as a secondary address on the serial bus
after the device number is sent during the serial attention handshaking
sequence. If no secondary address is to be sent, the .Y index register should
be set to 255.

How to Use:
1. Load the accumulator with the logical file number.

2. Load the .X index register with the device number.
3. Load the .Y index register with the command.

BASIC TO MACHINE LANGUAGE 297

EXAMPLE:

FOR LOGICAL FILE 32, DEVICE #4, AND NO COMMAND:
LDA #32

LDX #4

LDY #255

JSR SETLFS

B-29. Function Name: SETMSG

Purpose: Control system message output
Call address: $FFQO0 (hex) 65424 (decimal)
Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A

Description:

This routine controls the printing of error and control messages by the KERNAL.
Either print error messages or print control messages can be selected by
setting the accumulator when the routine is called. FILE NOT FOUND is an
example of an error message. PRESS PLAY ON CASSETTE is an example of

a control message.

Bits 6 and 7 of this value determine where the message will come from. If bit
7 is 1, one of the error messages from the KERNAL is printed. If bit 6 is set,

control messages are printed.

How to Use:

1. Set accumulator to desired value.
2. Call this routine.

EXAMPLE:

LDA #$40

JSR SETMSG ;TURN ON CONTROL MESSAGES
LDA #$80

JSR SETMSG ;TURN ON ERROR MESSAGES

LDA #0

JSR SETMSG ;TURN OFF ALL KERNAL MESSAGES
298 BASIC TO MACHINE LANGUAGE

B-30. Function Name: SETNAM

Purpose: Set up file name

Call address: $FFBD (hex) 65469 (decimal)
Communication registers: .A, X, .Y

Preparatory routines: None

Stack requirements: None

Registers affected: None

Description:

This routine is used to set up the file name for the OPEN, SAVE, or LOAD
routines. The accumulator must be loaded with the length of the file name. The
X and .Y registers must be loaded with the address of the file name, in
standard 6502 low-byte/high-byte format. The address can be any valid
memory address in the system where a string of characters for the file name
is stored. If no file name is desired, the accumulator must be set to O,
representing a zero file length. The .X and .Y registers can be set to any
memory address in that case.

How to Use:

1. Load the accumulator with the length of the file name.

2. Load the .X index register with the low order address of the file name.
3. Load the .Y index register with the high order address.

4. Call this routine

EXAMPLE:

LDA #NAME2-NAME ;LOAD LENGTH OF FILE NAME
LDX #<NAME ;LOAD ADDRESS OF FILE NAME
LDY #>NAME

JSR SETNAM

B-31. Function Name: SETTIM

Purpose: Set the system clock

Call address: $FFDB (hex) 65499 (decimal)
Communication registers: A, X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

BASIC TO MACHINE LANGUAGE 299

Description:

A system clock is maintained by an interrupt routine that updates the clock
every 1/60th of a second (one "jiffy"). The clock is three bytes long, which
gives it the capability to count up to 5,184,000 jiffies (24 hours). At that point
the clock resets to zero. Before calling this routine to set the clock, the
accumulator must contain the most significant byte, the .X index register the
next most significant byte, and the .Y index register the least significant byte
of the initial time setting (in jiffies).

How to Use:

1. Load the accumulator with the MSB of the 3-byte number to set the clock.
2. Load the .X register with the next byte.

3. Load the .Y register with the LSB.

4. Call this routine.

EXAMPLE:

;SET THE CLOCK TO 10 MINUTES = 3600 JIFFIES
LDA #0O ;MOST SIGNIFICANT

LDX #>3600

LDY #<3600 ;LEAST SIGNIFICANT
JSR SETTIM

B-32. Function Name: SETTMO

Purpose: Set IEEE bus card timeout flag
Call address: $FFA2 (hex) 65442 (decimal)
Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

NOTE: This routine is used ONLY with an IEEE add-on card!

Description:

This routine sets the timeout flag for the IEEE bus. When the timeout flag is set,
the Commodore 64 will wait for a device on the IEEE port for 64 milliseconds.
If the device does not respond to the Commodore 64's Data Address Valid
(DAV) signal within that time the Commodore 64 will recognize an error
condition and leave the handshake sequence. When this routine is called when
the accumulator contains a O in bit 7, timeouts are enabled. A 1 in bit 7 will
disable the timeouts.

300 BASIC TO MACHINE LANGUAGE

NOTE: The Commodore 64 uses the timeout feature to communicate that a disk file is not
found on an attempt to OPEN a file only with an IEEE card.

How to Use:

TO SET THE TIMEOUT FLAG
1. Set bit 7 of the accumulator to 0.
2. Call this routine.

TO RESET THE TIMEOUT FLAG
1. Set bit 7 of the accumulator to 1.
2. Call this routine.

EXAMPLE:

;DISABLE TIMEOUT
LDA #0
JSR SETTMO

B-33. Function Name: STOP

Purpose: Check if key is pressed
Call address: $FFE1 (hex) 65505 (decimal)
Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: A, X

Description:

If the key on the keyboard was pressed during a UDTIM call, this call
returns the Z flag set. In addition, the channels will be reset to default values.
All other flags remain unchanged. If the key is not pressed then the
accumulator will contain a byte representing the lost row of the keyboard
scan. The user can also check for certain other keys this way.

How to Use:

1. UDTIM should be called before this routine.
2. Call this routine.
3. Test for the zero flag

BASIC TO MACHINE LANGUAGE 301

EXAMPLE:

JSR UDTIM ;SCAN FOR STOP

JSR STOP
BNE X+5 ;KEY NOT DOWN
JMP READY ;=... STOP

B-34. Function Name: TALK

Purpose: Command a device on the serial bus to TALK
Call address: $FFB4 (hex) 65460 (decimal)
Communication registers: .A

Preparatory routines: None

Error returns: See READST

Stack requirements: 8

Registers affected: A

Description:

To use this routine the accumulator must first be loaded with a device number
between O and 31. When called, this routine then ORs bit by bit to convert
this device number to a talk address. Then this data is transmitted as a
command on the serial bus.

How to Use:

1. Load the accumulator with the device number.
2. Call this routine.

EXAMPLE:

;COMMAND DEVICE #4 TO TALK
LDA #4
JSR TALK

B-35. Function Name: TKSA

Purpose: Send a secondary address fo a device commanded to TALK
Call address: $FF96 (hex) 65430 (decimal)

Communication registers: .A

Preparatory routines: TALK

Error returns: See READST

Stack requirements: 8

Registers affected: A

302 BASIC TO MACHINE LANGUAGE

Description:

This routine transmits a secondary address on the serial bus for a TALK device.
This routine must be called with a number between O and 31 in the
accumulator. The routine sends this number as a secondary address command
over the serial bus. This routine can only be called after a call to the TALK
routine. It will not work after a LISTEN.

How to Use:

1. Use the TALK routine.
2. Load the accumulator with the secondary address.
3. Call this routine.

EXAMPLE:

;TELL DEVICE #4 TO TALK WITH COMMAND #7
LDA #4

JSR TALK

LDA #7

JSR TKSA

B-36. Function Name: UDTIM

Purpose: Update the system clock

Call address: $FFEA (hex) 65514 (decimal)
Communication registers: None

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A, X

Description:

This routine updates the system clock. Normally this routine is called by the
normal KERNAL interrupt routine every 1/60th of a second. If the user
program processes its own interrupts this routine must be called to update the
time. In addition, the FJf8l{ key routine must be called, if the FJfold key is to
remain functional.

How to Use:

1. Call this routine.

EXAMPLE:

JSR UDTIM

BASIC TO MACHINE LANGUAGE 303

B-37. Function Name: UNLSN

Purpose: Send an UNLISTEN command
Call address: $FFAE (hex) 65454 (decimal)
Communication registers: ~ None

Preparatory routines: None

Error returns: See READST

Stack requirements: 8

Registers affected: A

Description:

This routine commands all devices on the serial bus to stop receiving data from
the Commodore 64 (i.e., UNLISTEN). Calling this routine results in an UNLISTEN
command being transmitted on the serial bus. Only devices previously
commanded to listen are affected. This routine is normally used after the
Commodore 64 is finished sending data to external devices. Sending the
UNLISTEN commands the listening devices to get off the serial bus so it can be
used for other purposes.

How to Use:
1. Call this routine.

EXAMPLE:
JSR UNLSN

B-38. Function Name: UNTLK

Purpose: Send an UNTALK command
Call address: $FFAB (hex) 65451 (decimal)
Communication registers: None

Preparatory routines: None

Error returns: See READST

Stack requirements: 8

Registers affected: A

Description:

This routine transmits an UNTALK command on the serial bus. All devices
previously set to TALK will stop sending data when this command is received.

How to Use:
1. Call this routine.

EXAMPLE:
JSR UNTLK

304 BASIC TO MACHINE LANGUAGE

B-39. Function Name: VECTOR

Purpose: Manage RAM vectors

Call address: $FF8D (hex) 65421 (decimal)
Communication registers: X, .Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: A, XY

Description:

This routine manages all system vector jump addresses stored in RAM. Calling
this routine with the accumulator carry bit set stores the current contents of the
RAM vectors in a list pointed to by the X and Y registers. When this routine is
called with the carry clear, the user list pointed to by the X and Y registers is
transferred to the system RAM vectors. The RAM vectors are listed in the
memory map.

NOTE: This routine requires caution in its use. The best way to use it is to first read the entire
vector contents into the user areaq, alter the desired vectors, and then copy the contents back
to the system vectors.

How to Use:

READ THE SYSTEM RAM VECTORS

1. Set the carry.

2. Set the .X and .Y registers to the address to put the vectors.
3. Call this routine.

LOAD THE SYSTEM RAM VECTORS

1. Clear the carry bit.

2. Set the .X and .Y registers to the address of the vector list in RAM that must
be loaded.

3. Call this routine.

BASIC TO MACHINE LANGUAGE 305

EXAMPLE:

;CHANGE THE INPUT ROUTINES TO NEW SYSTEM

LDX #<USER

LDY #>USER

SEC

JSR VECTOR ;READ OLD VECTORS
LDA #<MYINP ;CHANGE INPUT

STA USER+10

LDA #>MYINP

STA USER+11

LDX #<USER

LDY #>USER

CLC

JSR VECTOR ;ALTER SYSTEM

USER X=X+26

ERROR CODES

The following is a list of error messages which can occur when using the KERNAL
routines. If an error occurs during a KERNAL routine, the carry bit of the
accumulator is set, and the number of the error message is returned in the
accumulator.

NOTE: Some KERNAL I/O routines do not use these codes for error messages. Instead, errors are
identified using the KERNAL READST routine.

NUMBER MEANING
0 Routine terminated by the key
1 Too many open files
2 File already open
3 File not open
4 File not found
5 Device not present
6 File is not an input file
7 File is not an output file
8 File name is missing
9 lllegal device number
240 Top-of-memory change RS-232 buffer allocation/deallocation

306 BASIC TO MACHINE LANGUAGE

USING MACHINE LANGUAGE FROM BASIC

There are several methods of using BASIC and machine language on the
Commodore 64, including special statements as part of CBM BASIC as well as
key locations in the machine. There are five main ways to use machine language
routines from BASIC on the Commodore 64. They are:

1. The BASIC SYS statement

2. The BASIC USR function

3. Changing one of the RAM I/O vectors

4. Changing one of the RAM interrupt vectors
5. Changing the CHRGET routine

1. The BASIC statement SYS X causes a JUMP to a machine language
subroutine located at address X. The routine must end with an RTS

(ReTurn from Subroutine) instruction. This will transfer control back to
BASIC.

Parameters are generally passed between the machine language
routine and the BASIC program using the BASIC PEEK and POKE
statements, and their machine language equivalents.

The SYS command is the most useful method of combining BASIC with
machine language. PEEKs and POKEs make multiple parameter passing
easy. There can be many SYS statements in a program, each to a
different (or even the same) machine language routine.

2. The BASIC function USR(X) transfers control to the machine language
subroutine located at the address stored in locations 785 and 786. (The
address is stored in standard low-byte /high-byte format.) The value X
is evaluated and passed to the machine language subroutine through
floating point accumulator #1, located beginning at address $61 (see
memory map for more details). A value may be returned back to the
BASIC program by placing it in the floating point accumulator. The
machine language routine must end with an RTS instruction to return to
BASIC.

This statement is different from the SYS, because you have to set up an
indirect vector. Also different is the format through which the variable
is passed (floating point format). The indirect vector must be changed
if more than one machine language routine is used.

BASIC TO MACHINE LANGUAGE 307

Any of the input/output or BASIC internal routines accessed through the
vector table located on page 310 (see ADDRESSING MODES, ZERO
PAGE) can be replaced, or amended by user code. Each 2-byte vector
consists of a low byte and a high byte address which is used by the
operating system.

The KERNAL VECTOR routine is the most reliable way to change any
of the vectors, but a single vector can be changed by POKEs. A new
vector will point to a user prepared routine which is meant to replace
or augment the standard system routine. When the appropriate BASIC
command is executed, the user routine will be executed. If after
executing the user routine, it is necessary to execute the normal system
routine, the user program must JMP (JuMP) to the address formerly
contained in the vector. If not, the routine must end with a RTS to transfer
control back to BASIC.

The HARDWARE INTERRUPT (IRQ) VECTOR can be changed. Every
1/60th of a second, the operating system transfers control to the routine
specified by this vector. The KERNAL normally uses this for timing,
keyboard scanning, etc. If this technique is used, you should always
transfer control to the normal IRQ handling routine, unless the
replacement routine is prepared to handle the CIA chip. (REMEMBER to
end the routine with an RTI (ReTurn from Interrupt) if the CIA is handled
by the routine).

This method is useful for tasks which must happen concurrently with a
BASIC program, but has the drawback of being more difficult.

NOTE: ALWAYS DISABLE INTERRUPTS BEFORE CHANGING THIS VECTOR!

308

The CHRGET routine is used by BASIC to get each character/token. This
makes it simple to add new BASIC commands. Naturally, each new
command must be executed by a user written machine language
subroutine. A common way to use this method is to specify a character
(@ for example) which will occur before any of the new commands.
The new CHRGET routine will search for the special character. If none
is present, control is passed to the normal BASIC CHRGET routine. If the
special character is present, the new command is interpreted and
executed by your machine language program. This minimizes the extra
execution time added by the need to search for additional commands.
This technique is often called a wedge.

BASIC TO MACHINE LANGUAGE

WHERE TO PUT MACHINE LANGUAGE ROUTINES

The best place for machine language routines on the Commodore 64 is from
$C000 — $CFFF, assuming the routines are smaller than 4K bytes long. This
section of memory is not disturbed by BASIC.

If for some reason it's not possible or desirable to put the machine language
routine at $CO00, for instance if the routine is larger than 4K bytes, it then
becomes necessary to reserve an area at the top of memory from BASIC for the
routine. The top of memory is normally $9FFF. The top of memory can be
changed through the KERNAL routine MEMTOP, or by the following BASIC
statements:

10 POKES1,L:POKES2,H:POKESS, L :POKES6,H: CLR

Where H and L are the high and low portions, respectively, of the new top of
memory. For example, to reserve the area from $9000 to $9FFF for machine
language, use the following:

10 POKES1,0:POKES2, 144 : POKESS, 0: POKES6, 144 :CLR
HOW TO ENTER MACHINE LANGUAGE

There are 3 common methods to add the machine language programs to a BASIC
program. They are:

1. DATA STATEMENTS:

By READing DATA statements, and POKEing the values into memory at the start
of the program, machine language routines can be added. This is the easiest
method. No special methods are needed to save the two parts of the program,
and it is fairly easy to debug. The drawbacks include taking up more memory
space, and the wait while the program is POKEd in. Therefore, this method is
better for smaller routines.

EXAMPLE:

10 RESTORE : FORX=1T09 :READA : POKE12%X4096+X, A: NEXT
BASIC PROGRAM

1000 DATA 161,1,204,204, 204,204,204, 204, 96

BASIC TO MACHINE LANGUAGE 309

2. MACHINE LANGUAGE MONITOR (64MON):

This program allows you to enter a program in either HEX or SYMBOLIC codes,

and save the portion of memory the program is in. Advantages of this method

include easier entry of the machine language routines, debugging aids, and a
much faster means of saving and loading. The drawback to this method is that it

generally requires the BASIC program to load the machine language routine

from tape or disk when it is started. (For more details on 64MON see the machine

language section.)

EXAMPLE:

The following is an example of a BASIC program using a machine language
routine prepared by 64MON. The routine is stored on tape:

10 IF FLAG=1 THEN 20
15 FLAG=1:LOAD"MACHINE LANGUAGE ROUTINE NAME",1,1

20

I-QEST OF BASIC PROGRAM

3. EDITOR/ASSEMBLER PACKAGE:

Advantages are similar to using a machine language monitor, but programs are

even easier to enter. Disadvantages are also similar to the use of a machine

language monitor.

COMMODORE 64 MEMORY MAP

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION

D6510 0000 0] 6510 On-Chip Data-Direction
Register

R6510 0001 1 6510 On-Chip 8-Bit
Input/Output Register

0002 2 Unused
ADRAY1 0003-0004 | 3—4 Jump Vector: Convert

Floating-Integer

310 BASIC TO MACHINE LANGUAGE

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION
ADRAY2 | 0005-0006 | 5-6 Jump Vector: Convert
Integer—Floating
CHARAC | 0007 7 Search Character
ENDCHR | 0008 8 Flag: Scan for Quote at End
of String
TRMPOS | 0009 9 Screen Column From Last TAB
VERCK 000A 10 Flag: O = Load, 1 = Verify
COUNT 000B 11 Input Buffer Pointer / No. of
Subscripts
DIMFLG 000C 12 Flag: Default Array
DIMension
VALTYP 000D 13 Data Type: $FF = String,
$00 = Numeric
INTFLG (0]0]0]= 14 Data Type: $80 = Integer,
$00 = Floating
GARBFL | OOOF 15 Flag: DATA scan/LIST
quote/Garbage Coll
SUBFLG | 0010 16 Flag: Subscript Ref / User
Function Call
INPFLG 0011 17 Flag: $00 = INPUT, $40 =
GET, $98 = READ
TANSGN | 0012 18 Flag: TAN sign / Comparison
Result
0013 19 Flag: INPUT Prompt
LINNUM | 0014-0015 | 20-21 Temp: Integer Value
TEMPPT 0016 22 Pointer: Temporary String
Stack
LASTPT 0017-0018 | 23-24 Last Temp String Address
TEMPST 0019-0021 25-33 Stack for Temporary Strings
INDEX 0022-0025 | 34-37 Utility Pointer Area
RESHO 0026-002A | 38-42 Floating-Point Product of
Multiply
TXTTAB 002B-002C | 43-44 Pointer: Start of BASIC Text

BASIC TO MACHINE LANGUAGE 311

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION

VARTAB 002D-002E | 45-46 Pointer: start of BASIC
Variables

ARYTAB 002F-0030 | 47-48 Pointer: start of BASIC Arrays

STREND 0031-0032 | 49-50 Pointer: end of BASIC Arrays
(+1)

FRETOP 0033-0034 | 51-52 Pointer: Bottom of String
Storage

FRESPC 0035-0036 | 53-54 Utility String Pointer

MEMSIZ 0037-0038 | 55-56 Pointer: Highest Address used
by BASIC

CURLIN 0039-003A | 57-58 Current BASIC Line Number

OLDLIN 003B-003C | 59-60 Previous BASIC Line Number

OLDTXT 003D-003E 61-62 Pointer: BASIC Statement for
CONT

DATLIN 003F-0040 63-64 Current DATA Line Number

DATPTR 0041-0042 | 65-66 Pointer: Current DATA ltem
Address

INPPTR 0043-0044 | 67-68 Vector: INPUT Routine

VARNAM | 0045-0046 | 69-70 Current BASIC Variable
Name

VARPNT 0047-0048 | 71-72 Pointer: Current BASIC
Variable Data

FORPNT 0049-004A | 73-74 Pointer: Index Variable for
FOR/NEXT

004B-0060 | 75-96 Temp Pointer / Data Area

FACEXP 0061 97 Floating-Point Accumulator
#1: Exponent

FACHO 0062-0065 | 98-101 Floating-Point Accumulator
#1: Mantissa

FACSGN | 0066 102 Floating-Point Accumulator
#1: Sign

SGNFLG | 0067 103 Pointer: Series Evaluation

Constant

312

BASIC TO MACHINE LANGUAGE

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION

BITS 0068 104 Floating-Point Accumulator
#1: Overflow Digit

ARGEXP | 0069 105 Floating-Point Accumulator
#2: Exponent

ARGHO 006A-006D | 106-109 Floating-Point Accumulator
#2: Mantissa

ARGSGN | O06E 110 Floating-Point Accumulator
#2: Sign

ARISGN O06F 111 Sign Comparison Result:
Accumulator #1 vs #2

FACOV 0070 112 Floating-Point Accumulator
#1: Low-Order (Rounding)

FBUFPT 0071-0072 | 113-114 Pointer: Cassette Buffer

CHRGET 0073-008A | 115-138 Subroutine: Get Next Byte of
BASIC Text

CHRGOT | 0079 121 Entry to Get Same Byte of
Text Again

TXTPTR 007A-007B | 122-123 Pointer: Current Byte of BASIC
Text

RNDX 008B—-008F 139-143 Floating RND Function Seed
Value

STATUS 0090 144 KERNAL 1/O Status Word: ST

STKEY 0091 145 Flag: STOP key / RVS key

SVXT 0092 146 Timing Constant for Tape

VERCK 0093 147 Flag: O = Load, 1 = Verify

C3P0O 0094 148 Flag: Serial Bus — Output
Character Buffer

BSOUR 0095 149 Buffered Character for Serial
Bus

SYNO 0096 150 Cassette Sync Number

0097 151 Temp Data Area

LDTND 0098 152 Number of Open Files /
Index to File Table

DFLTN 0099 153 Default Input Device (0)

DFLTO 00%A 154 Default Output (CMD) Device

(3)

BASIC TO MACHINE LANGUAGE

313

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION

PRTY 0098 155 Tape Character Parity

DPSW 009C 156 Flag: Tape Byte-Received

MSGFLG | 009D 157 Flag: $80 = Direct Mode,
$00= Program

PTR1 009E 158 Tape Pass 1 Error Log

PTR2 O09F 159 Tape Pass 2 Error Log

TIME 00AO0-00A2 | 160-162 Real-Time Jiffy Clock
(approx.) 1/60 Sec

0O0A3-00A4 | 163-164 Temp Data Area

CNTDN 00AS5 165 Cassette Sync Countdown

BUFPT 00A6 166 Pointer: Tape 1/O Buffer

INBIT 00A7 167 RS-232 Input Bits / Cassette
Temp

BITCI 00A8 168 RS-232 Input Bit Count /
Cassette Temp

RINONE 00AQ 169 RS-232 Flag: Check for Start
Bit

RIDATA 00AA 170 RS-232 Input Byte Buffer /
Cassette Temp

RIPRTY 00AB 171 RS-232 Input Parity /
Cassette Short Count

SAL OOAC-00AD | 172-173 Pointer: Tape Buffer / Screen
Scrolling

EAL OOAE-OOAF 174-175 Tape End Address / End of
Program

CMPO 00BO-00B1 176-177 Tape Timing Constants

TAPE1 00B2-00B3 178-179 Pointer: Start of Tape Buffer

BITTS 00B4 180 RS-232 Out Bit Count /
Cassette Temp

NXTBIT 00B5 181 RS-232 Next Bit to Send /
Tape EOT Flag

RODATA | 00B6 182 RS-232 Out Byte Buffer

FNLEN 00B7 183 Length of Current File Name

LA 00B8 184 Current Logical File Number

314 BASIC TO MACHINE LANGUAGE

HEX DECIMAL
LABEL
ADDRESS LOCATION DESCRIPTION

SA 00B9 185 Current Secondary Address

FA OO0BA 186 Current Device Number

FNADR 00BB—00BC 187-188 Pointer: Current File Name

ROPRTY | 00BD 189 RS-232 Out Parity / Cassette
Temp

FSBLK OOBE 190 Cassette Read/Write Block
Count

MYCH OOBF 191 Serial Word Buffer

CAS1 00CO 192 Tape Motor Interlock

STAL 00C1-00C2 | 193-194 I/O Start Address

MEMUSS | 00C3-00C4 | 195-196 Tape Load Temps

LSTX 00C5 197 Current Key Pressed:
CHR$(n) 0 = No Key

NDX 00Cé6 198 Number of Characters in
Keyboard Buffer (Queue)

RVS 00C7 199 Flag: Print Reverse Characters
1 = Yes, 0 = No Used

INDX 00C8 200 Pointer: End of Logical Line
for INPUT

LSXP 00C9-00CA | 201-202 Cursor X-Y Position at Start of
INPUT

SFDX 00CB 203 Flag: Print Shifted Characters

BLNSW 00CC 204 Cursor Blink Enable:
0 = Flash Cursor

BLNCT 00CD 205 Timer: Countdown to Toggle
Cursor

GDBLN 00CE 206 Character Under Cursor

BLNON OOCF 207 Flag: Last Cursor Blink
On/Off

CRSW 00DO 208 Flag: INPUT or GET from
Keyboard

PNT 00D1-00D2 | 209-210 Pointer: Current Screen Line

Address

BASIC TO MACHINE LANGUAGE 315

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION
PNTR 00D3 211 Cursor Column on Current Line
QTSW 00D4 212 Flag: Editor in Quote Mode,
$00 = NO
LNMX 00D5 213 Physical Screen Line Length
TBLX 00D6 214 Current Cursor Physical Line
Number
00D7 215 Temp Data Area
INSRT 00oD8 216 Flag: Insert Mode,
>0 = # INSTs
LDTB1 00D9-00F2 | 217-242 Screen Line Link Table /
Editor Temps
USER OOF3-00F4 243-244 Pointer: Current Screen Color
RAM location
KEYTAB OOF5-00F6 245-246 Vector: Keyboard Decode
Table
RIBUF OO0F7-00F8 247-248 RS-232 Input Buffer Pointer
ROBUF OOF9-00FA | 249-250 RS-232 Output Buffer Pointer
FREKZP OOFB—OOFE 251-254 Free Zero-Page Space for
User Programs
BASZPT OOFF 255 BASIC Temp Data Area
0100-01FF 256-511 Microprocessor System Stack
Area
0100-010A | 256-266 Floating to String Work Area
BAD 0100-013E | 256-318 Tape Input Error Log
BUF 0200-0258 | 512-600 System INPUT Buffer
LAT 0259-0262 | 601-610 KERNAL Table: Active Logical
File Numbers
FAT 0263-026C | 611-620 KERNAL Table: Device
Number for Each File
SAT 026D-0276 | 621-630 KERNAL Table: Second
Address Each File
KEYD 0277-0280 | 631-640 Keyboard Buffer Queue

(FIFO)

316 BASIC TO MACHINE LANGUAGE

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION

MEMSTR | 0281-0282 | 641-642 Pointer: Bottom of Memory
for O.S.

MEMSIZ 0283-0284 | 643 - 644 Pointer: Top of Memory for
O.S.

TIMOUT 0285 645 Flag: KERNAL Variable for
IEEE Timeout

COLOR 0286 646 Current Character Color Code

GDCOL 0287 647 Background Color Under
Cursor

HIBASE 0288 648 Top of Screen Memory (Page)

XMAX 0289 649 Size of Keyboard Buffer

RPTFLG 028A 650 Flag: REPEAT Key Used,
$80 = Repeat

KOUNT 028B 651 Repeat Speed Counter

DELAY 028C 652 Repeat Delay Counter

SHFLAG | 028D 653 Flag: Keyboard Key /
Key / (€ Key

LSTSHF 028E 654 Last Keyboard Shift Pattern

KEYLOG | 028F-0290 | 655-656 Vector: Keyboard Table
Setup

MODE 0291 657 Flag: $00 = Disable
Keys, $80 = Enable
Keys

AUTODN | 0292 658 Flag: Auto Scroll Down,
0=0ON

M51CTR | 0293 659 RS-232: 6551 Control
Register Image

M51CDR | 0294 660 RS-232: 6551 Command
Register Image

M5TAJB | 0295-0296 | 661-662 RS-232 Non-Standard BPS
(Time/2-100) USA

RSSTAT 0297 663 RS-232 6551 Status Register
Image

BITNUM 0298 664 RS-232 Number of Bits Left to

Send

BASIC TO MACHINE LANGUAGE 317

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION
BAUDOF | 0299-029A | 665-666 RS-232 Baud Rate: Full Bit
Time (Us)
RIDBE 0298 667 RS-232 Index to End of Input
Buffer
RIDBS 029C 668 RS-232 Start of Input Buffer
(Page)
RODBS 029D 669 RS-232 Start of Output Buffer
(Page)
RODBE 029E 670 RS-232 Index to End of
Output Buffer
IRQTMP 029F-02A0 | 671672 Holds IRQ Vector During Tape
/O
ENABL 02A1 673 RS-232 Enables
02A2 674 TOD Sense During Cassette
1/O
02A3 675 Temp Storage For Cassette
Read
02A4 676 Temp D1IRQ Indicator For
Cassette Read
02A5 677 Temp For Line Index
02A6 678 PAL/NTSC Flag, 0 = NTSC,
1 = PAL
02A7-02FF 679-767 Unused
IERROR 0300-0301 768-769 Vector: Print BASIC Error
Message
IMAIN 0302-0303 | 770-771 Vector: BASIC Warm Start
ICRNCH 0304-0305 | 772-773 Vector: Tokenize BASIC Text
IQPLOP 0306—-0307 | 774-775 Vector: BASIC Text LIST
IGONE 0308-0309 | 776-777 Vector: BASIC Character
Dispatch
IEVAL 030A-030B | 778-779 Vector: BASIC Token
Evaluation
SAREG 030C 780 Storage for 6502 .A Register
SXREG 030D 781 Storage for 6502 .X Register

318 BASIC TO MACHINE LANGUAGE

HEX DECIMAL
LABEL
ADDRESS LOCATION DESCRIPTION

SYREG 030E 782 Storage for 6502 .Y Register

SPREG 030F 783 Storage for 6502 .SP
Register

USRPOK | 0310 784 USR Function Jump Instr (4C)

USRADD | 0311-0312 | 785-786 USR Address Low Byte / High
Byte

0313 787 Unused

CINV 0314-0315 | 788-789 Vector: Hardware IRQ Interrupt

CBINV 0316-0317 | 790-791 Vector: BRK Instr. Interrupt

NMINV 0318-0319 | 792-793 Vector: Non-Maskable
Interrupt

IOPEN O031A-031B | 794-795 KERNAL OPEN Routine Vector

ICLOSE 031C-031D | 796-797 KERNAL CLOSE Routine Vector

ICHKIN 031E-031F 798-799 KERNAL CHKIN Routine Vector

ICKOUT 0320-0321 800-801 KERNAL CHKOUT Routine Vector

ICLRCH 0322-0323 | 802-803 KERNAL CLRCHN Routine Vector

IBASIN 0324-0325 | 804-805 KERNAL CHRIN Routine Vector

IBSOUT 03260327 | 806-807 KERNAL CHROUT Routine Vector

ISTOP 0328-0329 ([808-809 KERNAL STOP Routine Vector

IGETIN 032A-032B | 810-811 KERNAL GETIN Routine Vector

ICLALL 032C-032D | 812-813 KERNAL CLALL Routine Vector

USRCMD | 032E-032F 814-815 User-Defined Vector

ILOAD 0330-0331 | 816-817 KERNAL LOAD Routine Vector

BASIC TO MACHINE LANGUAGE 319

HEX DECIMAL
LABEL
ADDRESS LOCATION DESCRIPTION
ISAVE 0332-0333 | 818-819 KERNAL SAVE Routine Vector
0334-033B | 820-827 Unused
TBUFFR 033C-03FB | 828-1019 Tape 1/O Buffer
03FC-03FF 1020-1023 Unused
VICSCN 0400-07FF 1024-2047 1024 Byte Screen Memory
Area
0400-07E7 1024-2023 Video Matrix: 25 Lines X 40
Columns
07F8-07FF 2040-2047 Sprite Data Pointers
0800—-9FFF 2048-40959 | Normal BASIC Program Space
8000-9FFF 32768-40959 | VSP Cartridge ROM - 8192
Bytes
AOOO-BFFF 40960-49151 | BASIC ROM — 8192 Bytes (or
8K RAM)
COOO0-CFFF 49152-53247 | RAM — 4096 Bytes
DOOO-DFFF 53248-57343 | Input/Output Devices and
Color RAM or Character
Generator ROM or RAM -
4096 Bytes
EOOO—FFFF 57344-65535 | KERNAL ROM — 8192 Bytes

(or 8K RAM)

COMMODORE 64 INPUT/OUTPUT ASSIGNMENTS

HEX

DECIMAL

BITS

DESCRIPTION

0000

0001

7-0

MOS 6510 Data Direction
Register (xx101111)

Bit= 1: Output, Bit=0: Input,
x=Don't Care

MOS 6510 Microprocessor
On-Chip 1/O Port

/LORAM Signal (0=Switch
BASIC ROM Out)

320

BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION
1 /HIRAM Signal (0=Switch
KERNAL ROM Out)
2 /CHAREN Signal (0=Switch
Char. ROM In)
3 Cassette Data Output Line
4 Cassette Switch Sense
1 = Switch Closed
5 Cassette Motor Control
0 =ON, 1 = OFF
6-7 Undefined
D000-DO2E | 53248-54271 MOS 6566 VIDEO
INTERFACE CONTROLLER
(VIC)
D000 53248 Sprite O X Pos
D001 53249 Sprite O Y Pos
D002 53250 Sprite 1 X Pos
D003 53251 Sprite 1 Y Pos
D004 53252 Sprite 2 X Pos
D005 53253 Sprite 2 Y Pos
D006 53254 Sprite 3 X Pos
D007 53255 Sprite 3 'Y Pos
D008 53256 Sprite 4 X Pos
D009 53257 Sprite 4 Y Pos
DOOA 53258 Sprite 5 X Pos
DOOB 53259 Sprite 5 Y Pos
DOOC 53260 Sprite 6 X Pos
DOOD 53261 Sprite 6 Y Pos
DOOE 53262 Sprite 7 X Pos
DOOF 53263 Sprite 7 Y Pos
D010 53264 Sprites 0—7 X Pos (msb of X
coord.)
DO11 53265 VIC Control Register
7 Raster Compare: (Bit 8) See
53266
6 Extended Color Text Mode:

1 = Enable

BASIC TO MACHINE LANGUAGE 321

HEX

DECIMAL

BITS

DESCRIPTION

D012

DO13
D014
DO15

DO16

D017

D018

D019

53266

53267
53268
53269

53270

53271

53272

53273

2-0

2-0

Bitmap Mode: 1 = Enable

Blank Screen to Border Color:
0 = Blank

Select 24/25 Row Text
Display: 1=25 Rows

Smooth Scroll to Y Dot-
Position (0—7)

Read Raster/Write Raster
Value for Compare IRQ
Light-Pen Latch X Pos

Light-Pen Latch Y Pos

Sprite display Enable:
1 = Enable
VIC Control Register

Unused
ALWAYS SET THIS BIT TO 0!

Multicolor Mode: 1 = Enable
(Text or Bit-Map)

Select 38,/40 Column Text
Display: 1 = 40 Cols
Smooth Scroll to X Pos

Sprites 0-7 Expand 2 X
Vertical (Y)
VIC Memory Control Register

Video Matrix Base Address
(inside VIC)

Character Dot-Data Base
Address (inside VIC)

Select upper/lower Character
Set

VIC Interrupt Flag Register
(Bit = 1: IRQ Occurred)

Set on Any Enabled VIC IRQ
Condition

Light-Pen Triggered IRQ Flag

322 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

Sprite to Sprite Collision IRQ
Flag
Sprite to Background Collision
IRQ Flag
Raster Compare IRQ Flag

DO1A 53274 IRQ Mask Register: 1 =
Interrupt Enabled

DO1B 53275 Sprite to Background Display
Priority: 1 = Sprite

DO1C 53276 Sprites 0—7 Multicolor Mode
Select: 1 = M.C.M.

DO1D 53277 Sprites 0—7 Expand 2 X
Horizontal (X)

DO1E 53278 Sprite to Sprite Collision
Detect

DO1F 53279 Sprite to Background Collision
Detect

D020 53280 Border Color

D021 53281 Background Color O

D022 53282 Background Color 1

D023 53283 Background Color 2

D024 53284 Background Color 3

D025 53285 Sprite Multicolor Register O

D026 53286 Sprite Multicolor Register 1

D027 53287 Sprite O Color

D028 53288 Sprite 1 Color

D029 53289 Sprite 2 Color

DO2A 53290 Sprite 3 Color

D0O2B 53291 Sprite 4 Color

D02C 53292 Sprite 5 Color

D0O2D 53293 Sprite 6 Color

DO2E 53294 Sprite 7 Color

D400-D7FF | 54272-55295 MOS 6581 SOUND

INTERFACE DEVICE (SID)

BASIC TO MACHINE LANGUAGE 323

HEX

DECIMAL

BITS

DESCRIPTION

D400

D401

D402

D403

D404

D405

D406

54272

54273

54274

54275

54276

54277

3-0

54278

Voice 1: Frequency Control —
Low-Byte

Voice 1: Frequency Control —
High-Byte

Voice 1: Pulse Waveform
Width — Low-Byte

Unused

Voice 1: Pulse Waveform
Width — High-Nybble

Voice 1: Control Register

Select Random Noise
Waveform, 1 = On

Select Pulse Waveform, 1 =
On

Select Sawtooth Waveform, 1
= On

Select Triangle Waveform, 1
=On

Test Bit: 1 = Disable
Oscillator 1

Ring Modulate Osc. 1 with
Osc. 3 Output, 1 = On
Synchronize Osc.1 with Osc.3
Frequency, 1 = On

Gate Bit: 1 = Start
Att/Dec/Sus, O = Start
Release

Envelope Generator 1:
Attack/Decay Cycle Control
Select Attack Cycle Duration:
0-15

Select Decay Cycle Duration:
0-15

Envelope Generator 1:
Sustain/Release Cycle Control

324

BASIC TO MACHINE LANGUAGE

HEX

DECIMAL

BITS

DESCRIPTION

D407

D408

D409

D40A

D408

D40C

54279

54280

54281

54282

54283

54284

3-0

3-0

Select Sustain Cycle Duration:
0-15

Select Release Cycle
Duration: 0-15

Voice 2: Frequency Control —
Low-Byte

Voice 2: Frequency Control —
High-Byte

Voice 2: Pulse Waveform
Width — Low-Byte

Unused

Voice 2: Pulse Waveform
Width — High-Nybble

Voice 2: Control Register

Select Random Noise
Waveform, 1 = On

Select Pulse Waveform, 1 =
On

Select Sawtooth Waveform, 1
=On

Select Triangle Waveform, 1
=On

Test Bit: 1 = Disable
Oscillator 2

Ring Modulate Osc. 2 with
Osc. 1 Output, T = On
Synchronize Osc.2 with Osc. 1
Frequency, 1 = On

Gate Bit: 1 = Start
Att/Dec/Sus, 0 = Start
Release

Envelope Generator 2: Attack
/ Decay Cycle Control

Select Attack Cycle Duration:
0-15

BASIC TO MACHINE LANGUAGE 325

HEX

DECIMAL

BITS

DESCRIPTION

D40D

D40E

D40F

D410

D411

D412

54285

3-0

54286

54287

54288

54289

54290

Select Decay Cycle Duration:
0-15

Envelope Generator 2: Sustain
/ Release Cycle Control
Select Sustain Cycle Duration:
0-15

Select Release Cycle Duration:
0-15

Voice 3: Frequency Control —
Low-Byte

Voice 3: Frequency Control —
High-Byte

Voice 3: Pulse Waveform
Width — Low-Byte

Unused

Voice 3: Pulse Waveform
Width — High-Nybble

Voice 3: Control Register

Select Random Noise
Waveform, 1 = On

Select Pulse Waveform, 1 =
On

Select Sawtooth Waveform, 1
= On

Select Triangle Waveform, 1
=On

Test Bit: 1 = Disable
Oscillator 3

Ring Modulate Osc. 3 with
Osc. 2 Output, 1 = On
Synchronize Osc. 3 with Osc.2
Frequency, 1 = On

Gate Bit: 1 = Start
Att/Dec/Sus, O = Start
Release

326

BASIC TO MACHINE LANGUAGE

HEX

DECIMAL

BITS

DESCRIPTION

D413

D414

D415

D416

D417

D418

54291

54292

54293

54294

54295

54296

3-0

3-0

Envelope Generator 3:
Attack/Decay Cycle Control
Select Attack Cycle Duration:
0-15

Select Decay Cycle Duration:
0-15

Envelope Generator 3:
Sustain / Release Cycle
Control

Select Sustain Cycle Duration:
0-15

Select Release Cycle
Duration: 0-15

Filter Cutoff Frequency: Low-
Nybble (Bits 2—0)

Filter Cutoff Frequency: High-
Byte

Filter Resonance Control /
Voice Input Control

Select Filter Resonance: 0—15

Filter External Input: 1 = Yes,
0 =No

Filter Voice 3 Output: 1
Yes, 0 = No

Filter Voice 2 Output: 1
Yes, 0 = No

Filter Voice 1 Output: 1
Yes, 0 = No

Select Filter Mode and
Volume

Cut-Off Voice 3 Output: 1 =

Off, 0 = On

Select Filter High-Pass Mode:
1 =0n

Select Filter Band-Pass Mode:
1=0n

BASIC TO MACHINE LANGUAGE 327

HEX

DECIMAL

BITS

DESCRIPTION

D419

D41A

D41B

D41C

D500-D7FF

D800-DBFF

DCOO-DCFF

DCOO

DCO1

54297

54298

54299

54230

54528-55295

55296-56319

56320-56575

56320

56321

3-0

3-2

3-0

Select Filter Low-Pass Mode:

1=0n
Select Output Volume: 0-15

Analog/Digital Converter:
Game Paddle 1 (0-255)

Analog/Digital Converter:
Game Paddle 2 (0-255)

Oscillator 3 Random Number

Generator

Envelope Generator 3 Output

SID IMAGES

Color RAM (Nybbles)

MOS 6526 Complex
Interface Adapter (CIA) #1

Data Port A (Keyboard,
Joystick, Paddles, Light-Pen)
Write Keyboard Column

Values for Keyboard Scan

Read Paddles on Port A / B
(01 = Port A, 10 = Port B)

Joystick A Fire Button: 1 =
Fire

Paddle Fire Buttons

Joystick A Direction (0—15)

Data Port B (Keyboard,
Joystick, Paddles): Game Port
1

328 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION
7-0 Read Keyboard Row Values
for Keyboard Scan
7 Timer B Toggle/Pulse Output
6 Timer A: Toggle/Pulse Output
4 Joystick 1 Fire Button: 1 =
Fire
3-2 Paddle Fire Buttons
3-0 Joystick 1 Direction
DCO02 56322 Data Direction Register — Port
A (56320)
DCO03 56323 Data Direction Register — Port
B (56321)
DC04 56324 Timer A: Low-Byte
DCO5 56325 Timer A: High-Byte
DC06 56326 Timer B: Low-Byte
DCO7 56327 Timer B: High-Byte
DCo8 56328 Time-of-Day Clock: 1/10
Seconds
DCO09 56329 Time-of-Day Clock: Seconds
DCOA 56330 Time-of-Day Clock: Minutes
DCOB 56331 Time-of-Day Clock: Hours +
AM/PM Flag (Bit 7)
DCOC 56332 Synchronous Serial I/O Data
Buffer
DCOD 56333 CIA Interrupt Control Register
(Read IRQs/Write Mask)
7 IRQ Flag (1 = IRQ Occurred)
/ Set-Clear Flag
4 FLAG1 IRQ (Cassette Read /

Serial Bus SRQ Input)

BASIC TO MACHINE LANGUAGE 329

HEX

DECIMAL

BITS

DESCRIPTION

DCOE

DCOF

56334

56335

Serial Port Interrupt

Time-of-Day Clock Alarm
Interrupt
Timer B Interrupt

Timer A Interrupt
CIA Control Register A

Time-of-Day Clock Frequency:
1 =50Hz, 0= 60Hz

Serial Port I/O Mode:

1 = Output, 0 = Input

Timer A Counts: 1 = CNT
Signals, 0 = System ¢2 Clock
Force Load Timer A: 1 = Yes

Timer A Run Mode: 1 = One-
Shot, 0 = Continuous

Timer A Output Mode to PB6:
1 = Toggle, O = Pulse

Timer A Output on PB6: 1 =
Yes, 0 = No

Start/Stop Timer A: 1 = Start,
0 = Stop

CIA Control Register B

Set Alarm/TOD-Clock: 1 =
Alarm, O = Clock

330 BASIC TO MACHINE LANGUAGE

HEX

DECIMAL

BITS

DESCRIPTION

DDO0-DDFF

DDOO

DDO1

56576-56831

56576

56577

Timer B Mode Select:

00 = Count System ¢2 Clock
Pulses

01 = Count Positive CNT
Transitions

10 = Count Timer A
Underflow Pulses

11 = Count Timer A
Underflows While CNT
Positive

Same as CIA Control Reg. A —
for Timer B

MOS 6526 Complex
Interface Adapter (CIA) #2

Data Port A (Serial Bus, RS-
232, VIC Memory Control)

Serial Bus Data Input

Serial Bus Clock Pulse Input

Serial Bus Data Output

Serial Bus Clock Pulse Output

Serial Bus ATN Signal Output

RS-232 Data Output (User
Port)

VIC Chip System Memory
Bank Select (Default = 11)

Data Port B (User Port, RS-
232)

User / RS-232 Data Set
Ready

BASIC TO MACHINE LANGUAGE 331

HEX DECIMAL BITS DESCRIPTION
6 User / RS-232 Clear to Send
5 User
4 User / RS-232 Carrier Detect
3 User / RS-232 Ring Indicator
2 User / RS-232 Data Terminal
Ready
1 User / RS-232 Request fo
Send
0 User / RS-232 Received Data
DD02 56578 Data Direction Register — Port
A
DDO3 56579 Data Direction Register — Port
B
DDO0O4 56580 Timer A: Low-Byte
DDO5 56581 Timer A: High-Byte
DDO06 56582 Timer B: Low-Byte
DDO7 56583 Timer B: High-Byte
DDO8 56584 Time-of-Day Clock: 1/10
Seconds
DDO09 56585 Time-of-Day Clock: Seconds
DDOA 56586 Time-of-Day Clock: Minutes
DDOB 56587 Time-of-Day Clock: Hours +
AM/PM Flag (Bit 7)
DDOC 56588 Synchronous Serial 1/O Data
Buffer
DDOD 56589 CIA Interrupt Control Register
(Read NMIs/Write Mask)

332

BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION
7 NMI Flag (1 = NMI Occurred)
/ Set-Clear Flag
4 FLAG1 NMI (User/RS-232
Received Data Input)
3 Serial Port Interrupt
1 Timer B Interrupt
0 Timer A Interrupt
DDOE 56590 CIA Control Register A
7 Time-of-Day Clock Frequency:
1 =50Hz, 0= 60Hz
6 Serial Port I/O Mode:
1 = Output, 0 = Input
5 Timer A Counts: 1 = CNT
Signals, 0 = System ¢2 Clock
4 Force Load Timer A: 1 = Yes
3 Timer A Run Mode: T = One-
Shot, 0 = Continuous
2 Timer A Qutput Mode to PB6:
1 = Toggle, O = Pulse
1 Timer A Output on PB6: 1 =
Yes, 0 = No
0 Start/Stop Timer A: 1 = Start,
0 = Stop
DDOF 56591 CIA Control Register B
7 Set Alarm/TOD-Clock: 1 =
Alarm, O = Clock

BASIC TO MACHINE LANGUAGE 333

HEX DECIMAL BITS

DESCRIPTION

Timer B Mode Select:

00 = Count System ¢2 Clock
Pulses

01 = Count Positive CNT
Transitions

10 = Count Timer A
Underflow Pulses

11 = Count Timer A
Underflows While CNT
Positive

Same as CIA Control Reg. A —
for Timer B

DEOO-DEFF 56832-57087 Reserved for Future 1/O
Expansion
DFOO-DFFF 57088-57343 Reserved for Future 1/O
Expansion
334 BASIC TO MACHINE LANGUAGE

CHAPTER 6

INPUT/OUTPUT
GUIDE

Introduction

Output to the TV

Output to Other Devices

The Game Ports

RS-232 Interface Description
The User Port

The Serial Bus

The Expansion Port

Z-80 Microprocessor Cartridge

INTRODUCTION

Computers have three basic abilities: they can calculate, make decisions, and
communicate. Calculation is probably the easiest to program. Most of the rules
of mathematics are familiar to us. Decision making is not too difficult, since the
rules of logic are relatively few, even if you don't know them too well yet.

Communication is the most complex, because it involves the least exacting set of
rules. This is not an oversight in the design of computers. The rules allow enough
flexibility to communicate virtually anything, and in many possible ways. The only
real rule is this: whatever sends information must present the information so that
it can be understood by the receiver.

OUTPUT TO THE TV

The simplest form of output in BASIC is the PRINT statement. PRINT uses the TV
screen as the output device, and your eyes are the input device because they
use the information on the screen.

When PRINTing on the screen, your main objective is to format the information
on the screen so it's easy to read. You should try to think like a graphic artist,
using colors, placement of letters, capital and lower case letters, as well as
graphics to best communicate the information. Remember, no matter how smart
your program, you want to be able to understand what the results mean to you.

The PRINT statement uses certain character codes as "commands” to the cursor.
The key doesn't actually display anything, it just makes the cursor change
position. Other commands change colors, clear the screen, and insert or delete
spaces. The key has a character code number (CHR$) of 13. A complete
table of these codes is contained in Appendix C.

There are two functions in the BASIC language that work with the PRINT
statement. TAB positions the cursor on the given position from the left edge of
the screen, SPC moves the cursor right a given number of spaces from the current
position.

Punctuation marks in the PRINT statement serve to separate and format
information. The semicolon (;) separates 2 items without any spaces in between.
If it is the last thing on a line, the cursor remains after the last thing PRINTed
instead of going down to the next line. It suppresses (replaces) the RETURN
character that is normally PRINTed at the end of the line.

336 INPUT/OUTPUT GUIDE

The comma (,) separates items into columns. The Commodore 64 has 4 columns
of 10 characters each on the screen. When the computer PRINTs a comma, it
moves the cursor right to the start of the next column. If it is past the last column
of the line, it moves the cursor down to the next line. Like the semicolon, if it is the
last item on a line the RETURN is suppressed.

The quote marks (" ") separate literal text from variables. The first quote mark
on the line starts the literal area, and the next quote mark ends it. By the way,
you don't have to have a final quote mark at the end of the line.

The RETURN code (CHR$ code of 13) makes the cursor go to the next logical line
on the screen. This is not always the very next line. When you type past the end
of a line, that line is linked to the next line. The computer knows that both lines
are really one long line. The links are held in the line link table (see the memory
map for how this is set up).

A logical line can be 1 or 2 screen lines long, depending on what was typed or
PRINTed. The logical line the cursor is on determines where the key
sends it. The logical line at the top of the screen determines if the screen scrolls
1 or 2 lines at a time.

There are other ways to use the TV as an output device. The chapter on graphics
describes the commands to create objects that move across the screen. The VIC
chip section tells how the screen and border colors and sizes are changed. And
the sound chapter tells how the TV speaker creates music and special effects.

OUTPUT TO OTHER DEVICES

It is often necessary to send output to devices other than the screen, like a cassette
deck, printer, disk drive, or modem. The OPEN statement in BASIC creates a
"channel" to talk to one of these devices. Once the channel is OPEN, the PRINT#
statement will send characters to that device.

EXAMPLE of OPEN and PRINT# Statements:

100 OPEN 4, 4: PRINT# 4,"WRITING ON PRINTER"

110 OPEN 3, 8, 3, "O:DISK-FILE,S,W": PRINT# 3, "SEND TO DISK"
120 OPEN 1, 1, 1, "TAPE-FILE": PRINT# 1, "WRITE ON TAPE"

130 OPEN 2, 2, 0, CHR$(10)>: PRINT# 2, "SEND TO MODEM"

INPUT/OUTPUT GUIDE 337

The OPEN statement is somewhat different for each device. The parameters in
the OPEN statement are shown in the table below for each device.

TABLE of OPEN Statement Parameters:

FORMAT: OPEN file#, device#, number, string

DEVICE DEVICE# NUMBER STRING
CASSETTE 1 0 = Input File Name
1= Output

2 = Output with EOT

MODEM 2 0 Control Registers
SCREEN 3 0,1
PRINTER 4orb5 0 = Upper/Graphics Text Is PRINTed
7 = Upper/Lower Case
DISK 8to 11 2—-14 = Data Channel Drive #, File Name,
File Type, Read/Write
15 = Command Command

Channel

OUTPUT TO PRINTER

The printer is an output device similar to the screen. Your main concern when
sending output to the printer is to create a format that is easy on the eyes. Your
tools here include reversed, double-width, capital and lower case letters, as well
as dot-programmable graphics.

The SPC function works for the printer in the same way it works for the screen.
However, the TAB function does not work correctly on the printer, because it
calculates the current position on the line based on the cursor's position on the
screen, not on the paper.

The OPEN statement for the printer creates the channel for communication. It also
specifies which character set will be used, either upper case with graphics or
upper and lower case.

EXAMPLES of OPEN Statement for Printer:

OPEN 1,4: REM UPPER CASE/GRAPHICS
OPEN 1,4,7: REM UPPER AND LOWER CASE

338 INPUT/OUTPUT GUIDE

When working with one character set, individual lines can be PRINTed in the
opposite character set. When in upper case with graphics, the cursor down
character (CHR$(17)) switches the characters to the upper and lower case set.
When in upper and lower case, the cursor up character (CHR$(145)) allows
upper case and graphics characters to be PRINTed.

Other special functions in the printer are controlled through character codes. All
these codes are simply PRINTed just like any other character.

TABLE of Printer Control Character Codes:

CHR$ CODE PURPOSE
10 Line feed
13 RETURN (automatic line feed on CBM printers)
14 Begin double-width character mode
15 End double-width character mode
18 Begin reverse character mode
146 End reverse character mode
17 Switch to upper/lower case character set
145 Switch to upper case/graphics character set
16 Tab to position in next 2 characters
27 Move to specified dot position
8 Begin dot-programmable graphic mode
26 Repeat graphics data

See your Commodore printer's manual for details on using the command codes.

OUTPUT TO MODEM

The modem is a simple device that can translate character codes into audio
pulses and vice-versa, so that computers can communicate over telephone lines.
The OPEN statement for the modem sets up the parameters to match the speed
and format of the other computer you are communicating with. Two characters
can be sent in the string at the end of the OPEN statement.

The bit positions of the first character code determine the baud rate, number of
data bits, and number of stop bits. The second code is optional, and its bits
specify the parity and duplex of the transmission. See the RS-232 section or your
VICMODEM manual for specific details on this device.

INPUT/OUTPUT GUIDE 339

EXAMPLE of OPEN Statement for Modem:

OPEN 1,2,0,CHR$¢(6>: REM 300 BAUD
100 OPEN 2,2,0,CHR$(163> CHR$(112)>: REM 110 BAUD, ETC.

Most computers use the American Standard Code for Information Interchange,
known as ASCII (pronounced ASK-KEY). This standard set of character codes is
somewhat different from the codes used in the Commodore 64. When
communicating with other computers, the Commodore character codes must be
translated into their ASCIl counterparts. A table of standard ASCIl codes is
included in this book in Appendix C.

Output to the modem is a fairly uncomplicated task, aside from the need for
character translation. However, you must know the receiving device fairly well,
especially when writing programs where your computer "talks" to another
computer without human intervention. An example of this would be a terminal
program that automatically types in your account number and secret password.
To do this successfully, you must carefully count the number of characters and
RETURN characters. Otherwise, the computer receiving the characters won't know
what to do with them.

WORKING WITH CASSETTE TAPE

Cassette tapes have an almost unlimited capacity for data. The longer the tape,
the more information it can store. However, tapes are limited in time. The more
data on the tape, the longer the time it takes to find the information.

The programmer must try to minimize the time factor when working with tape
storage. One common practice is to read the entire cassette data file into RAM,
then process it, and then re-write all the data on the tape. This allows you to sort,
edit, and examine your data. However, this limits the size of your files to the
amount of available RAM.

If your data file is larger than the available RAM, it is probably time to switch
to using the floppy disk. The disk can read data at any position on the disk,
without needing to read through all the other data. You can write data over old
data without disturbing the rest of the file. That's why the disk is used for all
business applications like ledgers and mailing lists.

The PRINT# statement formats data just like the PRINT statement does. All

punctuation works the same. But remember, you're not working with the screen
now. The formatting must be done with the INPUT# statement constantly in mind.

340 INPUT/OUTPUT GUIDE

Consider the statement PRINT# 1, A$, BS, C$. When used with the screen, the
commas between the variables provide enough blank space between items to
format them into columns ten characters wide. On cassette, anywhere from 1 to
10 spaces will be added, depending on the length of the strings. This wastes
space on your tape.

Even worse is what happens when the INPUT# statement tries to read these
strings. The statement INPUT# 1, A$, BS$, C$ will discover no data for B$ and
C$. A$ will contain all three variables, plus the spaces between them. What
happens? Here's a look at the tape file:

A$="DOG" B$="CAT" C$="TREE"
PRINT# 1, A%, B$, C$

1234567891011 121314151617 18 19 20 21 22 23 24 25
DOG C AT T R E E RETURN

The INPUT# statement works like the regular INPUT statement. When typing
data into the INPUT statement, the data items are separated, either by hitting
the key or using commas to separate them. The PRINT# statement puts
a RETURN at the end of a line just like the PRINT statement. A$ fills up with all
three values because there's no separator on the tape between them, only after
all three.

A proper separator would be a comma (,) or a RETURN on the tape. The RETURN
code is automatically put at the end of a PRINT or PRINT# statement. One way
to put the RETURN code between each item is to use only one item per PRINT#
statement. A better way is to set a variable to the RETURN CHR$ code, which is
CHR$(13), or use a comma. The statement for this is R$=",":PRINT# 1, A$ R$ B$
R$ C$. Don't use commas or any other punctuation between the variable names,
since the Commodore 64 can tell them apart and they'll only use up space in
your program.

A proper tape file looks like this:

567 8 91011 12 13
CAT , TR E E RETURN

The GET# statement will pick data from the tape one character at a time. It will
receive each character, including the RETURN code and other punctuation. The
CHR$(0) code is received as an empty string, not as a one character string with
a code of 0. If you try to use the ASC function on an empty string, you get the
error message ?ILLEGAL QUANTITY ERROR.

INPUT/OUTPUT GUIDE 341

The line GET# 1, A$: A= ASC(A$) is commonly used in programs to examine
tape data. To avoid error messages, the line should be modified to GET#1, A$:
A= ASC(A$+ CHR$(0)). The CHR$(0) at the end acts as insurance against empty
strings, but doesn't affect the ASC function when there are other characters in
AS.

DATA STORAGE ON FLOPPY DISKETTES

Diskettes allow 3 different forms of data storage. Sequential files are similar to
those on tape, but several can be used at the same time. Relative files let you
organize the data into records, and then read and replace individual records
within the file. Random files let you work with data anywhere on the disk. They
are organized into 256 byte sections called blocks.

The PRINT# statement's limitations are discussed in the section on cassette tape.
The same limitations to format apply on the disk. RETURNs or commas are needed
to separate your data. The CHR$(0) is still read by the GET# statement as an
empty string.

Relative and random files both make use of separate data and command
"channels." Data written to the disk goes through the data channel, where it is
stored in a temporary buffer in the disk's RAM. When the record or block is
complete, a command is sent through the command channel that tells the drive
where to put the data, and the entire buffer is written.

Applications that require large amounts of data to be processed are best stored
in relative disk files. These will use the least amount of time and provide the best
flexibility for the programmer. Your disk drive manual gives a complete
programming guide to use of disk files.

342 INPUT/OUTPUT GUIDE

THE GAME PORTS

The Commodore 64 has two 9-pin Game Ports which allow the use of joysticks,
paddles, or a light pen. Each port will accept either one joystick or one paddle
pair. A light pen can be plugged into Port A (only) for special graphic control,
etc. This section gives you examples of how to use the joysticks and paddles from
both BASIC and machine language.

The digital joystick is connected to CIA#1 (MOS 6526 Complex Interface
Adapter). This input/output device also handles the paddle fire buttons and
keyboard scanning. The 6526 CIA chip has 16 registers which are in memory
locations 56320 through 56335 inclusive ($DCO0 to $DCOF). Port A data
appears at location 56320 ($DCO0) and Port B data is found at location 56321
($DCO1).

A digital joystick has five distinct switches, four of the switches are used for
direction and one of the switches is used for the fire button. The joystick switches
are arranged as shown:

(Top)
FIRE
(Switch 4)
uP
(Switch 0)
;

LEFT i RIGHT
(Switch 2) i (Switch 3)
1
1
DOWN
(Switch 1)

These switches correspond to the lower 5 bits of the data in location 56320 or
56321. Normally the bit is set to a one if a direction is NOT chosen or the fire
button is NOT pressed. When the fire button is pressed, the bit (bit 4 in this case)
changes to a 0. To read the joystick from BASIC, the following subroutine should
be used:

INPUT/OUTPUT GUIDE 343

10
20
30
40
50
60
65
70
80
90

FORK=0TO10:REM SET UP DIRECTION STRING

READDR$ (K> : NEXT

DQTQII n) IINII) IISII) nn ; IIUII ; IINUII

DQTQIISUII) nn 5 IIEII 5 IINEII 5 IISEII

PRINT"GOING. ..";

GOSUB100:REM READ THE JOYSTICK
IFDR$C(JVH=""THEN8O:REM CHECK IF A DIRECTION WAS CHOSEN
PRINTDR$C(JV>;" "; :REM OUTPUT WHICH DIRECTION
IFFR=16THEN60:REM CHECK IF FIRE BUTTON WAS PUSHED
PRINT" F I R E 11" GOTOo6e0

100 JV=PEEK(56320) :REM GET JOYSTICK VALUE
110 FR=JVAND16:REM FORM FIRE BUTTON STATUS
120 JV=15-(JVAND15)> :REM FORM DIRECTION VALUE
130 RETURN

NOTE: For the second joystick, set JV = PEEK (56321).

The values for JV correspond to these directions:

JV EQUALTO DIRECTION
0] NONE
1 up
2 DOWN
3 -
4 LEFT
5 UP & LEFT
6 DOWN & LEFT
7 -
8 RIGHT
9 UP & RIGHT
10 DOWN & RIGHT

344

INPUT/OUTPUT GUIDE

A small machine code routine which accomplishes the same task is as follows:

1000 .PAGE <(JOYSTICK.8/5) JOYSTICK — BUTTON READ ROUTINE

1010 ;

1020 ; AUTHOR - BILL HINDORFF
1030 ;

1040 DX = $C110

1050 DY = $C111

1060 x = $C200
1070 DJRR LDA $DCOO ; GET INPUT FROM PORT A ONLY
1080 DJRRB LDY #0 ; THIS ROUTINE READS AND DECODES THE

1090 LDX #0 ; JOYSTICK/FIREBUTTON INPUT DATA IN
1100 LSR A ; THE ACCUMULATOR. THIS LEAST
SIGNIFICANT

1110 BCS DJRO ; S BITS CONTAIN THE SWITCH CLOSURE
1120 DEY ; INFORMATION. IF A SWITCH IS CLOSED
THEN IT

1130 DJRO LSR A ; PRODUCES A ZERO BIT. IF A SWITCH IS
OPEN THEN

1140 BCS DJR1 ; IT PRODUCES A ONE BIT. THE JOYSTICK
DIR-

1150 INY ; ECTIONS ARE RIGHT, LEFT, FORWARD,
BACKWARD

1160 DJR1 LSR A ; BIT3=RIGHT, BIT2=LEFT,
BIT1=BACKWARD,

1170 BCS DJR2 ; BITO=FORWARD AND BIT4=FIRE BUTTON.
1180 DEX ; AT RTS TIME DX AND DY CONTAIN 2'S
COMPLIMENT

1190 DJR2 LSR A ; DIRECTION NUMBERS I.E. $FF=-1,
$00=0, $01=1.

1200 BCS DJR3 ; DX=1 (MOVE RIGHT>, DX=-1 (MOVE
LEFTS,

1210 INX ; DX=0 (NO X CHANGE>. DY=-1 (MOVE UP
SCREEN)D ,

1220 DJR3 LSR A ; DY=1 (MOVE DOWN SCREEN)>, DY=0 (NO Y
CHANGE) .

1230 STX DX ; THE FORWARD JOYSTICK POSITION
CORRESPONDS

1240 STY DY ; TO MOVE UP THE SCREEN AND THE
BACKWARD

1250 RTS ; POSITION TO MOVE DOWN SCREEN.

1260 ;

1270 ; AT RTS TIME THE CARRY FLAG CONTAINS THE FIRE BUTTON
STATE

1280 ; IF C=1 THEN BUTTON NOT PRESSED. IF C=0 THEN PRESSED.
1290 ;

1300 .END

INPUT/OUTPUT GUIDE 345

PADDLES

A paddle is connected to both CIA #1 and the SID chip (MOS 6581 Sound
Interface Device) through a game port. The paddle value is read via the SID
registers 54297 ($D419) and 54298 ($D41A). PADDLES ARE NOT RELIABLE
WHEN READ FROM BASIC ALONE!!! The best way to use paddles, from BASIC
or machine code, is to use the following machine language routine... (SYS to it
from BASIC then PEEK the memory locations used by the subroutine).

5 kXkxakokkkkkkkkokkkkkkkokkokkokkkokakkkkskokkokkokkokxokkkekekk
;% FOUR PADDLE READ ROUTINE <(CAN ALSO BE USED FOR TWO>
5 Xkkkxxkkkckkokokkkkkkxkkkkkokkokkokkkkxxkkkskkkokkkkkkokxkkkkkok
;AUTHOR - BILL HINDORFF

1000

1010

1020

1030

1040 PORTA=$
1050 CIDDRA=
1060 SID=$D4
1070 Xx=$C100
1080 BUFFER
1090 PDLX
1100 PDLY
1110 BTNA
1120 BTNB
1130 x = $CO
1140 PDLRD
1150 LDX
JOYSTICKS
1160 PDLRDO
1STO

1170 SEI
1180 LDA
1190 STA
1200 LDA
1210 STA
1220 LDA
1230 PDLRD1
1240 STA
1250 LDY
1260 PDLRD2
1270 NOP
1280 DEY
1290 BPL
1300 LDA
1310 STA
1320 LDA
1330 STA
346

INPUT/OUTPUT GUIDE

DCoO
$DCO2
00

*=%+1

*=X+2

*=%+2

*=%+1

*=%+1
00

#1

CIDDRA
BUFFER
#$CO
CIDDRA
#$80

PORTA
#$80

PDLRD2
SID+25
PDLX, ¥
SID+26
PDLY, ¥

; FOR FOUR PADDLES OR TWO ANALOG

; ENTRY POINT FOR ONE PAIR (CONDITION X

; GET CURRENT VALUE OF DDR

; SAVE IT AWAY

; SET PORT A FOR INPUT

; ADDRESS A PAIR OF PADDLES

; WAIT A WHILE

; GET X VALUE

; GET Y VALUE

1340 LDA PORTA ; TIME TO READ PADDLE FIRE BUTTONS

1350 ORA #$80 ; MAKE IT THE SAME AS OTHER PAIR
1360 STA BTNA ; BIT 2 IS PDL X, BIT 3 IS PDL ¥
1370 LDA #$40

1380 DEX ; ALL PAIRS DONE?

1390 BPL PDLRD1 ; NO

1400 LDA BUFFER

1410 STA CIDDRA ; RESTORE PREVIOUS VALUE OF DDR
1420 LDA PORTA+1 ; FOR 2ND PAIR -

1430 STA BTNB ; BIT 2 IS PDL X, BIT 3 IS PDL VY
1440 CLI

1450 RTS

1460 .END

The paddles can be read by using the following BASIC program:

10 C=12%4096:REM SET PADDLE ROUTINE START
11 REM POKE IN THE PADDLE READING ROUTINE
15 FORI=0TO063:READA:POKEC+I, A:NEXT

20 SYSC:REM CALL THE PADDLE ROUTINE

30 P1=PEEK(C+257>:REM SET PADDLE ONE VALUE
40 P2=PEEK(C+258):REM SET PADDLE TWO VALUE
S0 P3=PEEK(C+259):REM SET PADDLE THREE VALUE
60 P4=PEEK(C+260>:REM SET PADDLE FOUR VALUE
61 REM READ FIRE BUTTON STATUS

62 S1=PEEK(C+261) :S2=PEEK(C+262)

70 PRINTP1,P2,P3,P4:REM PRINT PADDLE VALUES
72 REM PRINT FIRE BUTTON STATUS

7S PRINT:PRINT"FIRE A ";S1,"FIRE B ";S2

80 FORW=1TOSO:NEXT:REM WAIT A WHILE

¢7

90 PRINT"L4":PRINT:GOTO20:REM CLEAR SCREEN AND DO AGAIN
95 REM DATA FOR MACHINE CODE ROUTINE

100 DATAl62,1,120,173,2,220,141,0,193,169, 192, 141,2,220, 169
110 DATA128, 141,0,220, 160, 128,234, 136, 16,252, 173,25,212, 157
120 DATA1,193,173,26,212,157,3,193,173,0,220,9, 128,141,5, 193
130 DATA169,64,202, 16,222,173,0,193,141,2,220,173,1,220, 141

140 DATA6, 193,88,96

INPUT/OUTPUT GUIDE

347

LIGHT PEN

The light pen input latches the current screen position into a pair of registers (LPX,
LPY) on a low-going edge. The X position register 19 ($13) will contain the 8
MSB of the X position at the time of transition. Since the X position is defined by
a 512-state counter (9 bits), resolution to 2 horizontal dots is provided. Similarly,
the Y position is latched in its register 20 ($14), but here 8 bits provide single
raster resolution within the visible display. The light pen latch may be triggered
only once per frame, and subsequent triggers within the same frame will have
no effect. Therefore, you must take several samples before turning the pen to
the screen (3 or more samples average), depending upon the characteristics of

your light pen.

RS-232 INTERFACE DESCRIPTION

GENERAL OUTLINE

The Commodore 64 has a built-in RS-232 interface for connection to any RS-
232 modem, printer, or other device. To connect a device to the Commodore 64,
all you need is a cable and a little bit of programming.

RS-232 on the Commodore 64 is set-up in the standard RS-232 format, but the
voltages are TTL levels (O to 5V) rather than the normal RS-232 =12 to 12 volt
range. The cable between the Commodore 64 and the RS-232 device should
take care of the necessary voltage conversions. The Commodore RS-232
interface cartridge handles this properly.

The RS-232 interface software can be accessed from BASIC or from the KERNAL

for machine language programming.

RS-232 on the BASIC level uses the normal BASIC commands: OPEN, CLOSE,
CMD, INPUT#, GET#, PRINT#, and the reserved variable ST. INPUT# and GET#
fetch data from the receiving buffer, while PRINT# and CMD place data into the
transmitting buffer. The use of these commands (and examples) will be described
in more detail later in this chapter.

The RS-232 KERNAL byte and bit level handlers run under the control of the

6526 CIA #2 device timers and interrupts. The 6526 chip generates NMI (Non-
Maskable Interrupt) requests for RS-232 processing. This allows background RS-

348 INPUT/OUTPUT GUIDE

232 processing to take place during BASIC and machine language programs.
There are built-in hold-offs in the KERNAL, cassette, and serial bus routines to
prevent the disruption of data storage or transmission by the NMIs that are
generated by the RS-232 routines. During cassette or serial bus activities, data
can NOT be received from RS-232 devices. But because these hold-offs are only
local (assuming you're careful about your programming) no interference should
result.

There are two buffers in the Commodore 64 RS-232 interface to help prevent
the loss of data when transmitting or receiving RS-232 information.

The Commodore 64 RS-232 KERNAL buffers consist of two first-in/first-out (FIFO)
buffers, each 256 bytes long, at the top of memory. The OPENing of an RS-232
channel automatically allocates 512 bytes of memory for these buffers. If there
is not enough free space beyond the end of your BASIC program no error

message will be printed, and the end of your program will be destroyed. SO BE
CAREFUL!

These buffers are automatically removed by using the CLOSE command.

OPENING AN RS-232 CHANNEL

Only one RS-232 channel should be open at any time; a second OPEN statement
will cause the buffer pointers to be reset. Any characters in either the transmit
buffer or the receive buffer will be lost.

Up to 4 characters can be sent in the filename field. The first two are the control
and command register characters; the other two are reserved for future system
options. Baud rate, parity, and other options can be selected through this feature.

No error-checking is done on the control word to detect a non-implemented baud
rate. Any illegal control word will cause the system output to operate at a very
slow rate (below 50 baud).

BASIC SYNTAX:

OPEN Ifn,2,0,"<control register><command register><opt baud low><opt
baud high>"

Ifn — The logical file number (Ifn) then can be any number from 1 through 255.
But be aware of the fact that if you choose a logical file number that is greater
than 127, then a line feed will follow all carriage returns.

INPUT/OUTPUT GUIDE 349

6]] [4]
BAUD RATE
0]o|o|o| uSERRATE [NI]
STOP BITS olo]o]n 50 BAUD
0-1 STOP BIT
1-2 STOP BITS ojrjo 75
oflof1]n 110
ol1fofo 134.5
of1fofn 150
ol1|1]o 300
WORD LENGTH ——]
of1[1]n 600
BIT DATA
6|5 | WORD LENGTH 1{0Jo0]oO 1200
0 8 BITS 11001 (1800) 2400
ol 7 BITS 11ol1]o]| 2400
110 6 BITS 11011 3600 [NI]
11 5 BITS 111]o]o| 4800 [N
11101 | 7200 [Ng
UNUSED
111]1]0o| 9600 [N
111 | 19200 [Ng

FIGURE 6-1. CONTROL REGISTER MAP

<control register> — Is a single byte character (see Figure 6-1, Control Register
Map) required to specify the baud rates. If the lower 4 bits of the baud rate is
equal to zero (0), the <opt baud low><opt baud high> characters give you a
rate based on the following:

<opt baud low>=<system frequency/rate/2—100-<opt baud high>*256

<opt baud high>=INT((system frequency /rate/2—100)/256

350 INPUT/OUTPUT GUIDE

HEEEERRD

PARITY OPTIONS HANDSHAKE
BIT|BIT|BIT
716 |5 OPERATIONS 0-3 LINE

PARITY DISABLED, NONE 1-X LINE

1|0 GENERATED /RECEIVED
ol ol ODD PARITY

RECEIVER/TRANSMITTER
ol 111 EVEN PARITY

RECEIVER/TRANSMITTER

MARK TRANSMITTED
PARITY CHECK DISABLED

1| 111 |SPACE TRANSMITTED
PARITY CHECK DISABLED

DUPLEX

O-FULL DUPLEX
1-HALF DUPLEX

UNUSED

UNUSED

UNUSED

FIGURE 6-2. COMMAND REGISTER MAP.

The formulas above are based on the fact that:

system frequency = 1.02273E6 NTSC (North American TV standard)
= 0.98525E6 PAL (U.K. and most European TV standard)

<command register> — Is a single byte character (see Figure 6-2, Command

Register Map) that defines other terminal parameters. This character is NOT
required.

INPUT/OUTPUT GUIDE 351

KERNAL ENTRY:

OPEN ($FFCO) (See KERNAL specifications for more information on entry
conditions and instructions.)

IMPORTANT NOTE: In a BASIC program, the RS-232 OPEN command should be performed
before creating any variables or arrays because an automatic CLR is performed when an RS-
232 channel is OPENed (This is due to the allocation of 512 bytes at the top of memory.) Also
remember that your program will be destroyed if 512 bytes of space are not available at the
time of the OPEN statement.

GETTING DATA FROM AN RS-232 CHANNEL

When getting data from an RS-232 channel, the Commodore 64 receiver buffer
will hold up to 255 characters before the buffer overflows. This is indicated in
the RS-232 status word (ST in BASIC, or RSSTAT in machine language). If an
overflow occurs, then all characters received during a full buffer condition, from
that point on, are lost. Obviously, it pays to keep the buffer as clear as possible.

If you wish to receive RS-232 data at high speeds (BASIC can only go so fast,
especially considering garbage collects. This can cause the receiver buffer to
overflow), you will have to use machine language routines to handle this type of
data burst.

BASIC SYNTAX:

Recommended: GET#Ifn, <string variable>
NOT Recommended: INPUT#lfn, <variable list>

KERNAL ENTRIES:

CHKIN ($FFC6) — See Memory Map for more information on entry and exit
conditions.

GETIN ($FFE4) — See Memory Map for more information on entry and exit
conditions.

CHRIN ($FFCF) — See Memory Map for more information on entry and exit
conditions.

352 INPUT/OUTPUT GUIDE

NOTES:

If the word length is less than 8 bits, all unused bit(s) will be assigned a value of zero.

" (a null) is returned.

If a GET# does not find any data in the buffer, the character
If INPUT# is used, then the system will hang in a waiting condition until a non-null character and
a following carriage return is received. Therefore, if the Clear To Send (CTS) or DataSette Ready
(DSR) line(s) disappear during character INPUT#, the system will hang in a RESTORE-only state.
This is why the INPUT# and CHRIN routines are NOT recommended.

The routine CHKIN handles the x-line handshake which follows the EIA standard (August 1979)
for RS-232-C interfaces. (The Request To Send (RTS), CTS, and Received line signal (DCD) lines
are implemented with the Commodore 64 computer defined as the Data Terminal device.)

SENDING DATA TO AN RS-232 CHANNEL

When sending data, the output buffer can hold 255 characters before a full
buffer hold-off occurs. The system will wait in the CHROUT routine until
transmission is allowed or the and keys are used to recover
the system through a WARM START.

BASIC SYNTAX:

CMD Ifn — acts same as in the BASIC specifications.
PRINT#lIfn,<variable list>

KERNAL ENTRIES:
CHKOUT ($FFCQ) — See Memory Map for more information on entry
and exit conditions.

CHROUT ($FFD2) — See Memory Map for more information on entry
conditions.

INPUT/OUTPUT GUIDE 353

IMPORTANT NOTES: There is no carriage-return delay built into the output channel. This means
that a normal RS-232 printer cannot correctly print, unless some form of hold-off (asking the
Commodore 64 to wait) or internal buffering is implemented by the printer. The hold-off can
easily be implemented in your program. If a CTS (x-line) handshake is implemented, the
Commodore 64 buffer will fill, and then hold-off more output until transmission is allowed by the
RS-232 device. X-line handshaking is a handshake routine that uses multi-lines for receiving and
transmitting data.

The routine CHKOUT handles the x-line handshake, which follows the EIA standard (August 1979)
for RS-232-C interfaces. The RTS, CTS, and DCD lines are implemented with the Commodore 64
defined as the Data Terminal Device.

CLOSING AN RS-232 DATA CHANNEL

Closing an RS-232 file discards all data in the buffers at the time of execution
(whether or not it had been transmitted or printed out), stops all RS-232

transmitting and receiving, sets the RTS and transmitted data (Sout) lines high,
and removes both RS-232 buffers.

BASIC SYNTAX:
CLOSE Ifn
KERNAL ENTRY:

CLOSE ($FFC3) — See Memory Map for more information on entry and exit
conditions.

NOTE: Care should be taken to ensure all data is transmitted before closing the channel. A way
to check this from BASIC is:

100 SS=ST: IF(SS=0 OR SS=8> THEN 100
110 CLOSE Ifn

354 INPUT/OUTPUT GUIDE

Table 6-1. User-Port Lines

(6526 DEVICE #2 Loc. $DD0O to $DDOF)

PIN | 6526 IN/
D D DESCRIPTION EIA | ABV | J .| MODES
C PBO | RECEIVED DATA (BB) | Sin IN |12
D PB1 | REQUEST TO SEND (CA) | RTS | OUT | 1*2
E PB2 | DATA TERMINAL READY | (CD) | DTR | OUT | 1*2
F PB3 | RING INDICATOR (CE) | R IN |3
H PB4 | RECEIVED LINESIGNAL | (CF) | DCD | IN |2
J PB5 | UNASSIGNED ()| xxx | N |3
K PB6 | CLEAR TO SEND (CB) | €IS | IN |2
L PB7 | DATA SET READY (CC)| DSR | IN |2
B | FLAG2 | RECEIVED DATA (BB) | Sin IN |12
M | PA2 | TRANSMITTED DATA (BA) | Sout | OUT |12
A | GND | PROTECTIVE GROUND | (AA) | GND 12
N | GND | SIGNAL GROUND (AB) | GND 123
MODES:

1. 3-LINE INTERFACE (Sin, Sout, GND)
2. X-LINE INTERFACE

3. USER AVAILABLE ONLY (Unused /unimplemented in code.)
*These lines are held high during 3-LINE mode.

(71161 [51 [4] [3] [2] [1]

[0] (Machine Language — RSSTAT)
: — PARITY ERROR BIT

: —— FRAMING ERROR BIT
——— RECEIVER BUFFER OVERRUN BIT
RECEIVER BUFFER — EMPTY
(USE TO TEST AFTER A GET#)
CTS SIGNAL MISSING BIT

UNUSED BIT

DSR SIGNAL MISSING BIT
BREAK DETECTED BIT

FIGURE 6-3. RS-232 STATUS REGISTER

INPUT/OUTPUT GUIDE

355

NOTES:

If the BIT=0, then no error has been detected.

The RS-232 status register can be read from BASIC using the variable ST.

If ST is read by BASIC or by using the KERNAL READST routine the RS-232 status word is cleared
when you exit. If multiple uses of the STATUS word are necessary the ST should be assigned to
another variable. For example:

SR=ST: REM ASSIGNS ST TO SR

The RS-232 status is read (and cleared) only when the RS-232 channel was the last external 1/O
used.

SAMPLE BASIC PROGRAMS

10 REM THIS PROGRAM SENDS AND RECEIVES DATA TO/FROM A
SILENT 700

11 REM TERMINAL MODIFIED FOR PET ASCII

20 REM TI SILENT 700 SET-UP: 300 BAUD, 7-BIT ASCII, MARK
PARITY,

21 REM FULL DUPLEX

30 REM SAME SET-UP AT COMPUTER USING 3-LINE INTERFACE

100 OPEN 2,2,3,CHR$(6+32>+CHR$(32+128) :REM OPEN THE
CHANNEL

110 GET#2,A%$:REM TURN ON THE RECEIVER CHANNEL (TOSS A
NULL>

200 REM MAIN LOOP

210 GET B$:REM GET FROM COMPUTER KEYBOARD

220 IF B$<>"" THEN PRINT#2,B$; :REM IF A KEY PRESSED, SEND
TO TERMINAL

230 GET#2,C$:REM GET A KEY FROM THE TERMINAL

240 PRINT B$,;C$; :REM PRINT ALL INPUTS TO COMPUTER SCREEN
250 SR=ST: IF SR=0 OR SR=8 THEN 200: REM CHECK STATUS, IF
GOOD THEN CONTINUE

300 REM ERROR REPORTING

310 PRINT "ERROR: ";

320 IF SR AND 1 THEN PRINT "PARITY"

330 IF SR AND 2 THEN PRINT "FRAME"

340 IF SR AND 4 THEN PRINT "RECEIVER BUFFER FULL"

350 IF SR AND 128 THEN PRINT "BREAK"

360 IF (PEEK(673> AND 1> THEN 360:REM WAIT UNTIL ALL CHARS
TRANSMITTED

370 CLOSE 2: END

356 INPUT/OUTPUT GUIDE

10 REM THIS PROGRAM SENDS AND RECEIVES TRUE ASCII DATA
100 OPEN 5,2,3,CHRS(6)

110 DIM FZ%(255),T#(255)

200 FOR J=32 TO 64:T%(J>=J:NEXT

210 T#%(13>=13:T%Z(20>=8:RV=18:CT=0

220 FOR J=65 TO 90:K=J+32:T#4=(J)=K:NEXT

230 FOR J=91 TO 95:T#(J>=J:NEXT

240 FOR J=193 TO 218:K=J-128:T%(J)=K :NEXT
250 T#(146>=16:T%(133)>=16

260 FOR J=0 TO 255

270 K=T#(JDH

280 IF K<>OTHEN F%(K)=J:F%(K+128)>=J

290 NEXT

300 PRINT" "CHR$(147)

310 GET#5,A%

320 IF A$=""OR ST<>0 THEN 360

330 PRINT" "CHR$(157);CHRSC(F%Z(ASCC(AS>))>;

340 IF F%Z(ASC(A$>>=34 THEN POKE212,0

350 GOTO0310

360 PRINTCHRSC(RV>" "CHR$(157);CHR$(146); :GET A%
370 IF AS<>"" THEN PRINT#S,CHRS(T%Z(ASCC(AS>));
380 CT=CT+1

390 IF CT=8 THENCT=0:RV=164-RV

410 GOTO310

RECEIVER/TRANSMITTER BUFFER BASE LOCATION POINTERS

$00F7-RIBUF — A two-byte pointer to the Receiver Buffer base location.
$00F9—ROBUF — A two-byte pointer to the Transmitter Buffer base location.

The two locations above are set up by the OPEN KERNAL routine, each pointing
to a different 256-byte buffer. They are de-allocated by writing a zero into the
high order bytes ($00F8 and $00FA), which is done by the CLOSE KERNAL entry.
They may also be allocated/de-allocated by the machine language
programmer for his/her own purposes, removing/creating only the buffer(s)
required. When using a machine language program that allocates these buffers,
care must be taken to make sure that the top of memory pointers stay correct,
especially if BASIC programs are expected to run at the same time.

INPUT/OUTPUT GUIDE 357

ZERO-PAGE MEMORY LOCATIONS AND USAGE
FOR RS-232 SYSTEM INTERFACE

$00A7-INBIT — Receiver input bit temp storage.

$00A8-BITCI — Receiver bit count in.

$00A9-RINONE — Receiver flag Start bit check.
$00AA-RIDATA — Receiver byte buffer/assembly location.
$O00AB-RIPRTY — Receiver parity bit storage.

$00B4-BITTS — Transmitter bit count out.

$00B5—-NXTBIT — Transmitter next bit to be sent.
$00B6—RODATA — Transmitter byte buffer/disassembly location.

All the above zero-page locations are used locally and are only given as a
guide to understand the associated routines. These cannot be used directly by

the BASIC or KERNAL level programmer to do RS-232 type things. The system
RS-232 routines must be used.

NONZERO-PAGE MEMORY LOCATIONS AND USAGE
FOR RS-232 SYSTEM INTERFACE

General RS-232 storage:

$0293-M51CTR — Pseudo 6551 control register (see Figure 6-1).

$0294-M51COR — Pseudo 6551 command register (see Figure 6-2).

$0295-M51AJB — Two bytes following the control and command registers in the
file name field. These locations contain the baud rate for the
start of the bit test during the interface activity, which, in turn,
is used to calculate baud rate.

$0297-RSSTAT — The RS-232 status register (see Figure 6-3).

$0298-BITNUM — The number of bits to be sent/received.

$0299-BAUDOF — Two bytes that are equal to the time of one bit cell. (Based
on system clock/baud rate.)

358 INPUT/OUTPUT GUIDE

$029B-RIDBE — The byte index to the end of the receiver FIFO buffer.
$029C-RIDBS — The byte index to the start of the receiver FIFO buffer.
$029D-RODBS — The byte index to the start of the transmitter FIFO buffer.
$029E-RODBE — The byte index to the end of the transmitter FIFO buffer.
$02A1-ENABL — Holds current active interrupts in the CIA #2 ICR. When bit 4
is turned on means that the system is waiting for the Receiver
Edge. When bit 1 is turned on then the system is receiving

data. When bit O is turned on then the system is transmitting
data.

THE USER PORT
The user port is meant to connect the Commodore 64 to the outside world. By
using the lines available at this port, you can connect the Commodore 64 to a

printer, a Votrax Type and Talk, a MODEM, even another computer.

The port on the Commodore 64 is directly connected to one of the 6526 CIA
chips. By programming, the CIA will connect to many other devices.

PORT PIN DESCRIPTION

12 3 45 6 7 8 92101112

— N B BB EEEEEBEEENN
- EH A TN NN NN EEEN

A B CDETFHIJ KLMN

INPUT/OUTPUT GUIDE 359

PORT PIN DESCRIPTION

PIN
TOP SIDE DESCRIPTION NOTES

1 GROUND

2 +5V (100 mA MAX.)

3 RESET By grounding this pin, the Commodore 64
will do a COLD START, resetting completely.
The pointers to a BASIC program will be
reset, but memory will not be cleared. This is
also a RESET output for the external devices.

4 CNT1 Serial port counter from CIA #1 (SEE CIA
SPECS)

5 SP1 Serial port from CIA #1 (SEE 6526 CIA
SPECS)

6 CNT2 Serial port counter from CIA #2 (SEE CIA
SPECS)

7 SP2 Serial port from CIA #1 (SEE 6526 CIA
SPECS)

8 PC2 Handshaking line from CIA #2 (SEE CIA
SPECS)

9 SERIAL ATN This pin is connected to the ATN line of the
serial bus.

10 9 VAC+phase |Connected directly to the Commodore 64

11 9 VAC—phase |transformer (50 mA MAX.).

12 GND

BOTTOM SIDE

A GND The Commodore 64 gives you control over

B FLAG2 PORT B on CIA chip #1. Eight lines for input

C PBO or output are available, as well as 2 lines for

D PB1 handshaking with an outside device. The |/O

E PB2 lines for PORT B are controlled by two

F PB3 locations. One is the PORT itself, and is

H PB4 located at 56577 ($DD01 HEX). Naturally

J PB5 you PEEK it to read an INPUT, or POKE it to

K PB6 set an OUTPUT. Each of the eight 1/O lines

L PB7 can be set up as either an INPUT or an

M PAD OUTPUT by setting the DATA DIRECTION

N GND REGISTER properly.

360 INPUT/OUTPUT GUIDE

The DATA DIRECTION REGISTER has its location at 56579 ($DDO03 hex). Each
of the eight lines in the PORT has a BIT in the eight-bit DATA DIRECTION
REGISTER (DDR) which controls whether that line will be an input or an output. If
a bit in the DDR is a ONE, the corresponding line of the PORT will be an OUTPUT.
If a bit in the DDR is a ZERO, the corresponding line of the PORT will be an
INPUT. For example, if bit 3 of the DDR is set to 1, then line 3 of the PORT will
be an output. A further example:

If the DDR is set like this:

BIT#H: 7
0]

5 4 3
VALUE: T 1 1

6 2 1 0

0] 0O 0 O

You can see that lines 5, 4 and 3 will be outputs since those bits are ones. The
rest of the lines will be inputs, since those lines are zeros.

To PEEK or POKE the USER port, it is necessary to use both the DDR and the PORT
itself.

Remember that the PEEK and POKE statements want a number from 0-255. The
numbers given in the example must be translated into decimal before they can
be used. The value would be:

25+24+23=32+16+8=56

Notice that the bit # for the DDR is the same number that = 2 raised to a power
to turn the bit value on.

(16 = 21N 4=2x2X2X2, 8 = 2 3=2X2X2)

The two other lines, FLAG1 and PA2 are different from the rest of the USER
PORT. These two lines are mainly for HANDSHAKING, and are programmed
differently from port B.

Handshaking is needed when two devices communicate. Since one device may
run at a different speed than another device it is necessary to give the devices
some way of knowing what the other device is doing. Even when the devices are
operating at the same speed, handshaking is necessary to let the other know
when data is to be sent, and if it has been received. The FLAG1 line has special
characteristics which make it well suited for handshaking.

FLAG1 is a negative edge sensitive input which can be used as a general

purpose interrupt input. Any negative transition on the FLAG line will set the FLAG
interrupt bit. If the FLAG interrupt is enabled, this will cause an INTERRUPT

INPUT/OUTPUT GUIDE 361

REQUEST. If the FLAG bit is not enabled, it can be polled from the interrupt
register under program control.

PA2 is bit 2 of PORT A of the CIA. It is controlled like any other bit in the port.
The port is located at 56576 ($DD00). The data direction register is located at
56578 ($DD02.)

FOR MORE INFORMATION ON THE 6526 SEE THE CHIP SPECIFICATIONS IN
APPENDIX M.

THE SERIAL BUS

The serial bus is a daisy chain arrangement designed to let the Commodore 64
communicate with devices such as the VIC-1541 DISK DRIVE and the VIC-1525
GRAPHICS PRINTER. The advantage of the serial bus is that more than one
device can be connected to the port. Up to 5 devices can be connected to the
serial bus at one time.

There are three types of operation over a serial bus: CONTROL, TALK, and
LISTEN. A CONTROLLER device is one which controls operation of the serial bus.
A TALKER transmits data onto the bus. A LISTENER receives data from the bus.

The Commodore 64 is the controller of the bus. It also acts as a TALKER (when
sending data to the printer, for example) and as a LISTENER (when loading a
program from the disk drive, for example). Other devices may be either
LISTENERS (the printer), TALKERS, or both (the disk drive). Only the Commodore
64 can act as the controller.

All devices connected on the serial bus will receive all the data transmitted over
the bus. To allow the Commodore 64 to route data to its intended destination,
each device has a bus ADDRESS. By using this device address, the Commodore
64 can control access to the bus. Addresses on the serial bus range from 4 to 31.

The Commodore 64 can COMMAND a particular device to TALK or LISTEN.
When the Commodore 64 commands a device to TALK, the device will begin
putting data onto the serial bus. When the Commodore 64 commands a device
to LISTEN, the device addressed will get ready to receive data (from the
Commodore 64 or from another device on the bus). Only one device can TALK
on the bus at a time; otherwise, the data will collide and the system will crash in
confusion. However, any number of devices can LISTEN at the same time to one
TALKER.

362 INPUT/OUTPUT GUIDE

COMMON SERIAL BUS ADDRESSES

NUMBER DEVICE
4or5 VIC-1525 GRAPHIC PRINTER
8 VIC-1541 DISK DRIVE

Other device addresses are possible. Each device has its own address. Certain
devices (like the Commodore 64 printer) provide a choice between two
addresses for the convenience of the user.

The SECONDARY ADDRESS is to let the Commodore 64 transmit setup
information to a device. For example, to OPEN a connection on the bus to the
printer, and have it print in UPPER/LOWER case, use the following:

OPEN 1,4,7

where:

1 is the logical file number (the number you PRINT# to),

4 is the ADDRESS of the printer, and

7 is the SECONDARY ADDRESS that tells the printer to go into UPPER/LOWER
case mode.

There are 6 lines used in serial bus operation — 3 input and 3 output. The 3 input
lines bring data, control, and timing signals into the Commodore 64. The 3 output
lines send data, control, and timing signals from the Commodore 64 to external
devices on the serial bus.

SERIAL BUS PINOUTS

PIN DESCRIPTION
1 SERIAL SRQ IN
2 GND
3 SERIAL ATN IN/OUT
4 SERIAL CLK IN/OUT
5 SERIAL DATA IN/OUT
6 NO CONNECTION

INPUT/OUTPUT GUIDE 363

SERIAL SRQ IN: (SERIAL SERVICE REQUEST IN)

Any device on the serial bus can bring this signal LOW when it requires attention
from the Commodore 64. The Commodore 64 will then take care of the device.
(See Figure 6-4).

NORMAL
‘ "~ DATA BYTES

AN [

‘*7 BYTE SENT UNDER ATTENTION (TO DEVICES)

coes L UL
CLOCK Ts

—Tar —'| | TNE} |“|— Tv 4’| Te |‘*
s RN [BEEEEEL]
—~ Tl DATA VALD HF”
LISTENER READY-FOR-DATA LISTENER DATA-ACCEPTED

END-OR-IDENTIFY HANDSHAKE (LAST BYTE IN MESSAGE)

TALKER READY-TO-SEND TALKER SENDING
|

li_—T T b T o
oaTA 4] {s][e]l 7] _I L L[

MSB

e

TElT‘ Tey —I Te |‘_'LTFR
LISTENER READY-FOR-DATA [

EOI-TIMEOUT HANDSHAKE SYSTEM LINE

LISTENER READY-FOR-DATA RELEASE

TALK-ATTENTION TURN AROUND (TALKER AND LISTENER REVERSED)

ATN | DEVICE ACKNOWLEDGES IT IS NOW TALKER
‘ | TALKER READY-TO-SEND

cock _[1] | | [T
| _" Te |“T" Toc l TDA ‘ N | |+Tv

DATA TSL%ISI_II_II_IIAIIzII_II_I L
[T,

—IT: |._

-
1
READY FOR DATA
BECOMES LISTENER, CLOCK = HIGH, DATA LOW

FIGURE 6-4. SERIAL

364 INPUT/OUTPUT GUIDE

SERIAL ATN IN/OUT: (SERIAL ATTENTION IN/OUT)

The Commodore 64 uses this signal to start a command sequence for a device
on the serial bus. When the Commodore 64 brings this signal LOW, all other
devices on the bus start listening for the Commodore 64 to transmit an address.

The device addressed must respond in a preset period of time; otherwise, the

Commodore 64 will assume that the device addressed is not on the bus, and will
return an error in the STATUS WORD. (See Figure 6-4).

TALKER READY-TO-SEND

Rty

TiALKER SENDING

TNE

|

ERE
1

DATA VALID

UUMMHMMM

LISTENER READY-FOR-DATA

Tl | M T
Ts

H\ Te T,_,‘ Ty |_

LISTENER DATA-ACCEPTED

SERIAL BUS TIMING

Description Symbol Min. Typ. Max.
ATN RESPONSE (REQUIRED)' Tar — — 1000uS
LISTENER HOLD-OFF Th 0 — Lo
NON-EOI RESPONSE TO RFD? The — 40uS 200uS
BIT SET-UP TALKER“ Ts 20uS 70uS —
DATA VALID Tv 20uS 20uS —
FRAME HANDSHAKE? Tr 0 20 1000uS
FRAME TO RELEASE OF ATN Tr 20uS — —
BETWEEN BYTES TIME Tes 100uS — —
EOI RESPONSE TIME Tve 200us 250uS —
EOI RESPONSE HOLD TIME® Te 60uS — —
TALKER RESPONSE LIMIT Try 0 30uS 60uS
BYTE-ACKNOWLEDGE* Ter 20uS 30uS —
TALK-ATTENTION RELEASE Trc 20uS 30us 100us
TALK-ATTENTION ACKNOWLEDGE Toc 0 — —
TALK-ATTENTION ACK. HOLD Toa 80uS — —
EOI ACKNOWLEDGE Trr 60uS — —

Notes:

1. If maximum time exceeded, device not present error.

2. If maximum time exceeded, EOI response required.

3. If maximum time exceeded, frame error.
4. Tv and Ter minimum must be 60US for external device to be a talker.
5. Te minimum must be 80US for external device to be a listener.

BUS TIMING.

INPUT/OUTPUT GUIDE

365

SERIAL CLK IN/OUT: (SERIAL CLOCK IN/OUT)

This signal is used for timing the data sent on the serial bus (See Figure 6-4).

SERIAL DATA IN/OUT:

Data on the serial bus is transmitted one bit at a time on this line (See Figure 6-

4).

THE EXPANSION PORT

The expansion connector is a 44-pin (22/22) female edge connector on the back

of the Commodore 64. With the Commodore 64 facing you, the expansion
connector is on the far right of the back of the computer. To use the connector, a

44-pin (22/22) male edge connector is required.

This port is used for expansions of the Commodore 64 system which require
access to the address bus or the data bus of the computer. Caution is necessary
when using the expansion bus, because it's possible to damage the Commodore

64 by a malfunction of your equipment.

The expansion bus is arranged as follows:

222120191817161514131211109 8 7 6 5 4 3 2 1

I—

ZYXWVUTSRPNMLKIJIHFEDCEBA

The signals available on the connector are as follows:

NAME PIN DESCRIPTION

GND 1 System ground
+5 VDC 2 (Total USER PORT and CARTRIDGE devices can draw no
+5 VDC 3 more than 450 mA.)

IRQ 4 Interrupt Request line to 6502 (active low)

R/W 5 Read/Write
DOT

. Hz vi lock

CLOCK 6 8.18 MHz video dot cloc

1/O1 7 | 1/O block 1 @ $DEOO—-$DEFF (active low) unbuffered 1/O

GAME 8 active low Is tl input

EXROM 9 active low Is tl input

/02 10 | 1/O block 2 @ $DFOO—$DFFF (active low) buffered Is t output

366 INPUT/OUTPUT GUIDE

NAME PIN DESCRIPTION
8K decoded RAM/ROM block @ $8000 (active low)
ROML 11
buffered Is tl output
BA 12 | Bus available signal from the VIC-II chip
unbuffered 1 Is load max.
DVA 13 Direc.t memory access request line (active low input)
Is ttl input
D7 14 | Data bus bit7
D6 15 | Data bus bit 6
D5 16 | Data bus bit 5
b4 17| Data bus bit 4 } Unbuffered, 1 Is ttl load max
D3 18 | Data bus bit 3 !
D2 19 | Data bus bit 2
D1 20 | Data bus bit 1
DO 21 | Data busbit0
GND 22 | System ground
GND A
ROMH B 8K decoded RAM/ROM block @ $EO000 buffered
RESET C 6502 RESET pin (active low) buff'ed ttl out/unbuff'ed in
T 6502 Non Maskable Interrupt (active low) buff'ed til out,
NMI D "o
unbuff'ed in
¢2 E Phase 2 system clock
Al5 F Address bus bit 15 1
Al4 H Address bus bit 14
A13 J Address bus bit 13
Al12 K Address bus bit 12
A1l L Address bus bit 11
A10 M Address bus bit 10
A9 N Address bus bit 9
A8 P Address bus bit 8 Unbuffered, 1 Is ttl load max
A7 R Address bus bit 7
Ab S Address bus bit 6
A5 T Address bus bit 5
A4 U Address bus bit 4
A3 \ Address bus bit 3
A2 W | Address bus bit 2
Al X Address bus bit 1
AO Y Address bus bit O J
GND YA System ground

Overbar means active low

INPUT/OUTPUT GUIDE 367

Following is a description of some important lines on the expansion port:
Pins 1, 22, A, Z are connected to the system ground.

Pin 6 is the DOT CLOCK. This is the 8.18-MHz video dot clock. All system timing
is derived from this clock.

Pin 12 is the BA (BUS AVAILABLE) signal from the VIC-II chip. This line will go low
3 cycles before the VIC-Il takes over the system busses, and remains low until the
VIC-Il is finished fetching display information.

Pin 13 is the DMA (DIRECT MEMORY ACCESS) line. When this line is pulled low,
the address bus, the data bus, and the Read/Write line of the 6510 processor
chip enter high-impedance state mode. This allows an external processor to take
control of the system busses. This line should only be pulled low when the $2 clock
is low. Also, since the VIC-Il chip will continue to perform display DMA, the
external device must conform to the VIC-II timing. (See VIC-Il timing diagram.)
This line is pulled up on the Commodore 64.

Z-80 MICROPROCESSOR CARTRIDGE

Reading this book and using your computer has shown you just how versatile your
Commodore 64 really is. But what makes this machine even more capable of
meeting your needs is the addition of peripheral equipment. Peripherals are
things like Datasette™ recorders, disk drives, printers, and modems. All these
items can be added to your Commodore 64 through the various ports and sockets
on the back of your machine. The thing that makes Commodore peripherals so
good is the fact that our peripherals are "intelligent." That means that they don't
take up valuable Random Access Memory space when they're in use. You're free
to use all 64K of memory in your Commodore 64.

Another advantage of your Commodore 64 is the fact most programs you write
on your Commodore 64 today will be upwardly compatible with any new
Commodore computer you buy in the future. This is partially because of the
qualities of the computer's Operating System (OS).

However, there is one thing that the Commodore OS can't do: make your
programs compatible with a computer made by another company.

368 INPUT/OUTPUT GUIDE

Most of the time you won't even have to think about using another company's
computer, because your Commodore 64 is so easy to use. But for the occasional
user who wants to take advantage of software that may not be available in
Commodore 64 format we have created a Commodore CP/M® cartridge.

CP/M® is not a "computer dependent" operating system. Instead it uses some of
the memory space normally available for programming to run its own operating
system. There are advantages and disadvantages to this. The disadvantages are
that the programs you write will have to be shorter than the programs you can
write using the Commodore 64's built-in operating system. In addition, you can
NOT use the Commodore 64's powerful screen editing capabilities. The
advantages are that you can now use a large amount of software that has been
specifically designed for CP/M® and the Z-80 microprocessor, and the programs
that you write using the CP/M® operating system can be transported and run on
any other computer that has CP/M® and a Z-80 card.

By the way, most computers that have a Z-80 microprocessor require that you
go inside the computer to actually install a Z-80 card. With this method you have
to be very careful not to disturb the delicate circuitry that runs the rest of the
computer. The Commodore CP/M® cartridge eliminates this hassle because our
Z-80 cartridge plugs into the back of your Commodore 64 quickly and easily,
without any messy wires that can cause problems later.

USING COMMODORE CP/M®

The Commodore Z-80 cartridge lets you run programs designed for a Z-80
microprocessor on your Commodore 64. The cartridge is provided with a diskette
containing the Commodore CP/M® operating system.

RUNNING COMMODORE CP/M®
To run CP/M®;

1. LOAD the CP/M® program from your disk drive.
2. Type RUN.

3. Hit the key.

INPUT/OUTPUT GUIDE 369

At this point the 64K bytes of RAM in the Commodore 64 are accessible by the
built-in 6510 central processor, OR 48K bytes of RAM are available for the Z-
80 central processor. You can shift back and forth between these two processors,
but you can NOT use them at the same time in a single program. This is possible
because of your Commodore 64's sophisticated timing mechanism.

Below is the memory address translation that is performed on the Z-80 cartridge.
You should notice that by adding 4096 bytes to the memory locations used in
CP/M® $1000 (hex) you equal the memory addresses of the normal Commodore
64 operating system. The correspondence between Z-80 and 6510 memory
addresses is as follows:

Z-80 ADDRESSES 6510 ADDRESSES
DECIMAL HEX DECIMAL HEX
0000-4095 0000—OFFF 4096-8191 1000—1FFF
4096-8191 1000—1FFF 819212287 2000-2FFF
8192-12287 2000-2FFF 12288-16383 | 3000-3FFF
12288-16383 | 3000-3FFF 16384-20479 | 4000-4FFF
16384-20479 | 4000—4FFF 20480-24575 | 5000-5FFF
20480-24575 | 5000-5FFF 24576-28671 | 6000-6FFF
24576-28671 | 6000-6FFF 28672-32767 | 7000-7FFF
28672-32767 | 7000-7FFF 32768-36863 | 8000-SFFF
32768-36863 | 8000-8FFF 36864-40959 | 9000-9FFF
36864-40959 | 9000-9FFF 40960-45055 | AOOO—AFFF
40960-45055 | AOOO—AFFF 45056-49151 | BOOO-BFFF
4505649151 | BOOO-BFFF 49152-53247 | COOO—CFFF
49152-53247 | COOO—CFFF 53248-57343 | DOOO-DFFF
53248-57343 | DOOO-DFFF 57344-61439 | EOOO—EFFF
57344-61439 | EOOO—EFFF 61440-65535 | FOOO—FFFF
6144065535 | FOOO—FFFF 0000-4095 0000—OFFF

370 INPUT/OUTPUT GUIDE

To TURN ON the Z-80 and TURN OFF the 6510 chip, type in the following
program:

10 REM THIS PROGRAM IS TO BE USED WITH THE 280 CARD

20 REM IT FIRST STORES 280 DATA AT $1000 (Z80=$0000>
30 REM THEN IT TURNS OFF THE 6510 IRQ'S AND ENABLES

40 REM THE Z80 CARD. THE Z80 CARD MUST BE TURNED OFF
S0 REM TO REENABLE THE 6510 SYSTEM.

100 REM STORE Z80 DATA

110 READ B: REM GET SIZE OF Z80 CODE TO BE MOVED

120 FOR I=4096 TO 4096+B-1:REM MOVE CODE

130 READ A:POKE I,A

140 NEXT I

200 REM RUN 280 CODE

210 POKE 56333,127: REM TURN OFF 6510 IRQ'S

220 POKE 56832,00 : REM TURN ON Z80 CARD

230 POKE 56333,129: REM TURN ON 6510 IRQ@'S WHEN Z80 DONE
240 END

1000 REM 280 MACHINE LANGUAGE CODE DATA SECTION

1010 DATA 18 : REM SIZE OF DATA TO BE PASSED

1100 REM 280 TURN ON CODE

1110 DATA 00,00,00 : REM OUR 280 CARD REQUIRES TURN ON TIME
AT $0000

1200 REM 280 TASK DATA HERE

1210 DATA 33,02,245: REM LD HL,NN (LOCATION ON SCREEN)>
1220 DATA 52 : REM INC HL C(INCREMENT THAT LOCATION)>
1300 REM 280 SELF-TURN OFF DATA HERE

1310 DATA 62,01 : REM LD A,N

1320 DATA 50,00,206 : REM LD (NN>,A :I+0 LOCATION

1330 DATA 00,00,00 : REM NOP, NOP, NOP

1340 DATA 195,00,00 : REM JMP $0000

For more details about Commodore CP/M® and the Z-80 microprocessor look

for the cartridge and the Z-80 Reference Guide at your local Commodore
computer dealer.

INPUT/OUTPUT GUIDE 371

372 INPUT/OUTPUT GUIDE

APPENDICES

APPENDIX A

ABBREVIATIONS FOR BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commodore 64 BASIC
allows the user to abbreviate most keywords. The abbreviation for PRINT is a
question mark. The abbreviations for other words are made by typing the first
one or two letters of the word, followed by the SHIFTed next letter of the word.
If the abbreviations are used in a program line, the keyword will LIST in the full

form.

Looks like Looks like
Command Abbreviation this Command Abbreviation this

on screen on screen
ABS A B Alll |cGoto [elSHIFTie) eI
AND A N AL IF NONE IF
ASC A S AW INPUT NONE INPUT
ATN A T Al INPUT# [N "
CHR$ C H clll INT NONE INT
CLOSE CL o call |LeFT$ NSHIFTI LE bt
CLR C L clL LEN NONE LEN
CMD M C LET (WS HIFTS L=
CONT c HE o clh LIST WS HIFTI Lby
Ccos NONE Ccos LOAD L e} L
DATA D A D LOG NONE LOG
DEF D D™ MID$ Y SHIFTI My
DIM D I DMy NEW NONE NEW
END E S E NEXT N Si&E E N™=
EXP E S X El NOT N o} NI
FN NONE FN ON NONE ON
FOR F SE& © FIT OPEN o) P oMl
FRE F SfE R F OR NONE OR
GET G JilM E GM™ PEEK MSHIFTIS P
GET# NONE GET# | POKE P o] P
GOSUB GO S GOMW |POS NONE POS

374 APPENDIX A

Looks like Looks like
Command Abbreviation this Command Abbreviation this

on screen on screen
PRINT 2 2 STATUS ST ST
PRINT# P R P STEP sT & E ST
READ R SEE E R™ STOP S T sl
REM NONE REM STR$ ST R ST i
RESTORE RE S REWM | SYS S Y sl
RETURN RE T REL | | TAB(T A T
RIGHT$ R [RMy| TAN NONE TAN
RND R N RA THEN T SH&E H ull |
RUN R U R # TIME Tl Tl
SAVE S A s | TIMES TI$ TI$
SGN S G sl USR U S U
SIN S [Shy VAL v A Vi
SPC(s SR P sM VERIFY \% E v
SQR s B @ Sl | WAIT w Hi&E A W e

APPENDIX A

375

APPENDIX B

SCREEN DISPLAY CODES

The following chart lists all of the characters built into the Commodore 64
character sets. It shows which numbers should be POKEd into screen memory
(locations 1024 — 2023) to get a desired character. Also shown is which
character corresponds to a number PEEKed from the screen.

Two character sets are available, but only one set at a time. This means that you
cannot have characters from one set on the screen at the same time you have
characters from the other set displayed. The sets are switched by holding down
the and [keys simultaneously.

From BASIC, POKE 53272,21 will switch to upper case mode and POKE
53272,23 switches to lower case.

Any number on the chart may also be displayed in REVERSE. The reverse
character code may be obtained by adding 128 to the values shown.

If you want to display a solid circle at location 1504, POKE the code for the
circle (81) into location 1504: POKE 1504,81.

There is a corresponding memory location to control the color of each character
displayed on the screen (locations 55296—-56295). To change the color of the
circle to yellow (color code 7) you would POKE the corresponding memory
location (5577 6) with the character color: POKE 55776,7.

Refer to Appendix D for the complete screen and color memory maps, along
with color codes.

NOTE: The following POKEs display the same symbol in set 1 and 2: 1, 27 to 64, 91 to 93, 96
to 104, 106 to 121, 123 to 127.

376 APPENDIX B

SCREEN CODES

['Y)
ION®O O ——AN®MITWONOO®OO—AMIWMONODOO—NMITWMON ©®
O/ O O O KNNRNNNNNNNRNIRKN O © ®© ® ®© ®© ® 0O O O & O O &8 O O O O O
[-
N
HBloUoOoww O — - ¥ 03T Z0a@xwirkEr>D>Z2IX>N o
v
— w
- o - _ _ o - S .
__.._au._HEEHEMHhEPUBEﬁH@MWDEMD@HHEEH@BmIm-
(%]

1Y)
¥l ¥ 10 ON OO O—NMTTWMWONO®®OO—NMTIWONO®D®OO — N ™M I 1V
OlM ®» ™ MM »”®m I IT ITITITITIIITTOONODO OO OGO WONOO OO O 0O
[-
Q
s <
v
__._S|._|u#$%&‘()*+,_ ~O —~ N ™M Y !0 ON®O ~V Il A o [] W
¥

O — AN ™M IO ON®D®DOO—ANMIWOMONODOO —
O/ —N®mMTWVWON®OZ - S s AN AN ANNAANNNGO®O®
o.
o~
L O 0 U T 0% DL == =X — £ € 0 QO T ~ v + D > 3 X > N
v
= o]
__.._al._@ABCDEFGHIJKLMNOPQRSTUVWXYZ[£]¢/_\M

[%]

377

APPENDIX B

SET1 SET2 POKE | SET1 SET2 POKE | SET1 SET2 POKE
] 99 L 109 = 119
U 100 - 110 - 120
I 101 - 111 o 121
= 102 e 112 M | ' 122
| 103 e 113 = 123
b 104 - 114 (= 124
Fooo@m 105 A 115 | A 125
H | 106 I 116 ull 126
'K 107 I 117 " 127
'm 108 N | 118

378

Codes from 128 to 255 are reversed images of codes 0 to 127.

APPENDIX B

APPENDIX C

ASCIl AND CHR$ CODES

This appendix shows you what characters will appear if you PRINT CHR$(X), for
all possible values of X. It will also show the values obtained by typing PRINT
ASC("x"), where x is any character you can type. This is useful in evaluating the
character received in a GET statement, converting upper/lower case, and
printing character based commands (like switch to upper/lower case) that could
not be enclosed in quotes.

PRINT CHR$ | PRINT CHR$ | PRINT CHR$ | PRINT CHR$
0 17 " 34 3 51

1 18 # 35 4 52

2 19 $ 36 5 53

3 DEL 20 % 37 6 54

4 21 & 38 7 55

whr 5 22 ‘ 39 8 56

6 23 (40 9 57

7 24) 41 : 58

DisabLEs I (@ 8 25 * 42 ; 59
enasies B € 9 26 + 43 < 60
10 27 , 44 = 61

n | ER 2s - 45 > 62

12 29 . 46 2 63

RETURN, 13 30 / 47 @ 64
14 BLU 31 0 48 A 65
15 SPACH 32 1 49 B 66

16 ! 33 2 50 C 67

APPENDIX C 379

PRINT CHR$ | PRINT CHR$ | PRINT CHR$ | PRINT CHR$
D 68) 97 b 126 | Gray3 155
E 69 1 98 | 127 PUR 156
F 70 — 99 128 157
G 71 o 100 | Orange 129 YEL 158
H 72 ™~ 101 130 159
[73 - 102 131 160
J 74 1 103 132 [161
K 75 Hl 104 f1 133 - 162
L 76 | 105 f3 134 O 163
M 77 ~ 106 f5 135 O 164
N 78 ol 107 7 136 I 165
o) 79 L 108 f2 137 = 166
P 80 Y 109 f4 138 | 167
Q 81 FJ 110 f6 139 " 168
R 82 r 111 8 140 [4 169
S 83 M 112 141 H | 170
T 84 (] 113 142 F 171
U 85 g 114 143 'm 172
v 86 » 115 144 L 173
W 87 1 116 145 - 174
X 88 F. 117 o 146 o 175
Y 89 o 118 147 ' 176
Z 90 [-] 119 148 o 177
[91 3 120 Brown 149 - 178
£ 92 N 121 Lt Red 150 o] 179
] 93 L 122 | Gray1 151 I 180
0 94 =+ 123 | Gray2 152 I 181
& 95 -3 124 | Lt Green 153 N | 182
" 96 " 125 Lt Blue 154 - 183

380 APPENDIX C

PRINT CHR$ PRINT CHR$ PRINT CHR$ | PRINT CHR$
- 184 [| 186 ([188 ull 190
- 185 - 187 o | 189 .~ 191

CODES 192 to 223 SAME AS 96 to 127
CODES 224 to 254 SAME AS 160 to 190
CODE 225 SAME AS 126

APPENDIX C

381

APPENDIX D

SCREEN AND COLOR MEMORY MAPS

The following charts list which memory locations control placing characters on the
screen, and the locations used to change individual character colors, as well as
showing character color codes.

SCREEN MEMORY MAP

COLUMN

0 10 20 30 39
1063
N
1024 > 0
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424 0 3
1464 =
1504
1544
1584
1624
1664
1704
1744
1784
1824 20
1864
1904
1944
1984 24
T

2023

382 APPENDIX D

The actual values to POKE into a color memory location to change a character's
color are:

0 BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 10 Light RED

3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE
7 YELLOW 15 GRAY 3

For example, to change the color of a character located at the upper left-hand
corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

COLUMN

0 10 20 30 39
55335
v
55296 > 0
55336
55376
55416
55456
55496
55536
55576
55616
55656
=
55696 10 2
55736 =
55776
55816
55856
55896
55936
55976
56016
56056
56096 20
56136
56176
56216
56256 24
T
56295

APPENDIX D 383

APPENDIX E

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, and the values
to be POKED into the HI FREQ and LOW FREQ registers of the sound chip to
produce the indicated note. The table shows values based on both a $2 clock of
1.02 MHz (shown as NTSC) and 0.985 MHz (shown as PAL).

MUSICAL NOTE |OSCILLATOR FREQ (NTSC)| OSCILLATOR FREQ (PAL)
NOTE | OCTAVE | DECIMAL | HI LOW | DECIMAL HI LOwW
0 C-0 268 1 12 278 1 22
1 C#-0 284 1 28 294 1 38
2 D-0 301 1 45 312 1 56
3 D#-0 318 1 62 331 1 75
4 E-O 337 1 81 350 1 94
5 F-0 358 1 102 371 1 115
6 F#-0 379 1 123 393 1 137
7 G-0 401 1 145 417 1 161
8 G#-0 425 1 169 441 1 185
9 A-0 451 1 195 468 1 212
10 A#-0 477 1 221 496 1 240
11 B-O 506 1 250 525 2 13
16 C-1 536 2 24 556 2 44
17 C#-1 568 2 56 589 2 77
18 D-1 602 2 90 625 2 113
19 D#-1 637 2 125 662 2 150
20 E-1 675 2 163 701 2 189
21 F-1 716 2 204 743 2 231
22 F#-1 758 2 246 787 3 19
23 G-1 803 3 35 834 3 66
24 G#-1 851 3 83 883 3 115
25 A-1 902 3 134 936 3 168
26 A#-1 955 3 187 992 3 224
27 B-1 1012 3 244 1051 4 27
32 C-2 1072 4 48 1113 4 89

384 APPENDIX E

MUSICAL NOTE

OSCILLATOR FREQ (NTSC)

OSCILLATOR FREQ (PAL)

NOTE | OCTAVE | DECIMAL | HI LOW | DECIMAL HI Low
33 C#-2 1136 4 112 1179 4 155
34 D-2 1204 4 180 1250 4 226
35 D#-2 1275 4 251 1324 5 44
36 E-2 1351 5 71 1403 5 123
37 F-2 1432 5 152 1486 5 206
38 F#-2 1517 5 237 1575 6 39
39 G-2 1607 6 71 1668 6 132
40 G#-2 1703 6 167 1767 6 231
41 A-2 1804 7 12 1873 7 81
42 A#-2 1911 7 119 1984 7 192
43 B-2 2025 7 233 2102 8 54
48 C-3 2145 8 97 2227 8 179
49 C#-3 2273 8 225 2359 9 55
50 D-3 2408 9 104 2500 9 196
51 D#-3 2551 9 247 2649 10 89
52 E-3 2703 10 143 2806 10 246
53 F-3 2864 11 48 2973 11 157
54 F#-3 3034 11 218 3150 12 78
55 G-3 3215 12 143 3337 13 9
56 G#-3 3406 13 78 3535 13 207
57 A-3 3608 14 24 3746 14 162
58 A#-3 3823 14 239 3969 15 129
59 B-3 4050 15 210 4205 16 109
64 C-4 4291 16 195 4455 17 103
65 C#-4 4547 17 195 4719 18 111
66 D-4 4817 18 209 5000 19 136
67 D#-4 5103 19 239 5298 20 178
68 E-4 5407 21 31 5613 21 237
69 F-4 5728 22 96 5946 23 58
70 F#-4 6069 23 181 6300 24 156
71 G-4 6430 25 30 6675 26 19
72 G#-4 6812 26 156 7071 27 159
73 A-4 7217 28 49 7492 29 68
74 A#-4 7647 29 223 7938 31 2
75 B-4 8101 31 165 8410 32 218
80 C-5 8583 33 135 8910 34 206
81 C#-5 9094 35 134 9439 36 223

APPENDIX E 385

MUSICAL NOTE

OSCILLATOR FREQ (NTSC)

OSCILLATOR FREQ (PAL)

NOTE | OCTAVE | DECIMAL | HI LOW | DECIMAL HI LOwW
82 D-5 9634 37 162 10001 39 17
83 D#-5 10207 39 223 10596 41 100
84 E-5 10814 42 62 11226 43 218
85 F-5 11457 44 193 11893 46 117
86 F#-5 12139 47 107 12600 49 56
87 G-5 12860 50 60 13350 52 38
88 G#-5 13625 53 57 14143 55 63
89 A-5 14435 56 99 14985 58 137
90 A#-5 15294 59 190 15876 62 4
91 B-5 16203 63 75 16820 65 180
96 C-6 17167 67 15 17820 69 156
97 C#-6 18188 71 12 18879 73 191
98 D-6 19269 75 69 20002 78 34
99 D#-6 20415 79 191 21192 82 200
100 E-6 21629 84 125 22452 87 180
101 F-6 22915 89 131 23787 92 235
102 F#-6 24278 94 214 25201 98 113
103 G-6 25721 100 | 121 26700 104 76
104 G#-6 27251 106 | 115 28287 110 127
105 A-6 28871 112 | 199 29970 117 18
106 A#-6 30588 119 | 124 31752 124 8
107 B-6 32407 126 | 151 33640 131 104
112 C-7 34334 134 30 35640 139 56
113 C#-7 36376 142 24 37759 147 127
114 D-7 38539 150 | 139 40005 156 69
115 D#-7 40830 159 | 126 42384 165 144
116 E-7 43258 168 | 250 44904 175 104
117 F-7 45830 179 6 47574 185 214
118 F#-7 48556 189 | 172 50403 196 | 227
119 G-7 51443 200 | 243 53400 208 152
120 G#-7 54502 212 | 230 56575 220 | 255
121 A-7 57743 225 | 143 59940 234 36
122 A#-7 61176 238 | 248 63504 248 16
123 B-7 64814 253 46 - - -

386 APPENDIX E

FILTER SETTINGS

Location Contents
54293 Low cutoff frequency (0 —7)
54294 High cutoff frequency (0 — 255)
54295 Resonance (bits 4 — 7)

Filter Voice 3 (bit 2)
Filter Voice 2 (bit 1)
Filter Voice 1 (bit 0)

54296 High Pass (bit 6)
Bandpass (bit 5)
Low pass (bit 4)
Volume (bits 0 — 3)

APPENDIXE 387

APPENDIX F

BIBLIOGRAPHY

ISBN TITLE AUTHOR

Publisher: Addison-Wesley

9780201015898 BASIC and the Personal Dwyer, Thomas A.;
Computer Critchfield, Margot

Publisher: Compute! Books

9780942386011 Compute!'s First Book Of Lock, Robert
PET/CBM

9780942386042 Programming the PET/CBM West, Raeto C.
Publisher: Cow Bay Computing

Feed Me, I'm Your PET Alexander, Carole
Computer

Looking Good with Your PET Alexander, Carole

Teacher's PET - Plans,
Quizzes, and Answers

Publisher: Creative Computing

9780916688288 Getting Acquainted With Your Hartnell, Tim
VIC-20

Publisher: Dilithium Press

9780918398253 32 BASIC Programs for the Rugg, Tom;
PET Computer Feldman, Phil

Publisher: Hayden Books

9780810455344 BASIC Conversions Brain, David A.;
Handbook for Apple TRS-80 Oviate, Philip R.;
and PET Users Paquin, Paul J.A,;
Stone Jr, Chandler
D.
9780810457607 BASIC From The Ground Up Simon, David E
9780810410503 Library of PET Subroutines Hampshire, Nick

388 APPENDIX F

Publisher: Little, Brown

9780876261477 The Computer Tutor: Learning Orwig, Gary W.;
Activities For Homes and Hodges, W.
Schools

Publisher: McGraw-Hill Osborne Media
9780931988752 CBM Professional Computer Osborne, Adam

Guide
9780070491571 Hands-On BASIC with a PET Peckham, Herbert
D.
9780931988820 Osborne CP/M User Guide Hogan, Thom
9780931988318 PET and the IEEE 488 Bus E. R Fisher; CW
(GPIB) Jensen
9780931988707 PET Fun And Games Jeffries, Ron;
Fisher, Glen
9780931988554 PET/CBM Personal Computer Osborne, Adam
Guide
9780931988400 Some Common BASIC Poole, Lon
Programs: Commodore
PET/CBM Edition
9780931988295 The 8086 Book Rector, Russell
9780931988509 VisiCalc: Home and Office Castlewitz, D.M.

Companion

Publisher: MOS Technology Inc.

MCS6500 Microcomputer MOS Technology
Family Hardware Manual Inc.

Publisher: Prentice Hall
9780136617693 PET/CBM BASIC Haskell, Richard E

9780136618355 The PET Personal Computer Dunn, Seamus
for Beginners

9780835983839 VIC Games and Recreations Camora, Dorothy
Publisher: Reston Publishing

9780835955256 PET BASIC: Training Your PET Zamora, Ramon
Computer

APPENDIX F 389

9780835955300 PET Games and Recreations Oglesby, Mac.;
Lindsay, Len.;
Kunkin, Dorothy B.

Publisher: Sams Publishing

9780672219856 The Howard W. Sams Crash Frenzel, Louis E.
Course In Microcomputers

9780810461864 | Speak BASIC To My PET Jones, A

9780672217906 Mostly BASIC: Applications Berenbon, Howard
for your PET

9780810410510 PET Graphics Hampshire, Nick

9780672217951 PET Interfacing Downey, James M

9780672219481 VIC 20 Programmer's Finkel, A;
Reference Guide Higginbottom, P;

Harris, N; Tomczyk,

Publisher: Tab Books

9780830615216 Basic, BASIC-English Noonan, Larry
Dictionary for the Apple, PET,
and TRS-80

Publisher: Total Information Services

Understanding Your PET/CBM

Understanding Your VIC Schultz, David
Publisher: Winthrop Publishers

| |;

9780876261668 Computer Games for Nahigian, J. Victor
Businesses, Schools, and
Homes

Commodore Magazines provide you with the most up-to-date information for
your Commodore 64. Two of the most popular publications that you should
seriously consider subscribing to are:

COMMODORE — The Microcomputer Magazine is published bimonthly and is
available by subscription ($15.00 per year, U.S., and $25.00 per year,
worldwide).

POWER/PLAY — The Home Computer Magazine is, published quarterly and is

available by subscription ($10.00 per year, U.S., and $15.00 per year
worldwide).

390 APPENDIX F

APPENDIX G

VIC CHIP REGISTER MAP

53248 ($D000) Starting (Base) Address

Register #

9”1 DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO
o | o |soxz soxo | SPRITEOX
Component
1 1| sovz sovo |SPRITEOY
Component
2 2 S1X7 S1X0 [SPRITE 1 X
3 3 S1Y7 S1YO [SPRITET Y
4 4 S2X7 S2X0 | SPRITE 2 X
5 5 S2Y7 S2Y0 [SPRITE2Y
6 é S3X7 S3X0 [SPRITE 3 X
7 7 S3Y7 S3Y0 [SPRITE3 Y
8 8 S4X7 S4X0 | SPRITE 4 X
9 9 S4Y7 S4Y0 [SPRITE4 Y
10 A S5X7 S5X0 [SPRITE 5 X
11 B S5Y7 S5Y0 [SPRITE5S Y
12 C S6X7 S6X0 | SPRITE 6 X
13 D S6Y7 S6YO |[SPRITES Y
14 E S7X7 S7X0 SPRITE 7 X
Component
15 F S7Y7 S7Y0 SPRITE 7 Y
Component
MSB of X
16 10 | S7X8 | S6X8 | S5X8 [S4X8 | S3X8 | S2X8 | S1X8 | SOX8 COORD.
17 | 11| Rc8 | EcM | BMM |BINK| RSEL | YscL2 | vscLi | vscro | Y SCROU
MODE
18 12 RC7 RCé RC5 | RC4 RC3 RC2 RC1 RCO | RASTER
19 13 LPX7 LPXO I)'(IGHT PEN
20 14 LPY7 LPYO $GHT PEN

APPENDIX G 391

Register #

Dec Hex

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DBO

21 15

SE7

SEO

SPRITE
ENABLE
ON/OFF

22 16

N.C.

N.C.

RST

MCM

CSEL

XSCL2

XSCL1

XSCLO

X SCROLL
MODE

23 17

SEXY7

SEXYO

SPRITE
EXPAND Y

24 18

VS13

VS12

VS11

VS10

CB13

CB12

CB11

N.C.

SCREEN
Character
Memory

25 19

IRQ

N.C.

N.C.

N.C.

LPIRQ

ISSC

ISBC

RIRQ

Interrupt
Requests

26 1A

N.C.

N.C.

N.C.

N.C.

MLPI

MISSC

MISBC

MRIRQ

Interrupt
Requests
MASKS

27 1B

BSP7

BSPO

Background
Sprite
Priority

28 1C

SCM7

SCMO

Multicolor
Sprite Select

29 1D

SEXX7

SEXX0

SPRITE
EXPAND X

30 1E

S§SC7

§SCO

Sprite-Sprite
Collision

31 1F

SBC7

SBCO

Sprite-
Background
COLLISION

392 APPENDIX G

REGISTER # REGISTER #

DEC | HEX | COLOR DEC | HEX | COLOR

32 20 BORDER COLOR 39 27 SPRITE 0 COLOR

33 21 BACKROUND COLOR 0 40 28 SPRITE 1 COLOR

34 22 BACKROUND COLOR 1 A 29 SPRITE 2 COLOR

35 23 BACKROUND COLOR 2 42 2A SPRITE 3 COLOR

36 24 BACKROUND COLOR 3 43 2B SPRITE 4 COLOR

37 25 SPRITE MULTICOLOR 0 44 2C SPRITE 5 COLOR

38 26 SPRITE MULTICOLOR 1 45 2D SPRITE 6 COLOR
46 2E SPRITE 7 COLOR

COLOR CODES

DEC | HEX | COLOR DEC | HEX | COLOR

0 0 BLACK 8 8 ORANGE

1 1 WHITE 9 9 BROWN

2 2 RED 10 A LIGHT RED

3 3 CYAN N B GRAY 1

4 4 PURPLE 12 C GRAY 2

5 5 GREEN 13 D LIGHT GREEN

6 6 BLUE 14 E LIGHT BLUE

7 7 YELLOW 5 F GRAY 3

LEGEND:

ONLY COLORS 0 to 7 MAY BE USED IN MULTICOLOR CHARACTER MODE.

APPENDIX G

393

APPENDIX H

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to Commodore 64 BASIC may be calculated as

follows:
FUNCTION BASIC EQUIVALENT
SECANT SEC(X)=1/COS(X)
COSECANT CSC(X)=1/SIN(X)
COTANGENT COT(X)=1/TAN(X)
INVERSE SINE ARCSIN(X)=ATN(X/SQR(-X*X+1))

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC COSINE
INVERSE HYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOIC COTANGENT

ARCCOS(X)=—ATN(X/SQR
(=X*X+1))+ 7T /2

ARCSEC(X)= ATN(SQR(X*X—
1))+(SGN(X)-1)* 7 /2

ARCSEC(X)= ATN(1/SQR(X*X—
1))+(SGN(X)-1)* 7 /2
ARCOT(X)=ATN(=X)+ Tt /2
SINH(X)=(EXP(X)—-EXP(=X))/2
COSH(X)=(EXP(X)+EXP(-X))/2
TANH(X)=(EXP(X)—EXP(-
X))/(EXP(X)+EXP(=X))
SECH(X)=2/(EXP(X)+EXP(=X))
CSCH(X)=2/(EXP(X)—EXP(=X))
COTH(X)=EXP(=X)/(EXP(X)
—EXP(—X))*2+1
ARCSINH(X)=LOG(X+SQR(X*X+1))
ARCCOSH(X)=LOG(X+SQR(X*X~1))
ARCTANH(X)=LOG((1+X)/(1-X))/2
ARCSECH(X)= LOG((1+SQR(1-
X*X))/X)
ARCCSCH(X)=LOG((SGN(X)+SQR(
X#X+1))/X)

ARCCOTH(X)= LOG((SQR(X*X—
1))/(X=1))

394 APPENDIX H

APPENDIX |

PINOUTS FOR INPUT/OUTPUT DEVICES

This appendix is designed to show you what connections may be made to the

Commodore 64.

1) Game 1/O

2) Cartridge Slot

3) Audio/Video

4) Serial 1/O (Disk/Printer)

Control Port 1

5) Modulator Output

6) Cassette
7) User Port

Pin Type

Note

JOYAO
JOYA1
JOYA2
JOYA3
POT AY
BUTTON A/LP
+5V
GND
POT AX

VO 0 N O~ U N W N =

MAX. 50mA

Control Port 2

Pin Type

Note

JOYBO
JOYBI1
JOYB2
JOYB3
POT BY
BUTTON B
+5V
GND
POT BX

O 00N O O N W N =~

MAX. 50mA

APPENDIX |

395

Cartridge Expansion Slot

Pin Type Pin Type Pin Type Pin Type
1 GND 12 BA A GND N A9
2 +5V 13 DMA B ROMH | P A8
3 +5v 14 D7 C RESET R A7
4 IRQ 15 D6 D NMI S Ab
5 R/W 16 D5 E S02 T A5
6 Dot Clock | 17 D4 F Al15 U A4
7 I/O 1 18 D3 H Al4 \'% A3
8 GAME 19 D2 J Al13 "% A2
9 EXROM 20 D1 K Al12 X Al
10 1/O 2 21 DO L All Y AO
11 ROML 22 GND M A10 yA GND
222120191817161514131211109 8 7 6 5 4 3 2 1
ZYXWVUTSRPNMLKIHFEDCEBA

Avudio/Video

Pin Type

1 LUMINANCE

2 GND

3 AUDIO OUT

4 VIDEO OUT

5 AUDIO IN
Serial 1/O

Pin Type

1 SERIAL SRQIN

2 GND

3 SERIAL ATN IN/OUT

4 SERIAL CLK IN/OUT

5 SERIAL DATA IN/OUT

6 RESET

396 APPENDIX |

Cassette

Pin Type
A-1 GND
B-2 +5V
C-3 Cassette Motor
D-4 Cassette Read
E-5 Cassette Write
F-6 Cassette Sense
User 1/O
Pin Type Note
1 GND
2 +5V MAX. T00mA
3 RESET
4 CNTI
5 SP1
6 CNT2
7 |sp2
8 PC2
9 SER. ATN IN
10 9 VAC MAX. T00mA
11 9 VAC MAX. T00mA
12 GND
Pin Type Note
A GND
B FLAG?2
C PBO
D PB1
E PB2
F PB3
H PB4
J PB5
K PB6
L PB7
M PA2
N GND

2 3 456 78 9101112

S

A B CDETFHIJ KILMN

1 2 3 4 5 6

A B C D EF

APPENDIX |

397

APPENDIX J

CONVERTING STANDARD BASIC PROGRAMS TO
COMMODORE 64 BASIC

If you have programs written in a BASIC other than Commodore BASIC, some
minor adjustments may be necessary before running them on the Commodore
64. We've included some hints to make the conversion easier.

String Dimensions

Delete all statements that are used to declare the length of strings. A statement
such as DIM A$(l,)), which dimensions a string array for J elements of length
I, should be converted to the Commodore BASIC statement DIM A$(J).

Some BASICs use a comma or an ampersand for string concatenation. Each of
these must be changed to a plus sign, which is the Commodore BASIC operator
for string concatenation.

In Commodore-64 BASIC, the MID$, RIGHTS$, and LEFT$ functions are used
to take substrings of strings. Forms such as A$(l) to access the Ith character in
A$, or A$(l,)) to take a substring of A$ from position | to J, must be changed
as follows:

Other BASIC Commodore 64 BASIC

AS$(l) = X$ A$ = LEFT$(AS$,I-1)+X$+MID$(AS,I1+1)

A$(1,))=X$ AS$=LEFT$(AS$,I-1)+X$+MID$(A$,J+1)

Multiple Assignments

To set B and C equal to zero, some BASICs allow statements of the form:

10 LET B=C=0

Commodore 64 BASIC would interpret the second equal sign as a logical
operator and set B = —1 if C = 0. Instead, convert this statement to:

10 C=0 : B=0

398 APPENDIX J

Multiple Statements

Some BASICs use a backslash (\) to separate multiple statements on a line. With
Commodore 64 BASIC, separate all statements by a colon (:).

MAT Functions

Programs using the MAT functions available on some BASICs must be rewritten
using FOR... NEXT loops to execute properly.

APPENDIX J 399

APPENDIX K

ERROR MESSAGES

This appendix contains a complete list of the error messages generated by
the Commodore 64, with a description of causes.

BAD DATA

BAD SUBSCRIPT

BREAK

CAN'T CONTINUE

DEVICE NOT
PRESENT
DIVISION BY ZERO

EXTRA IGNORED

FILE NOT FOUND

FILE NOT OPEN

FILE OPEN

FORMULA TOO
COMPLEX

ILLEGAL DIRECT

ILLEGAL QUANTITY

400 APPENDIX K

String data was received from an open file, but the
program was expecting numeric data.

The program was trying to reference an element of
an array whose number is outside of the range
specified in the DIM statement.

Program execution was stopped because you hit
LY RUN/STOP L&A

The CONT command will not work, either because
the program was never RUN, there has been an
error, or a line has been edited.

The required 1/O device was not available for an
OPEN, CLOSE, CMD, PRINT#, INPUT#, or GET#.

Division by zero is a mathematical oddity and not
allowed.

Too many items of data were typed in response to
an INPUT statement. Only the first few items were
accepted.

If you were looking for a file on tape, and END-OF-
TAPE marker was found. If you were looking on disk,
no file with that name exists.

The file specified in a CLOSE, CMD, PRINT#,
INPUT#, or GET#, must first be OPENed.

An attempt was made to open a file using the
number of an already open file.

The string expression being evaluated should be
split into at least two parts for the system to work
with, or a formula has too many parentheses.

The INPUT statement can only be used within a
program, and not in direct mode.

A number used as the argument of a function or
statement is out of the allowable range.

LOAD

NEXT WITHOUT FOR

NOT INPUT FILE

NOT OUTPUT FILE

OUT OF DATA

OUT OF MEMORY

OVERFLOW

REDIM'D ARRAY

REDO FROM START

RETURN WITHOUT
GOSUB

STRING TOO LONG
?SYNTAX ERROR

TYPE MISMATCH

UNDEF'D FUNCTION

UNDEF'D

STATEMENT
VERIFY

There is a problem with the program on tape.

This is caused by either incorrectly nesting loops or
having a variable name in a NEXT statement that
doesn't correspond with one in a FOR statement.

An attempt was made to INPUT or GET data from a
file which was specified to be for output only.

An attempt was made to PRINT data to a file which
was specified as input only.

A READ statement was executed but there is no data
left unREAD in a DATA statement.

There is no more RAM available for program or
variables. This may also occur when too many FOR
loops have been nested, or when there are too many
GOSUBs in effect.

The result of a computation is larger than the largest
number allowed, which is 1.70141183E+38.

An array may only be DIMensioned once. If an
array variable is used before that array is DIM'd,
an automatic DIM operation is performed on that
array setting the number of elements to ten, and
any subsequent DIMs will cause this error.

Character data was typed in during an INPUT
statement when numeric data was expected. Just
re-type the entry so that it is correct, and the
program will continue by itself.

A RETURN statement was encountered, and no
GOSUB command has been issued.

A string can contain up to 255 characters.

A statement is unrecognizable by the Commodore
64. A missing or extra parenthesis, misspelled
keywords, etc.

This error occurs when a number is used in place of
a string, or vice-versa.

A user defined function was referenced, but it has
never been defined using the DEF FN statement.

An attempt was made to GOTO or GOSUB or RUN
a line number that doesn't exist.

The program on tape or disk does not match the
program currently in memory.

APPENDIX K 401

APPENDIX L

6510 MICROPROCESSOR CHIP
SPECIFICATIONS

DESCRIPTION

The 6510 is a low-cost microcomputer system capable of solving a broad range
of small-systems and peripheral-control problems at minimum cost to the user.

An 8-bit Bi-Directional I/O Port is located on-chip with the Output Register at
Address $0000 and the Data-Direction Register at Address $0001. The 1/O Port

is bit-by-bit programmable.

The Three-State sixteen-bit Address Bus allows Direct Memory Accessing (DMA)

and multiprocessor systems sharing a common memory.

The internal processor architecture is identical to the MOS Technology 6502 to

provide software compatibility.

FEATURES OF THE 6510...

402

Eight-Bit Bi-Directional I/O Port

Single +5 volt supply

N-channel, silicon gate, depletion load technology
Eight-bit parallel processing

56 Instructions

Decimal and binary arithmetic

Thirteen addressing modes

True indexing capability

Programmable stack pointer

Variable length stack

Interrupt capability

Eight-Bit Bi-Directional Data Bus

Addressable memory range of up to 65K bytes
Direct memory access capability

Bus compatible with M6800

Pipeline architecture

1-MHz and 2-MHz operation

Use with any type or speed memory

APPENDIX L

$1 1IN
RDY
RQ
NMI

AEC

A

A,
Ay
Ay
As

As

PIN CONFIGURATION

lsllallslallalzllal[s[=l[s]lel[e|[~|ef[«{l~]le{l~]]-]

N
o

—/

6510

I
o

39

w w w w w
[N [§,] o ~N [oo]

33

32

N w w
0 o -

28

N N N N N N N
— N w IS (& o N

APPENDIX L

DB,

DB,

DB,

DB,

DB,

DB,

DB,

P

Ps

P3

Py

403

Ao
Ay
A,
As
Ay
As
A

Az

404

AEC

] o
D —
—]
<
——] e
e —
-
2
- & 1
&
a
a
<
—— ’g —
0
-—
z
£
e —
— e
F
<
— e
e —
e —
— —
LEGEND

ﬁ = 8 BIT LINE

I = 1 BIT LINE

APPENDIX L

6510 BLOCK DIAGRAM

INTERNAL ADH

INTERNAL ADL

INDEX
REGISTER
Y,

<

o

INDEX
REGISTER
X

STACK
POINT
REG\SSTER

REGISTER

DIR[E,(\Z.%ON] P
REGISTER o =t
PERIPHERAL PERIPHERAL
<ﬁ> INTERFACE
REGISTER BUFFER
RES IRG N
INTERRUPT
LOGIC
| S—
z
Ow
e
29
5a $2 OUT
: f
B TIMING
< [CONTROL|
$0 IN

DATA BUS

BUFFER <

INSTRUCTION
REGISTER

P |__

o> |

D ——_

vy
b

\

'
o)
o

DATA

Ds | sus

F YV
o
o

6510 CHARACTERISTICS

MAXIMUM RATINGS

RATING SYMBOL VALUE UNIT
SUPPLY VOLTAGE Vee -0.3to +7.0 Voc
INPUT VOLTAGE Vin -0.3t0 +7.0 Vbc
OPERATING TEMPERATURE Ta O0to +70 °C
STORAGE TEMPERATURE Tste -551to +150 °C

NOTE: This device contains input protection against damage due to high static voltages or electric
fields; however, precautions should be taken to avoid application of voltages higher than the
maximum rating.

ELECTRICAL CHARACTERISTICS

(VCC =5.0V +5%, VSS =0, Ta = 0° to +70°C)

CHARACTERISTIC SBY(.I)VI‘_- MIN. TYP. MAX. UNIT

Input High Voltage Vi | Vec=0.2 | — | Vec+ 1.0V | Voc
1, d2giny
Input High Voltage

RES , Po-P7, IRQ , Data Vss +20 | — - Ve
Input Low Voltage
¢1, ¢2(in) Vi Vss — 0.3 —_ Vss + 0.2 Vbc

RES , Po—P7, IRQ , Data —_ —_ Vss + 0.8 Vbc
Input Leakage Current
(Vin =0 to 5.25V, Vcc = 5.25V)
Logic in —_ —_ 2.5 HA
b1, 2 — — 100 LA
Three State (Off State) Input Current
(Vin = 0.4 to 2.4V, Vcc = 5.25V)
Data Lines Itsi —_— —_— 10 [,IA
Output High Voltage
(low = =100pADC, Vec = 4.75V)
Data, Ac—A1s, R/W, Po—P7 VOH VSS + 24 -_ -_ VDC

APPENDIX L 405

CHARACTERISTIC SBYONI\.- MIN. TYP. MAX. UNIT
Out Low Voltage
(loo = 1.6mAoc, Vec = 4.75V)
Data, Ac—Ais, R/W, Po—P7 Vol — — Vss + 0.4 Vbc
Power Supply Current lcc —_ 125 mA
Capacitance C pF
(Vin=0,Ta=25°C, =1 MHz) | . . 10
Logic, Po—P7
Data _ — 15
Ao—Ais, R/W Cout — 12
ol Cr —_ 30 50
¢2 Co2 —_ 50 80
CLOCK TIMING
¢ Teve
¢ PWH¢, >H |
Vee - 0.2V
1
= i
= To I Tos| | !
Vi 029 !
92N !
1
=TT =4I IZPWH¢2 !
— Trws — Thrw — |<—
— 2.0V
R/ 2.0V
THA—P =
ADDRESS = e
FROM 2.0v
MPU No.8v i
——Taps —|¢— Taew —
«Tepr o)
DATA
FROM g
MEMORY 0.8V N\
4 Tacc K Tpsy =1 14 THR
— Tposy ——
PERIPHERAL [
DATA |
Taes
ADDRESS Vee - 0.2V
ENABLE
CONTROL TIMING FOR READING DATA FROM

406 APPENDIX L

MEMORY OR PERIPHERALS

CLOCK TIMING

¢ Teve NI
1—— FWH¢]_N
L
o1 IN I"Vec -0.2V \ Vec - 0.2V
i
0.2v
—+| Tp le— TD—D| —
Vee 402V i
42N 0.2V
= 4 | PWH L
Te= —|Tq bl b2

— Taws —

R/W \ 0.8V 7

T apw—1—
—Twe =
nootes N %
MPU 0.8V
T Tosy
DATA y ADS ’ 2.0v =
FROM
MEMORY 0.8V
— Tips — > Thw
—Tppw——
PERIPHERAL
DATA
=
ADDRESS Vg ~02V
ENABLE
CONTROL TIMING FOR WRITING DATA TO

MEMORY OR PERIPHERALS

APPENDIX L 407

su 00§ — — G/G | . v S| $5920y PRaY Alowaw

su 0SL | ool — o0oe | ool | — av) 8059 wouy swi] dnjag sseippy

su 0SL | ool — oog | ool | — S Il 80G9 wouy swn| dniag 1A /PR3Y

SLINN | "XVW | dAL ['NIW || "XVW [‘dAL | ‘NIW |TO9WAS DILSI¥ILOVAVHD
ONIWIL ZHW Z ONIWIL ZHW 1 (1LLL = AvO1) ONIWIL ILI¥M/av3Iy

su — — 0 — — 0 9 (AZ'0 P painspaw)

$PO|D ussmiaq swi| Aojeq

su Sl — — 4 — | — L || (AZ°0 ~°A 04 AZ'0 wosy paunsoaw)

Swil siy ‘swi] |4

su — — gee — — | 04¥ |TdHMd 2 (AZ°0 - DDA 40 painspayy)

su — — | sle — — | 0e¥ | LPHMd 1d YWPIM 35|nd 201D

su — — 00S - — | 0001 20 awi| 9Pk

SLINN | "XVW | dAL ['NIW || "XVW [‘dAL | ‘NIW |TO9WAS DILSI¥ILIVIVHD

ONIWIL ZHW Z ONIWIL ZHW 1 ONIWIL JD01D

(3,029 ,0="1'A0=5A"%ST A S =">>A) SOILSIYILOVIVHD 1VIIdL1D3I1d
SOILSIFLOVIVHD DV

APPENDIX L

408

su 09 09 M awi| dnjag a|gpug SSAIPPY
su — — 00¢ nsdd awi] dnjag pipq |PIaYdLIay
srl L — —_ mad PIPA DR |RIBYdLIS OF
uoiisuniy aapbBau gd ‘swi) Apjeg

su — — (o] My uoisuniy asod g o)
uomisunay dAuRBaU AN /Y ‘Bl Apjag

su — — 00¢ nsa, uolsuni} aalpbBau
Z$ o1 pipA pipQ ‘awiy AbjaQ

su g6t — — a3, sNq uo PIjPA PR O}
uouisunly aasod zd ‘awi) Apjeq

su — — 081 Mav uolsun.y aasod zd
O} plIPA ssIppY ‘awi] AbjaQg

su 0¢ ol — 0¢ ol MIH | awll PloH M/
su o€ ol 0€ ol VH) awl] p|oH ssalpy
su 001 V4 — 00¢ 0G1 — sawy 01S9 wosy awi] dnyag by
su og ol — o] ol MH| SHIAA-BWI] PIOH P4P(
su — —) ppay-awi| PloH PIPQ
s 0§ — | — | ool nsa) POLIag Swi] A4|IGRIS P4

409

APPENDIX L

SIGNAL DESCRIPTION

Clocks (¢1, ¢2)

The 6510 requires a two-phase non-overlapping clock that runs at the Vecc
voltage level.

Address Bus (Ao— Ais)

These outputs are TTL compatible, capable of driving one standard TTL load and
130 pf.

Data Bus (Do— D7)

Eight pins are used for the data bus. This is a Bi-Directional bus, transferring data
to and from the device and peripherals. The outputs are tri-state buffers capable
of driving one standard TTL load and 130 pf.

Reset

This input is used to reset or start the microprocessor from a power down
condition. During the time that this line is held low, writing to or from the
microprocessor is inhibited. When a positive edge is detected on the input, the
microprocessor will immediately begin the reset sequence.

After a system initialization time of six clock cycles, the mask interrupt flag will
be set and the microprocessor will load the program counter from the memory
vector locations $FFFC and $FFFD. This is the start location for program control.

After Vcc reaches 4.75 volts in a power-up routine, reset must be held low for
at least two clock cycles. At this time the R/W signal will become valid.

When the reset signal goes high following these two clock cycles, the
microprocessor will proceed with the normal reset procedure detailed above.

Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence begin within the
microprocessor. The microprocessor will complete the current instruction being
executed before recognizing the request. At that time, the interrupt mask bit in
the Status Code Register will be examined. If the interrupt mask flag is not set,
the microprocessor will begin an interrupt sequence. The Program Counter and
Processor Status Register are stored in the stack. The microprocessor will then set
the interrupt mask flag high so that no further interrupts may occur. At the end

410 APPENDIX L

of this cycle, the program counter low will be loaded from address $FFFE, and
program counter high from location $FFFF, therefore transferring program
control to the memory vector located at these addresses.

Address Enable Control (AEC)

The Address Bus is valid only when the Address Enable Control line is high. When
low, the Address Bus is in a high-impedance state. This feature allows easy DMA
and multiprocessor systems.

1/O Port (Po— P7)

Six pins are used for the peripheral port, which can transfer data to or from
peripheral devices. The Output Register is located in RAM at Address $0001,
and the Data Direction Register is at Address $0000. The outputs are capable
at driving one standard TTL load and 130 pf.

Read/Write (R/W)

This signal is generated by the microprocessor to control the direction of data
transfers on the Data. Bus. This line is high except when the microprocessor is
writing to memory or a peripheral device.

ADDRESSING MODES

ACCUMULATOR ADDRESSING — This form of addressing is represented with a
one byte instruction, implying an operation on the accumulator.

IMMEDIATE ADDRESSING — In immediate addressing, the operand is contained
in the second byte of the instruction, with no further memory addressing required.

ABSOLUTE ADDRESSING — In absolute addressing, the second byte of the
instruction specifies the eight low order bits of the effective address while the
third byte specifies the eight high order bits. Thus, the absolute addressing mode
allows access to the entire 65K bytes of addressable memory.

ZERO PAGE ADDRESSING — The zero page instructions allow for shorter code
and execution times by only fetching the second byte of the instruction and
assuming a zero high address byte. Careful use of the zero page can result in
significant increase in code efficiency.

APPENDIX L 411

INDEXED ZERO PAGE ADDRESSING — (X, Y indexing) — This form of addressing
is used in conjunction with the index register and is referred to as "Zero Page,
X" or "Zero Page, Y". The effective address is calculated by adding the second
byte to the contents of the index register. Since this is a form of "Zero Page"
addressing, the content of the second byte references a location in page zero.
Additionally, due to the "Zero Page" addressing nature of this mode, no carry is
added to the high order 8 bits of memory and crossing of page boundaries does
not occur.

INDEXED ABSOLUTE ADDRESSING — (X, Y indexing) — This form of addressing is
used in conjunction with X and Y index register and is referred to as "Absolute,
X" and "Absolute, Y". The effective address is formed by adding the contents of
X and Y to the address contained in the second and third bytes of the instruction.
This mode allows the index register to contain the index or count value and the
instruction to contain the base address. This type of indexing allows any location
referencing and the index to modify multiple fields resulting in reduced coding
and execution time.

IMPLIED ADDRESSING — In the implied addressing mode, the address containing
the operand is implicitly stated in the operation code of the instruction.

RELATIVE ADDRESSING — Relative addressing is used only with branch
instructions and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand which is an "Offset"
added to the contents of the lower eight bits of the program counter when the
counter is set at the next instruction. The range of the offset is =128 to +127
bytes from the next instruction.

INDEXED INDIRECT ADDRESSING — In indexed indirect addressing (referred to
as [Indirect, X]), the second byte of the instruction is added to the contents of the
X index register, discarding the carry. The result of this addition points to a
memory location on page zero whose contents is the low order eight bits of the
effective address. The next memory location in page zero contains the high order
eight bits of the effective address. Both memory locations specifying the high
and low order bytes of the effective address must be in page zero.

INDIRECT INDEXED ADDRESSING — In indirect indexed addressing (referred to
as [Indirect], Y), the second byte of the instruction points to a memory location in
page zero. The contents of this memory location is added to the contents of the
Y index register, the result being the low order eight bits of the effective address.

412 APPENDIX L

The carry from this addition is added to the contents of the next page zero
memory location, the result being the high order eight bits of the effective
address.

ABSOLUTE INDIRECT — The second byte of the instruction contains the low order
eight bits of a memory location. The high order eight bits of that memory location
is contained in the third byte of the instruction. The contents of the fully specified
memory location is the low order byte of the effective address. The next memory
location contains the high order byte of the effective address which is loaded
into the sixteen bits of the program counter.

INSTRUCTION SET — ALPHABETIC SEQUENCE

ADC Add Memory to Accumulator with Carry
AND "AND" Memory with Accumulator

ASL Shift Left One Bit (Memory or Accumulator)
BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLv Clear Overflow Flag

CMP Compare Memory and Accumulator
CPX Compare Memory and Index X

CPY Compare Memory and Index Y

APPENDIX L 413

DEC
DEX
DEY

EOR

INC
INX
INY

JMP
JSR

LDA
LDX
LDY
LSR

NOP

ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI
RTS

SBC
SEC
SED
SEI

STA
STX
STY

414

Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

"Exclusive-OR" Memory with Accumulator

Increment Memory by One
Increment Index X by One
Increment Index Y by One

Jump to New Location

Jump to New Location Saving Return Address

Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift One Bit Right (Memory or Accumulator)

No Operation
"OR" Memory with Accumulator

Push Accumulator on Stack

Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

APPENDIX L

TAX
TAY
TSX
TXA
XS
TYA

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Register

Transfer Index Y to Accumulator

PROGRAMMING MODEL

7 0
| A | ACCUMULATOR A
7 0
| Y | INDEX REGISTER ¥
| X | INDEX REGISTER X
15 7 0
PCH | PCL | PROGRAM COUNTER “pc”
8 7 0
[1] s | STACK POINTER ugn
7 0
[NJv] [e]p]i1]z]c] PROCESSOR STATUS REG *P"
CARRY 1 = TRUE
L » 7RO 1 = RESULT ZERO
» IRQ DISABLE 1 = DISABLE
L » DECIMALMODE 1 = TRUE
L5 BRK COMMAND
> OVERFLOW 1 = TRUE
» NEGATIVE 1= NEG

APPENDIX L 415

INSTRUCTION SET — OP CODES, EXECUTION

- -, e |v|es|e|rjaa|z|v|se|z|s|ta|z|9 |1V z|e|svle|r|av[z |z lev] (1) Vew val
JE €9 |0z ans dwnr (z ‘614 93s) asr
- - - - - = € [s[29 g€ oy D01 MIN OL dwnr dWr
[N L[z |8 AeL+A ANI
- - 1|z |83 X< L+X XNI
- -, elz|H|z|9 |94 z|s|9a|e|9|m Wel+W ONI
- - e|v|es|e|vlas|z|v|ss|ec|s[is|e|9 |ty zle|sy|e|v|ar|e|e |ev| (1) VWAV 301
- - -, WAL Ae LA A3a
— Lz]w X L-X X3a
- - -, €|z |3alz |9 |9a z|s|9o|e|9|Bd Wel-W 23a
- - -, z|e|ro|e|v [odfz]|z |0 W- A AdD
- -t r z|e|ra|e|r|da|z |z o3 W- X Xdd
- - -/ S ¢€|v|eale|v |aalz|v |sajz|s(lajz|9|D zle|so|e|r|ad|e |z |ed] (1) W-v dWD
0 - — — — — 1|z |eg A0 AD
- -0 - - - L]z |8s 10 1)
0 - - - - 1|z [sa aeo an
"o - - 1|z (8L >2«0 oD
[T\t oL (z) L=A NO HDNV¥4 SAS
- - - - - - z [z los (2) 0=A NO HDNV3g JAS
- - - - - L |Z |oo (L "By @95) bk
- - - - - - zlz ot (2) 0=N NO HONV¥d 149
- - - - - AR (z) 0=Z NO HONV3g InNg
R z|¢oe (2) =N NO HONV¥¢ IWg
W - — — W zle|re|e|v o WVVY 119
- - - - - - z 1z lod (z) 1=Z NO HONV¥d 039
R z |z [og (2) 1= NO HONV3e $O4
[z |2 |06 (2) 0=2 NO HONV3g 204
[RNPIIN AN KA KA 1|z |vo|z|s |9o|€ |9 |30 -0 7b> sV
- - -, e|v|ee|e|vjae|c |v|se|ec|s|e|e|9 e z|e|se|e|v|ac|e]|e |ez| (1) VeWVY anv
S-S elvilesle|v|asle | v |szlT|s|izfe|9]|l9 zle|sole|v|aofz |z |69]|(L) (¥) Ved+WHY oav
A Q1 D Z N|[#|N|dO|# N[dO|# |N|dO| # |N|dO|# | N |dO| # [N |[dO| # | N [dO| # | N [dO| # | N [dO| # | N [dO|# | N |dO| # | N |dO| # | N ldO upiado

$300D NOILIGNOD (A ‘2Bog ‘Z| soautpuy |2Auppay [A-sqy | X sqv (X ‘@Beg ‘z[A (‘Pul) | X (‘pul) | paydwy | -wnadsy (9Bpg 0437 | ainjosqy (aypipawuw] SNOILONYLSNI

APPENDIX L

416

TIME, MEMORY REQUIREMENTS

*'S3A0D dO P3ulapun ay; o 3sn Syt 104 A|IG]| SWASSD JoUUDD JNOYD YOLINANODIWIS IYOAOWWO)D ILON

SILAS 'ON # _ "11NS3Y O¥3Z Y04 AINDIHD 38 LSNW JOLYINWNIDV
$31DAD 'ON N 40 SAISMS A ¥IINIOJ YDVLS ¥3d AYOWIW W QIVANI I O¥1d Z JGOW TYWIDIA N i (y)

9 119 AYOWIW °W 40 A $SIYAAY JAILDIHT ¥3d AYOWIW W MOYYOE = LON ANAVD (€]

£ 118 AJOWIW “W anNv v YOLVINWNDDY v "3OVd IN¥34HIQ OL SYNDD0 HONVAE 4l .N. OL T 4aV

@3141OW LON — 1ovaLens - AXIANI A 3OVd JWVS OL SINDDO HONVAE 41 LN, OL L aav (2)

a3lIqow A& aav + X X3aNI X *3SSOYD SI AYVANNOE 3OVd 4l LN, OL L aav (1)

A L]z |86 Ve A VAL
- - - = L]z |ve S X SXL
- - -, L|z|vs VX vXL
- - - -, L[z |va Xes XSL
- - -, 1|z ey Aev AVL
- - L|eg|wv X eV XV1
- - - - - - z|v|r6 z|c|refe|v |08 We A ALS
- —--=---]z|r|% A B ESED W e X XS
- —-—-—— - elsles|c|s|aslz|v[ss]lz|o|16]z]9 I8 z|c|sef[e|v |as Wev vis
- === - [RALYA le1 13s
- == - - Lz |84 ael a3s
---)- - 1|2 (8¢ Del 23S
et Eadias e|v|ed|e|v|ad|e|v|sd|e|s|d]|e|9 |13 z|e|sa|e|v|aa|c|eea| (1) VeD-W-V ogs
- - == - - L |9 o9 aNS NYLY (¢ ‘B4 935) SLy
(a3301534) 1|9 |ov INI NYLY (1L *Big 93g) 1134

- -l glz|azle |9 o Lz |volz|s |oo]e |9 |39 gl Zl«Dlg ¥0¥
- - -, ez agfz |9 o Lz |ve|z|s|oz|e]|9 |3z pBlb0 7y 10%
(a3¥01534) 1| |8 deW Sel+S d1d

- - -, 1| v |89 VW sel+S vid
- - - - - 1€ |80 Sc1-S SWed dHd
- - - - - L€ |8y Sel-S SWeV VHd
At e|v|et|e|vjatfe|v|stfe|s|tt|z]9 |0 z|¢e|sofle|v|ao|z |z |60 YEWAY \21)
- - - - - - 1]z]va NOILY¥3dO ON dON
- — =/ 2ro0 €|z 35|z]|9 |os Lz |vr|e|s|or|e]|9|ar >0 7o ¥s1
- - -, ey ey |re zle|pv|e|v ov|z |z |ov| (1) AW AQ1
- ——=—A || r|oe [AEL! zlefov|e|v |av| |z |ev| (1) X < W Xai
A Q1 D Z N|[#|NJdO|# |N|dOf#|N #|N|dO[# | N [dO| # | N |dof # | N |dO|# | N |dO| # | N [dO| # | N [dO[# | N [dO[# | N |dO| # | N [dO wp1ado W

$300D NOILIANOD (A ‘@Bpd ‘Z| jo3a1pu | 3AuDISY | A "sqV X sqV X 'eBnd ‘Z| A (Pul) | X (‘pul) | pandwy | ‘wnay [(aBbg 0137 synjosqy 1P [SNOLLONYULSNI

417

APPENDIX L

6510 MEMORY MAP

FFFF
ADDRESSABLE
EXTERNAL
MEMORY
e
P //
71 T
0200
OTFF STACK
O1FF <¢—— POINTER
¢ STACK ¢ INITIALIZED
Page 1
0100
OOFF
Page 0
OUTPUT REGISTER 0001 Used For
Internal
0000
0000 DATA DIRECTION REGISTER 1/O Port

APPLICATIONS NOTES

Locating the Output Register at the internal 1/O Port in Page Zero enhances the
powerful Zero Page Addressing instructions of the 6510.

By assigning the 1/O Pins as inputs (using the Data Direction Register) the user
has the ability to change the contents of address $0001 (the Output Register)
using peripheral devices. The ability to change these contents using peripheral
inputs, together with Zero Page Indirect Addressing instructions, allows novel and
versatile programming techniques not possible earlier.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products
herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR
GROUP does not assume any liability arising out of the application or use of any product or
circuit described herein; neither does it convey any license under its patent rights nor the rights
of others.

418 APPENDIX L

APPENDIX M

6526 COMPLEX INTERFACE ADAPTER (CIA) CHIP
SPECIFICATIONS

DESCRIPTION

The 6526 Complex Interface Adapter (CIA) is a 65XX bus compatible peripheral
interface device with extremely flexible timing and 1/O capabilities.

FEATURES

16 individually programmable 1/O lines

8 or 16-Bit handshaking on read or write

2 independent, linkable 16-Bit interval timers

24-hour (AM/PM) time of day clock with programmable alarm
8-Bit shift register for serial /O

2 TTL Load capability

CMOS compatible 1/O lines

1 or 2 MHz operation available

APPENDIX M 419

420

PIN CONFIGURATION

— U l—
Vs 1 40
ey | 2] 3]
PA, T g
b, [4] 3]
Py | 5] 36]
PA, _6 ;
pas [7] 34]
eag | 8] 53]
P z 6526 E
PBo |10 31
PB, T ;
pe, [12] 2]
PB, ? 28]
PB, : ;
PB; : ;
PB, : ;
PB, ? ;
i [is] 23]
TOD F ;
Vee [20) 2]
APPENDIX M

CNT

SP

RS,

RS,

RS,

DB

DB,

DB,

DB,

DB,

DB

DB,

DB,

¢2

FLAG

6526
BLOCK DIAGRAM

DB, - DB,

Q

DATA BUS BUFFERS |

PA
PRA loyrrersiC__ PAo
SP SERIAL C —
SP ~—— BUFFER PORT
DDRA
CNT - PC - PC
CNT BUFFER rBUFFER
PB
10D 10D/ L | PRB |suFFeRs > PB,
TOD — K
BUFFER ALARM _
DDRB
| P mmer [
— [T | cre
e FLAG
FLAG BUFFER
— TIMER A|
e RQ | | INT/ [—
BUFFER MASK
CRA

CHIP ACCESS CONTROL

AAAAAALD

R/W ¢2 CS RS3 RS2 RS1 RSO RES

APPENDIX M

- PB,

421

MAXIMUM RATINGS

Supply Voltage, Vcc
Input/Output Voltage, Vin

Operating Temperature, Top
Storage Temperature, Tst

—-0.3V to +7.0V
—-0.3V to +7.0V
0°C to 70°C
—55°C to 150°C

All inputs contain protection circuitry to prevent damage due to high static
discharges. Care should be exercised to prevent unnecessary application of
voltages in excess of the allowable limits.

COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause
permanent damage to the device. These are stress ratings only. Functional
operation of this device at these or any other conditions above those indicated
in the operational sections of this specification is not implied and exposure to
absolute maximum rating conditions for extended periods may affect device

reliability.

ELECTRICAL CHARACTERISTICS (Vcc * 5%, Vss =0 V, Ta = 0-70°C)

VIN=Vss + 5V
(TOD, R/W, FLAG , $2,

RES , RSO—RS3, CS

CHARACTERISTIC SYMBOL | MIN. | TYP. | MAX. | UNIT
Input High Voltage ViH +2.4 — Vce \%
Input Low Voltage Vi -0.3 — — Vv
Input Leakage Current; IN — 1.0 2.5 UA

422 APPENDIX M

CHARACTERISTIC SYMBOL | MIN. | TYP. | MAX. | UNIT

Port Input Pull-up Resistance Rei 3.1 5.0 —_ KQ

Output Leakage Current for Itsi — +1.0 | £10.0 | pA

High Impedance State (Three

State); Vin = 4V to 2.4V;

(DBo—DBy7, SP, CNT, IRQ)

Output High Voltage Von +2.4 — Vce \%

Vee = MIN, lioap <

—200 UA (PAc—PA7, PC

PBo—PB7, DBo—DB;7)

Output Low Voltage VoL — — +0.40 \%

Vee = MIN, lioap, < 3.2 mA

Output High Current (Sourcing); lo -200 | -1000 — LA

Vou > 2.4V (PAc—PA7,

PBo—PB7, PC , DBo—DB7)

Output Low Current (Sinking); loL 3.2 _ _ mA

VoL < .4V (PAc—PA7, PC,

PBo—PB7, DBo—DB>)

Input Capacitance CiN — 7 10 pf

Output Capacitance Cour — 7 10 pf

Power Supply Current lcc _ 70 100 mA
APPENDIX M 423

- Sq) —»

2 09a-24d
X NI V1va

In_._. —_—l—

, M/d
—>| |[«— Hmyg SMY| —» m—

0SY-€SYH

— <«— Hav) —>| sav) |[*+—

L - $

+«—— SOM\] —

1no vivd
TVd3IHdIY3d

ad) >

>

A

1ndNI 2¢

A

MID| >
1 —>| | = MHY] —————————>| [«)

Y] >

WVYYDVIA DNIWIL ILIYM 9CS9

APPENDIX M

424

- 3] —»

- 2OV —»

N LLLLI\
(177777]

A
Y

— - SMY)
HMY | -« o) —> —

¢

L Hav, sav) —

\n

R

< SOM) >

—
N
X

\

—»| Sd] |e—

WVYOVYIA ONIWIL AV3H 9¢S9

0dd-/4d
1noviva

M/

0SY-€SYH

NI L4Od

1ndNI 2o

425

APPENDIX M

6526 INTERFACE SIGNALS
¢$2 — Clock Input

The $2 clock is a TTL compatible input used for internal device operation and as

a timing reference for communicating with the system data bus.

cs — Chip Select Input

The CS input controls the activity of the 6526. A low level on CS while $2 is high
causes the device to respond to signals on the R/W and address (RS) lines. A
high on CS prevents these lines from controlling the 6526. The CS line is normally

activated (low) at $2 by the appropriate address combination.
R/W — Read/Write Input

The R/W signal is normally supplied by the microprocessor and controls the
direction of data transfers of the 6526. A high on R/W indicates a read (data
transfer out of the 6526), while a low indicates a write (data transfer into the
6526).

RS3 to RSO — Address Inputs
The address inputs select the internal registers as described by the Register Map.
DB7 to BDO — Data Bus Inputs/Outputs

The eight data bus pins transfer information between the 6526 and the system
data bus. These pins are high impedance inputs unless CS is low and R/W and
¢$2 are high to read the device. During this read, the data bus output buffers are
enabled, driving the data from the selected register onto the system data bus.

IRQ — Interrupt Request Output

RQ is an open drain output normally connected to the processor interrupt input.
An external pull up resistor holds the signal high, allowing multiple RQ outputs
to be connected together. The RQ output is normally off (high impedance) and
is activated low as indicated in the functional description.

426 APPENDIX M

RES — Reset Input

A low on the RES pin resets all internal registers. The port pins are set as inputs
and port registers to zero (although a read of the ports will return all highs
because of passive pullups). The timer control registers are set to zero and the
timer latches to all ones. All other registers are reset to zero.

6526 TIMING CHARACTERISTICS

1 MHz 2 MHz
Symbol | Characteristic MIN MAX MIN MAX | Unit
$2 Clock
Teve Cycle Time 1000 | 20,000 | 500 | 20,000 | ns
Tr, Tr Rise and Fall Time — 25 — 25 ns
Tenw Clock Pulse Width 420 10,000 | 200 | 10,000 | ns
(High)
Taw Clock Pulse Width 420 10,000 | 200 | 10,000 | ns
(Low)
Write Cycle
Teo Output Delay from $2 — 1000 — 500 ns
Twes CS low while $2 high 420 — 200 — ns
Taps Address Setup Time — 0 — ns
TapH Address Hold Time 10 — 5 — ns
Trws R/W Setup Time — 0 — ns
TrwH R/W Hold Time 0] — 0] — ns
Tos Data Bus Setup Time 150 —_ 75 _ ns
ToH Data Bus Hold Time 0] —_ 0] _ ns
Read Cycle
Tes Port Setup Time 300 — 150 — ns
Twes @ | CS low while ¢2 high 420 — 20 — ns
Taps Address Setup Time 0] —_ 0] _ ns
TapH Address Hold Time 10 —_ 5 _ ns
Trws R/W Setup Time 0] — 0] — ns
TrwH R/W Hold Time 0 — 0 — ns
APPENDIX M 427

1 MHz 2 MHz
Symbol | Characteristic MIN MAX MIN MAX | Unit
Tacc Data Access from — 550 — 275 ns
RS3-RSO
Tcol® Data Access from — 320 — 150 ns
CS
Tor Data Release Time 50 — 25 — ns
NOTES:

1 — All timings are referenced from ViL max and ViH min on inputs and YoL max and VOH min
on outputs.

2 — Twcs is measured from the later of $2 high or CS low. CS must be low at least until the
end of $2 high.
3 — Tco is measured from the later of $2 high or CS low. Valid data is available only after

the later of Tacc or Tco.

REGISTER MAP

RS3 | RS2 | RS1 | RSO | REG | NAME
0 0 0 0 |PRA PERIPHERAL DATA REG A
0 0 1 1 |PRB PERIPHERAL DATA REG B
0 0 1 0 2 |DDRA DATA DIRECTION REG A
0 0 1 1 3 |DDRB DATA DIRECTION REG B
0 1 0 0 4 |[TALO TIMER A LOW REGISTER
0 1 0 1 5 |TAHI TIMER A HIGH REGISTER
0 1 1 0 6 |TB LO TIMER B LOW REGISTER
0 1 1 1 7 |TBHI TIMER B HIGH REGISTER
1 0 0 0 8 |TOD 10THS 10THS OF SECONDS REGISTER
1 0 0 1 9 | TOD SEC SECONDS REGISTER
1 0 1 0 A |TOD MIN MINUTES REGISTER
1 0 1 1 B |TOD HR HOURS — AM/PM REGISTER
1 1 0 0 C |SDR SERIAL DATA REGISTER
1 1 0 1 D |ICR INTERRUPT CONTROL REGISTER
1 1 1 0 E |CRA CONTROL REG A
1 1 1 1 F | CRB CONTROL REG B

428 APPENDIX M

6526 FUNCTIONAL DESCRIPTION
1/O Ports (PRA, PRB, DDRA, DDRB).

Ports A and B each consist of an 8-bit Peripheral Data Register (PR) and an 8-
bit Data Direction Register (DDR). If a bit in the DDR is set to a one, the
corresponding bit in the PR is an output; if a DDR bit is set to a zero, the
corresponding PR bit is defined as an input. On a READ, the PR reflects the
information present on the actual port pins (PAO —PA7, PBO — PB7) for both input
and output bits. Port A and Port B have passive pull-up devices as well as active
pull-ups, providing both CMOS and TTL compatibility. Both ports have two TTL
load drive capability. In addition to normal 1/O operation, PB6 and PB7 also
provide timer output functions.

Handshaking

Handshaking on data transfers can be accomplished using the PC output pin and

the FLAG input pin. PC will go low for one cycle following a read or write of
PORT B. This signal can be used to indicate "data ready" at PORT B or "data
accepted" from PORT B. Handshaking on 16-bit data transfers (using both PORT
A and PORT B) is possible by always reading or writing PORT A first. FLAG is a
negative edge sensitive input which can be used for receiving the PC output from

another 6526, or as a general purpose interrupt input. Any negative transition
of FLAG will set the FLAG interrupt bit.

REG [NAME| Ds D¢ Ds Da D3 D- D, Do
0 PRA PA7 PA¢ PAs PA4 PA3 PA2 PA; PAo

1 PRB PB7 PBes PBs PB4 PB3 PB2 PB1 PBo

2 DDRA | DPA7 | DPA¢ | DPAs | DPA4 | DPAs | DPA2 | DPA:1 | DPAo

3 DDRB | DPB7 | DPBs | DPBs | DPB4 | DPBs | DPB2 | DPB1 | DPBo

Interval Timers (Timer A, Timer B)

Each interval timer consists of a 16-bit read-only Timer Counter and a 16-bit
write-only Timer Latch. Data written to the timer are latched in the Timer Latch,
while data read from the timer are the present contents of the Time Counter. The
timers can be used independently or linked for extended operations. The various
timer modes allow generation of long time delays, variable width pulses, pulse
trains and variable frequency waveforms. Utilizing the CNT input, the timers can

APPENDIX M 429

count external pulses or measure frequency, pulse width and delay times of
external signals. Each timer has an associated control register, providing
independent control of the following functions:

Start/Stop

A control bit allows the timer to be started or stopped by the microprocessor at
any time.

PB On/Off:

A control bit allows the timer output to appear on a PORT B output line (PB6 for
TIMER A and PB7 for TIMER B). This function overrides the DDRB control bit and
forces the appropriate PB line to an output.

Toggle/Pulse

A control bit selects the output applied to PORT B. On every timer underflow the
output can either toggle or generate a single positive pulse of one-cycle
duration. The Toggle output is set high whenever the timer is started — and is set
low by RES.

One-Shot/Continuous

A control bit selects either timer mode. In one-shot mode, the timer will count
down from the latched value to zero, generate an interrupt, reload the latched
value, then stop. In continuous mode, the timer will count from the latched value
to zero, generate an interrupt, reload the latched value and repeat the
procedure continuously.

Force Load

A strobe bit allows the timer latch to be loaded into the timer counter at any
time, whether the timer is running or not.

Input Mode:

Control bits allow selection of the clock used to decrement the timer. TIMER A can
count $2 clock pulses or external pulses applied to the CNT pin. TIMER B can
count 2 pulses, external CNT pulses, TIMER A under-flow pulses or TIMER A
underflow pulses while the CNT pin is held high.

The timer latch is loaded into the timer on any timer underflow, on a force load
or following a write to the high byte of the prescaler while the timer is stopped.
If the timer is running, a write to the high byte will load the timer latch, but not
reload the counter.

430 APPENDIX M

READ (TIMER)

REG NAME
4 |TALO | TAL7 | TALs | TALs | TALs | TALs | TAL2 | TAL | TALo

TAHI | TAH7 | TAHs | TAHs | TAH4 | TAH3 | TAH2 | TAH: | TAHo

5
6 TBLO | TBL7 | TBLs | TBLs | TBLs4 | TBLs | TBL> | TBL; TBLo
7 |TBHI | TBH7 | TBHe | TBHs | TBH4 | TBH3 | TBH2 | TBH:1 | TBHo

WRITE (PRESCALER)

REG NAME
4 |TALO | PAL7 | PALs | PALs | PALs | PALs | PAL2 | PAL1 | PALo

TAHI | PAH7 | PAHo | PAHs | PAH | PAHs | PAH2 | PAH: | PAHo

5
6 TBLO | PBLy | PBLs | PBLs | PBLs | PBLs | PBL2 | PBL; PBLo
7 TB HI PBH7 | PBHs | PBHs | PBHs | PBH3 | PBH2 | PBH: | PBHo

Time of Day Clock (TOD)

The TOD clock is a special purpose timer for real-time applications. TOD consists
of a 24-hour (AM/PM) clock with 1/10th second resolution. It is organized into
4 registers: 10ths of seconds, Seconds, Minutes and Hours. The AM/PM flag is in
the MSB of the Hours register for easy bit testing. Each register reads out in BCD
format to simplify conversion for driving displays, etc. The clock requires an
external 60 Hz or 50 Hz (programmable) TTL level input on the TOD pin for
accurate time-keeping. In addition to time-keeping, a programmable ALARM is
provided for generating an interrupt at a desired time. The ALARM registers are
located at the same addresses as the corresponding TOD registers. Access to the
ALARM is governed by a Control Register bit. The ALARM is write-only; any read
of a TOD address will read time regardless of the state of the ALARM access
bit.

A specific sequence of events must be followed for proper setting and reading
of TOD. TOD is automatically stopped whenever a write to the Hours register
occurs. The clock will not start again until after a write to the 10ths of seconds
register. This assures TOD will always start at the desired time. Since a carry
from one stage to the next can occur at any time with respect to a read
operation, a latching function is included to keep all Time Of Day information
constant during a read sequence. All four TOD registers latch on a read of Hours
and remain latched until after a read of 10ths of seconds. The TOD clock
continues to count when the output registers are latched. If only one register is to

APPENDIX M 431

be read, there is no carry problem and the register can be read "on the fly,"
provided that any read: of Hours is followed by a read of 10ths of seconds to
disable the latching.

READ
REG NAME
8 TOD 10THS 0 0 0 0 Ts T4 T2 T
9 TOD SEC 0 SH4 | SH2 | SHy SLs SL4 SL2 | SL
A TOD MIN 0 MH4 | MH2 | MH1 | MLs | MLs | ML2 | ML
B TOD HR PM 0 0 HH HLs | HLs | HL2 | HL;
WRITE
CRB7 = 0 TOD

CRB7 = 1 ALARM
(SAME FORMAT AS READ)

Serial Port (SDR)

The serial port is a buffered, 8-bit synchronous shift register system. A control bit
selects input or output mode. In input mode, data on the SP pin is shifted into the
shift register on the rising edge of the signal applied to the CNT pin. After 8
CNT pulses, the data in the shift register is dumped into the Serial Data Register
and an interrupt is generated. In the output mode, TIMER A is used for the baud
rate generator. Data is shifted out on the SP pin at 72 the underflow rate of
TIMER A. The maximum baud rate possible is $2 divided by 4, but the maximum
useable baud rate will be determined by line loading and the speed at which
the receiver responds to input data. Transmission will start following a write to
the Serial Data Register (provided TIMER A is running and in continuous mode).
The clock signal derived from TIMER A appears as an output on the CNT pin. The
data in the Serial Data Register will be loaded into the shift register then shift
out to the SP pin when a CNT pulse occurs. Data shifted out becomes valid on
the falling edge of CNT and remains valid until the next falling edge. After 8
CNT pulses, an interrupt is generated to indicate more data can be sent. If the
Serial Data Register was loaded with new information prior to this interrupt, the
new data will automatically be loaded into the shift register and transmission
will continue. If the microprocessor stays one byte ahead of the shift register,
transmission will be continuous. If no further data is to be transmitted, after the

432 APPENDIX M

8th CNT pulse, CNT will return high and SP will remain at the level of the last
data bit transmitted. SDR data is shifted out MSB first and serial input data
should also appear in this format.

The bidirectional capability of the Serial Port and CNT clock allows many 6526
devices to be connected to a common serial communication bus on which one
6526 acts as a master, sourcing data and shift clock, while all other 6526 chips
act as slaves. Both CNT and SP outputs are open drain to allow such a common
bus. Protocol for master/slave selection can be transmitted over the serial bus,
or via dedicated hand-shaking lines.

REG NAME

C SDR S7 Se Ss S4 S3 S2 S So

Interrupt Control (ICR)

There are five sources of interrupts on the 6526: underflow from TIMER A,
underflow from TIMER B, TOD ALARM, Serial Port full /empty and FLAG. A single
register provides masking and interrupt information. The interrupt Control
Register consists of a write-only MASK register and a read-only DATA register.
Any interrupt will set the corresponding bit in the DATA register. Any interrupt
which is enabled by the MASK register will set the IR bit (MSB) of the DATA
register and bring the RQ pin low.

In a multi-chip system, the IR bit can be polled to detect which chip has generated
an interrupt request. The interrupt DATA register is cleared and the IRQ line
returns high following a read of the DATA register. Since each interrupt sets an
interrupt bit regardless of the MASK, and each interrupt bit can be selectively
masked to prevent the generation of a process or interrupt, it is possible to
intermix polled interrupts with true interrupts. However, polling the IR bit will
cause the DATA register to clear, therefore, it is up to the user to preserve the
information contained in the DATA register if any polled interrupts were present.

The MASK register provides convenient control of individual mask bits. When
writing to the MASK register, if bit 7 (SET/CLEW) of the data written is a ZERO,
any mask bit written with a one will be cleared, while those mask bits written
with a zero will be unaffected. If bit 7 of the data written is a ONE, any mask
bit written with a one will be set, while those mask bits written with a zero will
be unaffected. In order for an interrupt flag to set IR and generate an Interrupt
Request, the corresponding MASK bit must be set.

APPENDIX M 433

READ (INT DATA)

REG NAME
D |ICR IR 0 0 FLG | SP |ALRM| TB TA

WRITE (INT MASK)

REG NAME
D |ICR S/E X X FLG | SP |ALRM| TB TA

CONTROL REGISTERS

There are two control registers in the 6526, CRA and CRB. CRA is associated
with TIMER A and CRB is associated with TIMER B. The register format is as
follows:

CRA:

Bit Name Function

0] START 1=START TIMER A, O=STOP TIMER A. This bit is
automatically reset when underflow occurs during one-
shot mode.

1 PBON 1=TIMER A output appears on PB6. 0=PB6é normal
operation.

2 OUTMODE 1=TOGGLE, 0=PULSE.

RUNMODE 1=ONE-SHOT, 0=CONTINUOUS.

4 LOAD 1=FORCE LOAD (this is a STROBE input, there is no
data storage, bit 4 will always read back a zero and
writing a zero has no effect).

5 INMODE 1=TIMER A counts positive CNT transitions, O=TIMER A
counts 2 pulses.

6 SPMODE 1=SERIAL PORT output (CNT sources shift clock),
O=SERIAL PORT input (external shift clock required).

7 TODIN 1=50 Hz clock required on TOD pin for accurate time,

0=60 Hz clock required on TOD pin for accurate time.

434 APPENDIX M

C

RB:

Bit Name Function

(Bits CRBO — CRB4 are identical to CRAO — CRA4 for
TIMER B with the exception that bit 1 controls the output
of TIMER B on PB7).

5,6 INMODE Bits CRB5 and CRB6 select one of four input modes for

TIMER B as:

CRB6 CRB5

0] 0] TIMER B Counts ¢2 pulses.

0] 1 TIMER B counts positive CNT
transitions.

1 0 TIMER B counts TIMER A underflow
pulses.

1 1 TIMER B counts TIMER A underflow

pulses while CNT is high.

7 ALARM 1=writing to TOD registers sets ALARM, O=writing to

TOD registers sets TOD clock.

SP IN RUN out
REG NAME TOD IN MODE MODE LOAD MODE MODE PBON START
E CRA 0=60Hz [O=INPUT [0=¢2 1=FORCE | 0=CONT. | 0=PULSE 0=PB, OFF | 0=STOP
LOAD
1=50Hz | 1=OUTPUT | 1=CNT (STROBE) | 1=0.S. | I=TOGGLE | 1=PBs ON | 1=START
TA
RUN out
REG NAME ALARM IN MODE LOAD MODE MODE PB ON START
F CRB 0=TOD 0 [o=¢2 T=FORCE [O=CONT. [0=PULSE 0=PB; OFF | 0=STOP
1 1=CNT LOAD
1 0=TA
1=ALARM |1 1=CNT-TA | (STROBE) 1=0.. 1=TOGGLE | 1=PB; ON | 1=START

A

Il unused registers bits are unaffected by a write and are forced to zero on a

read.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products
herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR
GROUP does not assume any liability arising out of the application or use of any product or
circuit described herein; neither does it convey any license under its patent rights nor the rights
of others.

APPENDIX M 435

APPENDIX N

6566/6567 (VIC-Il) CHIP SPECIFICATIONS

The 6566/6567 are multi-purpose color video controller devices for use in both
computer video terminals and video game applications. Both devices contain 47
control registers which are accessed via a standard 8-bit microprocessor bus
(65XX) and will access up to 16K of memory for display information. The various
operating modes and options within each mode are described.

CHARACTER DISPLAY MODE

In the character display mode, the 6566/6567 fetches CHARACTER POINTERs
from the VIDEO MATRIX area of memory and translates the pointers to character
dot location addresses in the 2048 byte CHARACTER BASE area of memory. The
video matrix is comprised of 1000 consecutive locations in memory which each
contain an eight-bit character pointer. The location of the video matrix within
memory is defined by VM13 — VM10 in register 24 ($18) which are used as the
4 MSB of the video matrix address. The lower order 10 bits are provided by an
internal counter (VC3 — VC1) which steps through the 1000 character locations.
Note that the 6566/6567 provides 14 address outputs; therefore, additional
system hardware may be required for complete system memory decodes.

CHARACTER POINTER ADDRESS

A13 | A12 | A11 | A10 | AO9 | AO8 | AO7 | AD6 | AO5 | AO4 | AO3 | AD2 | AOT | AOO
VM13[VMI12[VM11|VM10| VC9 | vC8 | VC7 | vC6 | VC5 | vC4 | vC3 | vC2 | vC1 | vCo

436 APPENDIX N

The eight-bit character pointer permits up to 256 different character definitions
to be available simultaneously. Each character is an 8 X 8 dot matrix stored in
the character base as eight consecutive bytes. The location of the character base
is defined by CB13 — CB11 also in register 24 ($18) which are used for the 3
most significant bits (MSB) of the character base address. The 11 lower order
addresses are formed by the 8-bit character pointer from the video matrix (D7
— DO) which selects a particular character, and a 3-bit raster counter (RC2 —
RCO) which selects one of the eight character bytes. The resulting characters are
formatted as 25 rows of 40 characters each. In addition to the 8-bit character
pointer, a 4-bit COLOR NYBBLE is associated with each video matrix location
(the video matrix memory must be 12 bits wide) which defines one of sixteen
colors for each character.

CHARACTER DATA ADDRESS

A13 | A12 | A11 | A10 | AD9 | AO8 | AO7 | A6 | AD5 | AD4 | AO3 | AD2 | AOT | ADO
cs13|cs12|cs11| D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO |RC2 | RC1 | RCO

STANDARD CHARACTER MODE (MCM = BMM = ECM = 0)

In the standard character mode, the 8 sequential bytes from the character base
are displayed directly on the 8 lines in each character region. A "0" bit causes
the background #0 color (from register 33 ($21) to be displayed while the color

selected by the color nybble (foreground) is displayed for a "1" bit (see Color

Code Table).

FUNCTION CHA§GCTER COLOR DISPLAYED
Background 0 Background #0 color

(register 33 ($21))
Foreground 1 Color selected by 4-bit color nybble

Therefore, each character has a unique color determined by the 4-bit color
nybble (1 of 16) and all characters share the common background color.

APPENDIX N 437

MULTICOLOR CHARACTER MODE (MCM =1, BMM = ECM = 0)

Multicolor mode provides additional color flexibility allowing up to four colors
within each character but with reduced resolution. The multicolor mode is selected
by setting the MCM bit in register 22 ($16) to "1," which causes the dot data
stored in the character base to be interpreted in a different manner. If the MSB
of the color nybble is a "0," the character will be displayed as described in
standard character mode, allowing the two modes to be inter-mixed (however,
only the lower order 8 colors are available). When the MSB of the color nybble
is a"1" (if MCM:MSB(CM) = 1) the character bits are interpreted in the multicolor
mode:

FUNCTION CHAEG_CTER COLOR DISPLAYED
Background 00 Background #0 color
(register 33 ($21))
Background 01 Background #1 color
(register 34 ($22))
Foreground 10 Background #2 color
(register 35 ($23))
Foreground 11 Color specified by 3 LSB
of color nybble

Since two bits are required to specify one dot color, the character is now
displayed as a 4 X 8 matrix with each dot twice the horizontal size as in
standard mode. Note, however, that each character region can now contain 4
different colors, two as foreground and two as background (see MOB priority).

EXTENDED COLOR MODE (ECM = 1, BMM = MCM = 0)

The extended color mode allows the selection of individual back-ground colors
for each character region with the normal 8 X 8 character resolution. This mode
is selected by setting the ECM bit of register 17 ($11) to "1." The character dot
data is displayed as in the standard mode (foreground color determined by the
color nybble is displayed for a "1" data bit), but the 2 MSB of the character

438 APPENDIX N

pointer are used to select the background color for each character region as

follows:

kaé;?;l&ER BACKGROUND COLOR DISPLAYED FOR 0 BIT
00 Background #0 color (register 33 ($21))
01 Background #1 color (register 34 ($22))
10 Background #2 color (register 35 ($23))
11 Background #3 color (register 36 ($24))

Since the two MSB of the character pointers are used for color information, only
64 different character definitions are available. The 6566/6567 will force
CB10 and CB9 to "0" regardless of the original pointer values, so that only the
first 64 character definitions will be accessed. With extended color mode each
character has one of sixteen individually defined foreground colors and one of
the four available background colors.

NOTE: Extended color mode and multicolor mode should not be enabled simultaneously

BITMAP MODE

In bitmap mode, the 6566/6567 fetches data from memory in a different
fashion, so that a one-to-one correspondence exists between each displayed dot
and a memory bit. The bitmap mode provides a screen resolution of 320H X
200V individually controlled display dots. Bitmap mode is selected by setting
the BMM bit in register 17 ($11) to a "1." The VIDEO MATRIX is still accessed as
in character mode, but the video matrix data is no longer interpreted as
character pointers, but rather as color data. The VIDEO MATRIX COUNTER is
then also used as an address to fetch the dot data for display from the 8000-
byte DISPLAY BASE. The display base address is formed as follows:

A13 | A12 | A11 | A10 | AD9 | A8 | AO7 | A6 | AD5 | AD4 | AO3 | AD2 | AOT | ADO
CB13| VC9 | VC8 | VC7 | VC6 | VC5 | VC4 | VC3 | VC2 [VC1 | VCO | RC2 | RCT | RCO

APPENDIX N 439

VCx denotes the video matrix counter outputs, RCx denotes the 3-bit raster line
counter and CB13 is from register 24 ($18). The video matrix counter steps
through the same 40 locations for eight raster lines, continuing to the next 40
locations every eighth line, while the raster counter increments once for each
horizontal video line (raster line). This addressing results in, each eight sequential
memory locations being formatted as an 8 X 8 dot block on the video display.

STANDARD BITMAP MODE (BMM =1, MCM = 0)

When standard bitmap mode is in use, the color information is derived only from
the data stored in the video matrix (the color nybble is disregarded). The 8 bits
are divided into two 4-bit nybbles which allow two colors to be independently
selected in each 8 X 8 dot block. When a bit in the display memory is a "0" the
color of the output dot is set by the least significant (lower) nybble (LSN).
Similarly, a display memory bit of "1" selects the output color determined by the
MSN (upper nybble).

BIT DISPLAY COLOR
0 Lower nybble of video matrix pointer
1 Upper nybble of video matrix pointer

MULTICOLOR BITMAP MODE (BMM = MCM = 1)

Multicolored bitmap mode is selected by setting the MCM bit in register 22 ($16)

ll-l n

to a in conjunction with the BMM bit. Multicolor mode uses the same memory

access sequences as standard bitmap mode, but interprets the dot data as

follows:
BIT PAIR DISPLAY COLOR
00 Background #0 color (register 33 ($21))
01 Upper nybble of video matrix pointer
10 Lower nybble of video matrix pointer
11 Video matrix color nybble

Note that the color nybble (DB11 — DB8) is used for the multicolor bitmap mode.
Again, as two bits are used to select one dot color, the horizontal dot size is
doubled, resulting in a screen resolution of 160H X 200V. Utilizing multicolor

440 APPENDIX N

bitmap mode, three independently selected colors can be displayed in each 8
X 8 block in addition to the background color.

MOVABLE OBJECT BLOCKS

The movable object block (MOB) is a special type of character which can be
displayed at any one position on the screen without the block constraints inherent
in character and bitmap mode. Up to 8 unique MOBs can be displayed
simultaneously, each defined by 63 bytes in memory which are displayed as a
24 X 21 dot array (shown below). A number of special features make MOBs

especially suvited for video graphics and game applications.

MOB DISPLAY BLOCK

BYTE BYTE BYTE
00 01 02
03 04 05
57 58 59
60 61 62

ENABLE
Each MOB can be selectively enabled for display by setting its corresponding

enable bit (MnE) to "1" in register 21 ($15). If the MnE bit is "0," no MOB
operations will occur involving the disabled MOB.

POSITION
Each MOB is positioned via its X and Y position register (see register map) with

a resolution of 512 horizontal and 256 vertical positions. The position of a MOB
is determined by the upper-left corner of the array. X locations 23 to 347 ($17

APPENDIX N 441

— $157) and Y locations 50 to 249 ($32 — $F9) are visible. Since not all
available MOB positions are entirely visible on the screen, MOBs may be moved
smoothly on and off the display screen.

COLOR

Each MOB has a separate 4-bit register to determine the MOB color. The two
MOB color modes are:

STANDARD MOB (MnMC = 0)

In the standard mode, a "0" bit of MOB data allows any background data to
show through (transparent) and a "1" bit is displayed as the MOB color
determined by the corresponding MOB Color register.

MULTICOLOR MOB (MnMC = 1)

Each MOB can be individually selected as a multicolor MOB via MnMC bits in
the MOB multicolor register 28 ($1C). When the MnMC bit is "1," the
corresponding MOB is displayed in the multicolor mode. In the multicolor mode,
the MOB data is interpreted in pairs (similar to the other multicolor modes) as

follows:
BIT PAIR COLOR DISPLAYED
00 Transparent
01 MOB Multicolor #0 (register 37 ($25))
10 MOB Color (registers 39—46 ($27-$2E))
11 MOB Multicolor #1 (register 38 ($26))

Since two bits of data are required for each color, the resolution of the MOB is
reduced to 12 X 21, with each horizontal dot expanded to twice standard size
so that the overall MOB size does not change. Note that up to 3 colors can be
displayed in each MOB (in addition to transparent) but that two of the colors
are shared among all the MOBs in the multicolor mode.

442 APPENDIX N

MAGNIFICATION
Each MOB can be selectively expanded (2X) in both the horizontal and vertical

directions. Two registers contain the control bits (MnXE, MnYE) for the
magnification control:

REGISTER FUNCTION

23 ($17) Horizontal expand MnXE — "1" = expand; "0" = normal
29 ($1D) Vertical expand MnYE — "1" = expand; "0" = normal

When MOBs are expanded, no increase in resolution is realized. The same 24
X 21 array (12 X 21 if multicolored) is displayed, but the overall MOB
dimension is doubled in the desired direction (the smallest MOB dot may be up
to 4X standard dot dimension if a MOB is both multicolored and expanded).

PRIORITY
The priority of each MOB may be individually controlled with respect to the other

displayed information from character or bitmap modes. The priority of each
MORB is set by the corresponding bit (MnDP) of register 27 ($1B) as follows:

REG BIT PRIORITY TO CHARACTER OR BITMAP DATA

0] Non-transparent MOB data will be displayed (MOB in front)

1 Non-transparent MOB data will be displayed only instead of
Background #0 or multicolor bit pair 01 (MOB behind)

MOB — DISPLAY DATA PRIORITY

MnDP =1 MnDP =0
MOBn Foreground

Foreground MOBn

Background Background

APPENDIX N 443

MOB data bits of "0" ("00" in multicolor mode) are transparent, always

permitting any other information to be displayed.

The MOBs have a fixed priority with respect to each other, with MOB O having
the highest priority and MOB 7 the lowest. When MOB data (except transparent
data) of two MOBs are coincident, the data from the lower number MOB will be

displayed. MOB vs. MOB data is prioritized before priority resolution with

character or bitmap data.

COLLISION DETECTION

Two types of MOB collision (coincidence) are detected, MOB to MOB collision

and MOB to display data collision:

444

A collision between two MOBs occurs when non-transparent output data
of two MOBs are coincident. Coincidence of MOB transparent areas
will not generate a collision. When a collision occurs, the MOB bits
(MnM) in the MOB to MOB COLLISION register 30 ($1E) will be set to
"1" for both colliding MOBs. As a collision between two (or more) MOBs
occurs, the MOB to MOB collision bit for each collided MOB will be set.
The collision bits remain set until a read of the collision register, when
all bits are automatically cleared. MOBs collisions are detected even if
positioned off-screen.

The second type of collision is a MOB to DATA collision between a MOB
and foreground display data from the character or bitmap modes. The
MOB to DATA COLLISION register 31 ($1F) has a bit (MnD) for each
MOB which is set to "1" when both the MOB and non-background
display data are coincident. Again, the coincidence of only transparent
data does not generate a collision. For special applications, the display
data from the O — 1 multicolor bit pair also does not cause a collision.
This feature permits their use as background display data without
interfering with true MOB collisions. A MOB to DATA collision can occur
off-screen in the horizontal direction if actual display data has been
scrolled to an off-screen position (see scrolling). The MOB to DATA
COLLISION register also automatically clears when read.

APPENDIX N

The collision interrupt latches are set whenever the first bit of either register is
set to "1." Once any collision bit within a register is set high, subsequent collisions
will, not set the interrupt latch until that collision register has been cleared to all
n "

Os" by a read.

MOB MEMORY ACCESS

The data for each MOB is stored in 63 consecutive bytes of memory. Each block
of MOB data is defined by a MOB pointer, located at the end of the VIDEO
MATRIX. Only 1000 bytes of the video matrix are used in the normal display
modes, allowing the video matrix locations 1016 — 1023 (VM base + $3F8 to
VM base + $3FF) to be used for MOB pointers O to 7, respectively. The eight-
bit MOB pointer from the video matrix together with the six bits from the MOB
byte counter (to address 63 bytes) define the entire 14-bit address field:

A13 | A12 | AT1 | A0 | AD9 | AO8 | AO7 | ADS | AD5 | AD4 | AO3 | AD2 | AOT | ADO
MP7 | MP6 | MP5 | MP4 | MP3 | MP2 | MPT | MPO | MC5 | MC4 | MC3 | MC2 | MCT | MCO

Where MPx are the MOB pointer bits from the video matrix and MCx are the
internally generated MOB counter bits. The MOB pointers are read from the
video matrix at the end of every raster line. When the Y position register of a
MOB matches the current raster line count, the actual fetches of MOB data begin.
Internal counters automatically step through the 63 bytes of MOB data,
displaying three bytes on each raster line.

OTHER FEATURES
SCREEN BLANKING

The display screen may be blanked by setting the DEN bit in register 17 ($11)
to a "0." When the screen is blanked, the entire screen will be filled with the
exterior color as set in register 32 ($20). When blanking is active, only
transparent (Phase 1) memory accesses are required, permitting full processor
utilization of the system bus. MOB data, however, will be accessed if the MOBs
are not also disabled. The DEN bit must be set to "1" for normal video display.

APPENDIX N 445

ROW/COLUMN SELECT

The normal display consists of 25 rows of 40 characters (or character regions)
per row. For special display purposes, the display window may be reduced to
24 rows and 38 characters. There is no change in the format of the displayed
information, except that characters (bits) adjacent to the exterior border area
will now be covered by the border. The select bits operate as follows:

RSEL NUMBER OF ROWS CSEL NUMBER OF COLUMNS
0 24 rows 0 38 columns
1 25 rows 1 40 columns

The RSEL bit is in register 17 ($11) and the CSEL bit is in register 22 ($16). For
standard display the larger display window is normally used, while the smaller
display window is normally used in conjunction with scrolling.

SCROLLING

The display data may be scrolled up to one entire character space in both the
horizontal and vertical direction. When used in conjunction with the smaller
display window (above), scrolling can be used to create a smooth panning motion
of display data while updating the system memory only when a new character
row (or column) is required. Scrolling is also used to center a fixed display within
the display window.

BITS REGISTER FUNCTION
X2, X1, X0 22 ($16) Horizontal Position
Y2,Y1,Y0 17 ($11) Vertical Position
LIGHT PEN

The light pen input latches the current screen position into a pair of registers (LPX,
LPY) on a low-going edge. The X position register 19 ($13) will contain the 8
MSB of the X position at the time of transition. Since the X position is defined by
a 512-state counter (9 bits) resolution to 2 horizontal dots is provided. Similarly,
the Y position is latched to its register 20 ($14) but here 8 bits provide single
raster resolution within the visible display. The light pen latch maybe triggered

446 APPENDIX N

only once per frame, and subsequent triggers within the same frame will have
no effect. Therefore, you must take several samples before turning the light pen
to the screen (3 or more samples, average), depending upon the characteristics
of your light pen.

RASTER REGISTER

The raster register is a dual-function register. A read of the raster register 18
($12) returns the lower 8 bits of the current raster position (the MSB — RC8 is
located in register 17 ($11)). The raster register can be interrogated to
implement display changes outside the visible area to prevent display flicker.
The visible display window is from raster 51 through raster 251 ($033 — $OFB).
A write to the raster bits (including RC8) is latched for use in an internal raster
compare. When the current raster matches the written value, the raster interrupt
latch is set.

INTERRUPT REGISTER

The interrupt register shows the status of the four sources of interrupt. An interrupt
latch in register 25 ($19) is set to "1" when an interrupt source has generated
an interrupt request. The four sources of interrupt are:

LATCH| ENABLE
BIT BIT

IRST ERST Set when (raster count) = (stored raster count)

WHEN SET

IMDC |EMDC Set by MOB — DATA collision register (first collision only)
IMMC |EMMC Set by MOB — DATA collision register (first collision only)
ILP ELP Set by negative transition of LP input (once per frame)

IRQ Set high by latch set and enabled (invert of IRQ/ output)

To enable an interrupt request to set the IRQ/ output to "0," the corresponding

interrupt enable bit in register 26 ($1A) must be set to "1." Once an interrupt
to the desired

latch in the interrupt register. This feature allows selective handling of video

latch has been set, the latch may be cleared only by writing a "1"

interrupts without software required to "remember" active interrupts.

APPENDIX N 447

DYNAMIC RAM REFRESH

A dynamic ram refresh controller is built in to the 6566/6567 devices. Five 8-
bit row addresses are refreshed every raster line. This rate guarantees a
maximum delay of 2.02 ms between the refresh of any single row address in a
128 refresh scheme. (The maximum delay is 3.66 ms in a 256 address refresh
scheme.) This refresh is totally transparent to the system, since the refresh occurs
during Phase 1 of the system clock. The 6567 generates both RAS/ and CAS/
which are normally connected directly to the dynamic rams. RAS/ and CAS/ are
generated for every Phase 2 and every video data access (including refresh) so
that external clock generation is not required.

THEORY OF OPERATION
SYSTEM INTERFACE

The 6566/6567 video controller devices interact with the system data bus in a
special way. A 65XX system requires the system buses only during the Phase 2
(clock high) portion of the cycle. The 6566/6567 devices take advantage of this
feature by normally accessing system memory during the Phase 1 (clock low)
portion of the clock cycle. Therefore, operations such as character data fetches
and memory refresh are totally transparent to the processor and do not reduce
the processor throughput. The video chips provide the interface control signals
required to maintain this bus sharing.

The video devices provide the signal AEC (address enable control) which is used
to disable the processor address bus drivers allowing the video device to access
the address bus. AEC is active low which permits direct connection to the AEC
input of the 65XX family. The AEC signal is normally activated during Phase 1
so that processor operation is not affected. Because of this bus "sharing," all
memory accesses must be completed in 2 cycle. Since the video chips provide a
1MHz clock (which must be used as system Phase 2), a memory cycle is 500 ns
including address setup, data access and data setup to the reading device.

Certain operations of the 6566/6567 require data at a faster rate than
available by reading only during the Phase 1 time; specifically, the access of
character pointers from the video matrix and the fetch of MOB data. Therefore,
the processor must be disabled and the data accessed during the Phase 2 clock.
This is accomplished via the BA (bus available) signal. The BA line is normally
high but is brought low during Phase 1 to indicate that the video chip will require
a Phase 2 data access. Three Phase 2 times are allowed after BA low for the

448 APPENDIX N

processor o complete any current memory accesses. On the fourth Phase 2 after
BA low, the AEC signal will remain low during Phase 2 as the video chip fetches
data. The BA line is normally connected to the RDY input of a 65XX processor.
The character pointer fetches occur every eighth raster line during the display
window and require 40 consecutive Phase 2 accesses to fetch the video matrix
pointers. The MOB data fetches require 4 memory accesses as follows:

PHASE DATA CONDITION

1 MOB Pointer Every raster

2 MOB Byte 1 Each raster while MOB is displayed
1 MOB Byte 2 Each raster while MOB is displayed
2 MOB Byte 3 Each raster while MOB is displayed

The MOB pointers are fetched every other Phase 1 at the end of each raster
line. As required, the additional cycles are used for MOB data fetches. Again,
all necessary bus control is provided by the 6566/6567 devices.

MEMORY INTERFACE

The two versions of the video interface chip, 6566 and 6567, differ in address
output configurations. The 6566 has thirteen fully decoded addresses for direct
connection to the system address bus. The 6567 has multiplexed addresses for
direct connection to 64K dynamic RAMs. The least significant address bits, AO6
— AOO, are present on AO6 — AOO while RAS/ is brought low, while the most
significant bits, A13 — AO8, are present on AO5 — AOO while CAS/ is brought
low. The pins A11 — AO7 on the 6567 are static address outputs to allow direct
connection of these bits to a conventional 16K (2Kx8) ROM. (The lower order
addresses require external latching.)

PROCESSOR INTERFACE

Aside from the special memory accesses described above, the 6566/6567
registers can be accessed similar to any other peripheral device. The following
processor interface signals are provided:

APPENDIX N 449

DATA BUS (DB7 — DBO)

The eight data bus pins are the bi-directional data port, controlled by CS/, RW,
and Phase 0. The data bus can only be accessed while AEC and Phase O are
high and CS/ is low.

CHIP SELECT (CS/)

The chip select pin, CS/, is brought low to enable access to the device registers
in conjunction with the address and RW pins. CS/ low is recognized only while
AEC and Phase O are high.

READ/WRITE (R/W)

The read/write input, R/W, is used to determine the direction of data transfer
on the data bus, in conjunction with CS/. When R/W is high ("1") data is
transferred from the selected register to the data bus output. When R/W is low
("0") data presented on the data bus pins is loaded into the selected register.

ADDRESS BUS (AO5 — A0O)

The lower six address pins, A5 — AO, are bi-directional. During a processor read
or write of the video device, these address pins are inputs. The data on the
address inputs selects the register for read or write as defined in the register
map.

CLOCK OUT (PHO)

The clock output, Phase O, is the 1MHz clock used as the 65XX processor Phase
0 in. All system bus activity is referenced to this clock. The clock frequency is
generated by dividing the 8 MHz video input clock by eight.

INTERRUPTS (IRQ/)
The interrupt output, IRQ/, is brought low when an enabled source of interrupt

occurs within the device. The IRQ/ output is open drain, requiring an external
pull-up resistor.

VIDEO INTERFACE
The video output signal from the 6566/6567 consists of two signals which must

be externally mixed together. SYNC/LUM output contains all the video data,
including horizontal and vertical syncs, as well as the luminance information of

450 APPENDIX N

the video display. SYNC/LUM is open drain, requiring an external pull-up of
500 ohms. The COLOR output contains all the chrominance information, including
the color reference burst and the color of all display data. The COLOR output is
open source and should be terminated with 1000 ohms to ground. After
appropriate mixing of these two signals, the resulting signal can directly drive a
video monitor or be fed to a modulator for use with a standard television.

SUMMARY OF 6566/6567 BUS ACTIVITY

AEC PHO Cs/ | R/W ACTION
0 X X PHASE 1 FETCH, REFRESH
1 X X PHASE 2 FETCH (PROCESSOR OFF)

1 0 X X NO ACTION

1 1 0] 0] WRITE TO SELECTED REGISTER

1 1 0] 1 READ FROM SELECTED REGISTER

1 1 1 X NO ACTION

COLOR CODES

D4 D3 D1 DO HEX DEC COLOR

0 0 0] 0] 0 0] BLACK

0 0 0] 1 1 1 WHITE

0 0 0] 2 2 RED

0 0 1 1 3 3 CYAN

0 1 0] 0] 4 4 PURPLE

0 1 0] 1 5 5 GREEN

0 1 1 0] 6 6 BLUE

0 1 1 1 7 7 YELLOW
1 0 0] 0] 8 8 ORANGE
1 0 0] 1 9 9 BROWN
1 0 1 0] A 10 LT RED

1 0] 1 1 B 11 DARK GREY
1 1 0] 0] C 12 MED GREY
1 1 0] 1 D 13 LT GREEN
1 1 1 0] E 14 LT BLUE

1 1 1 1 F 15 LT GREY

APPENDIX N 451

452

PIN CONFIGURATION

— u —
DB, | 1 40
o8, | 2| 39]
DB, _3 g
o8, | 4] (37]
DB, T ;
DB, _6 ;
DB, /] 3_4
RQ/ ? g
ol Z 6567 E
cs/ |10 31
R/W T ;
BA ::; 7;;
Voo :?; 7;;
COLOR 7:: ;;-
sjum [15] 6]
ac [10] 5]
PH, [17] [24]
RAS/ : ;
CAS/ [19] ;
vee [20] 1]
(Multiplexed addresses in parentheses)
APPENDIX N

DB,

DBy

DB,

DB,o

DB,

A]O

Ao

Ag

A7

As(“17)

As(Ar3)

Asl(Ar2)

Az(A)

Az (Aro)

Aq (Ag)

Ao (As)

PHIN

PHCL

DB,
DBs
DB,
DB,
DB,
DB,
DB,
IRQ/

LP
cs/

R/W

BA

COLOR
S/LUM
AEC
PHqo
PHIN

PHCOL

PIN CONFIGURATION

Isllallslaffafl={lallsll={ls][ell=ll~{lo]f«]|[~{e]v]]-]

N
o

-/

6566

N
o

39

N w w w w w w w w w
0 o - N w IS [$,] o N ©

28

N N N
[&] o N

24

N N N
— N w

APPENDIX N

DB,

DB,

DB,

DB,o

DBy,

453

pupdxa-A OW JAOW FALW FATW FAEW FAPW JASW JA9W JALW (£18) €t
I1xa) 298 0X LX X 13SD WOW Sy — — (91%) zz
a|qpu3 §OW 0w W ITW IEW YW ISW oW EVAY (s1$) 12
Aud b1 OAdl LAdT TAdT €A1 ¥Ad1 SAdT 9Ad1 ZAdl (r1$) oc

X usd #yB17 [Xd1 ZXd1 €Xd1 ¥Xd1 SXd1 9Xd1 ZXd1 8Xd1 (€1$) 61
13451634 J1ays0Y 0¥ 1D¥ oY £ oY o) 9Dy Yaol:! (z1$) 8l
xa} 908 0A LA ZA 73Sy NId Wwsg wD3 82d (L1$) 21
uolisod-x Jo gSW 8XOW 8XLW 8XTW 8XEW 8XFW 8XSW 8XOW 8XLW (o1$) 9L
uolIsod-A £ AOW OAZW LAZW TALW SALW VALW SAZW 9ALW ZALW (408) <1
uolIsod-X £ 4OW OXZW LXIW TIXLW EXIW VXIW SXIW 9OXIW LXIW (30%) w1
UOHISOd-A 9 AOW OASW LASW TAOW SAOW FAOW GAOW QA9W ZASW (aog) €1
uolIsod-X 9 4OW OXOW LX9W TX9W EX9W FXOW GXOW 9OXOW ZX9W (Oog) c1
uolisod-A G IOW OASW LASW TASW EASW FASW GASW OQASW ZASW (g0%) L1
uouIsod-X ¢ GOW OXSW LXSW TXSW EXSW FXSW SXSW 9XSW ZXSW (vosg) ol
UOHISOd-A ¥ AOW OAPW LAVW TAYW EAYW FAPW GAPW QAYW ZAVW (60%) 60
uolisod-X ¥ 4OW OXPW LXVPW TXPW EXPW PXPW SXFW 9XYW AXPW (80$) 80
uolisod-A € IOW OAEW LAEW TAEW EAEW FAEW GAEW OQAEW ZAEW (£0%) <o
uouIsod-X € IOW OXEW LXEW TXEW EXEW FXEW SXEW O9XEW /ZXEW (90%) 90
UOHISO-A T IOW OATW LATW TAIW EAIW FATW GATW QATW ZAIW (s0%) <o
uolIsod-X T 4OW OXTW LXTW TXIW EXTIW FPXIW SXTW 9XTW ZXZW (ros$) vo
UoHIsOd-A L 9OW OALW LALW ZALW SALW FPALW SALW QALW ZALW (€0$) <o
uolisod-X | 4OW OXILW LXIW ZXLW EXIW FPXIW SXLW 9XIW ZXIW (zog) zo
uolisod-A 0 4OW OAOW LAOW ZTAOW ESAOW PVAOW GAOW QAOW ZAOW (Log) 10
uolisod-X 0 4OW OXOW LXOW ITXOW EXOW FXOW SXOW 9XOW ZXOW (00$) 00
NOILdI¥DS3a 04gdq 1aa zaa b 4] vaa sgda 9dd 494 ssayaav

dVW ¥31SI93d

APPENDIX N

454

WL, P SO PR3 U0 S}OIUUOD OU || "}ISUUCD OU B S4RIIPUI YsPP V :JION

10[0D £ 9OW
10[0D 9 4OW

10105 ¢ AOW
10|00 ¥ 4OW
10105 € dOW
10]0D T 4OW

10105 | dOW
10|03 0 4OW

L# 10]03-lnW dOW
O# 1o]o>-UinW dOW
100D g# punoiByppg
10]0D) Z# punolbippg
10|00 | # punoibipng
10|00 O# Punosbiippg
JojoD) Jouaix]
uolsl||ed v1iva-dOw
uoisijjod 4OW-40W
purdxa-x gOW

I3S 10jod-linW GOW
Aydold VIVAa-90OW
1dniiaju) s|gpug
19)s163y jdniisju)
siajujod Klowaw

024W
0D9W
0DSW
0D¥W
00EW
0DTW
0DLW
0O0W
0LWW
ooww
00¢€4
0oce
0014
0004
003
aow
wow
IXow
owWow
daow
1S34
1S3l

LOLW
LO9wW
LOSW
LOYW
LOEW
LOCTW
LOIW
LOOW
L LWW
LOwWwW
Lo¢gd
1ocd
1oLg
1204
123
alw
WIwW
IXLW
OWILW
ddLlw
J9awd
29wl
119D

COLW
CO9W
COSW
COVW
COEW
COTW
COLW
COOW
CTLIWW
COWW
To¢gd
coee
eole
004
¢od
acw
WZW
IXTW
OWZIW
dazw
owwi
OWWI
cLad

EDLW
EO9W
EOSW
EOVYW
€OEW
EOTW
EOLW
EO0W
€LlwWw
EOWW
€2¢€4
€0¢d
€o14
€204
€014
agw
WEW
IXEW
OWEW
dagw
d13

d1l
€190

arw
Wrw
IXVYW
OWrw
darw

OLWA

asw
WSW
IXSW
OWSW
dasw

LLWA

aow
Wow
aXoW
OWowW
daow

CLWA

aiw
WAIW
IXLW
OWLIW
daZw

Ol
ELWA

(3g$)
(az$)
(oz$)
(9z$)
(vzg)
(6T$)
(8T$)
(£z$)
(9z3)
(sz$)
(res)
(eT$)
(zz$)
(1z$)
(0z$)
(41%)
(arg)
(@is)
D)
(a1¢)
(vi$)
(61%)
(81¢$)

i 4
14
44
144
(A4
14
oy
6€
8¢
LE
9€
S€
4%
€€
(4>
LE
(1%
6T
8¢
L2
9C
14
ve

455

APPENDIX N

6567 TIMING LIMITS

SPEC SPEC
SPEC MIN TYP MAX
Clock out hi 465 484 500
Clock out lo 475 494 510
Clock to RAS lo 150 171 190
Clock to RAS hi 20 35 50
RAS lo to CAS lo 25 46 65
Clock to CAS hi 15 25 35
Clock to AEC hi/lo 15 33 50
Data out from CAS 184 220
Data rel from PhO 80 113 135
Add-in to RAS setup 25 14
Add-in to RAS hold 0 =15
Add-out/RAS setup 35 48
Add-out/RAS hold 30 36 45
Add-out from PhO 85 97
Add-out/CAS hold 20 37 50
BA from PhO 100 230 300
Data in setup/PhO 60 42
Data in hold /PhO 45 24
Color data setup 45 30
Color data hold 0 =17
Ph in + pulse 50 43
Ph in — pulse 65 58
Vil 1.23 0.80
Vih 2.20 1.91
Vol 0.52 0.55
Voh 2.40 3.03

456 APPENDIX N

APPENDIX O

6581 SOUND INTERFACE DEVICE (SID) CHIP SPECIFICATIONS

CONCEPT

The 6581Sound Interface Device (SID) is a single-chip, 3-voice electronic music
synthesizer/sound effects generator compatible with the 65XX and similar
microprocessor families. SID provides wide-range, high-resolution control of pitch
(frequency), tone color (harmonic content), and dynamics (volume). Specialized
control circuitry minimizes software overhead, facilitating use in arcade /home
video games and low-cost musical instruments.

FEATURES

° 3 TONE OSCILLATORS
Range: O — 4 kHz

° 4 WAVEFORMS PER OSCILLATOR
Triangle, Sawtooth,
Variable Pulse, Noise

. 3 AMPLITUDE MODULATORS
Range: 48 dB

° 3 ENVELOPE GENERATORS

Exponential response
Attack Rate: 2ms — 8s
Decay Rate: 6ms — 24s
Sustain level: 0 — peak volume
Release Rate: 6ms — 24s
° OSCILLATOR SYNCHRONIZATION
° RING MODULATION

APPENDIX O 457

458

PROGRAMMABLE FILTER
Cutoff range: 30 Hz — 12 kHz
12dB/octave Rolloff
Lowpass, Bandpass,
Highpass, Notch outputs
Variable Resonance

MASTER VOLUME CONTROL

2 A/D POT INTERFACES

RANDOM NUMBER/MODULATION GENERATOR

EXTERNAL AUDIO INPUT

PIN CONFIGURATION

CAP; o

CAP

CAPg,

CAP;

A

Az

As

Ay

GND

0
w
HEHHEHBRENEENEEE

_/

6581
SID

N
©

27

N N N
N (8] o

23

N N
- N

20

Lz [z][5 [=]L=]]

APPENDIX O

VDD

AUDIO OUT

EXT IN

VCC

POT X

POT Y

D,

D3

D,

D,

Do

NI 1X3

1nO olanvy

"'dvD
#dvD
YedvD
dvD

A 1Od
X10d —= SIOd fe—o WVIOVIA JD0Td 18S9
€ JOLV¥INID AHV
3dOT3AN3
— 5
PENRIE IV
< s savV
e/,
. m_wn__mlz_ € 4OLV¥INID 3
5 \ WAOIIAVM o [¢
IWNTOA [€114 J40LVINAOW > /40LV1112S0 > =
0 ANLdWY | - - " “3INOL > d
et ¥
Ho¢ hd WI/ONAS Z -
ﬁ | — D
" L z yorvaanao [/— 5 [
%__ 4 3dOT3AN3 N— @ Je—=1q
N_/|/\< le—>0
Sa a
3SION Z 4OLV¥INID
o z Uy | waosaAvm. [/
2 114 _o— ¥4O1VINOW > /401LV11IDSO N—
-] 3anindwy L1~ — INOl
[NAS
¥3111d WI/ONAS A f— v
> X
-] L |1 sorvaanao [A— 5%
4OTANT K — z
N 3 N
sa m
me__._oZ_ — 1 doLvaanao | 4 @ . |o<
L1 N_og_:ooz kwmﬂ%w%o N— 9 — W
1aNLNdwWy L1~ r aNOL 2 B\N_
el f—— N
N Wa/oNKS © ¢

459

APPENDIX O

DESCRIPTION

The 6581 consists of three synthesizer "voices" which can be used independently
or in conjunction with each other (or external audio sources) to create complex
sounds. Each voice consists of a Tone Oscillator/Waveform Generator, an
Envelope Generator and an Amplitude Modulator. The Tone Oscillator controls
the pitch of the voice over a wide range. The Oscillator produces four waveforms
at the selected frequency, with the unique harmonic content of each waveform
providing simple control of tone color. The volume dynamics of the oscillator are
controlled by the Amplitude Modulator under the direction of the Envelope
Generator. When triggered, the Envelope Generator creates an amplitude
envelope with programmable rates of increasing and decreasing volume. In
addition to the three voices, a programmable Filter is provided for generating
complex, dynamic tone colors via subtractive synthesis.

SID allows the microprocessor to read the changing output of the third Oscillator
and third Envelope Generator. These outputs can be used as a source of
modulation information for creating vibrato, frequency /filter sweeps and similar
effects. The third oscillator can also act as a random number generator for
games. Two A/D converters are provided for interfacing SID with
potentiometers. These can be used for "paddles” in a game environment or as
front panel controls in a music synthesizer. SID can process external audio signals,
allowing multiple SID chips to be daisy-chained or mixed in complex polyphonic
systems.

SID CONTROL REGISTERS

There are 29 eight-bit registers in SID which control the generation of sound.
These registers are either WRITE-only or READ-only and are listed below in
Table 1.

460 APPENDIX O

Table 1. SID Register Map

AINO-avay
AINO-avay
AINO-avay
AINO-avay

AINO-ILIIM
AINO-ILRIM
AINO-ILRIM
AINO-ILIIM

AINO-ILIIM
AINO-ILIIM
AINO-ILIIM
AINO-ILIRIM
AINO-ILIIM
AINO-ILIIM
AINO-ILIIM

AINO-ILIIM
AINO-ILIIM
AINO-ILIIM
AINO-ILIIM
AINO-ILIIM
AINO-ILIIM
AINO-ILIIM

AINO-ILIRIM
AINO-ILIRIM
AINO-ILRIM
AINO-ILIRIM
AINO-ILRIM
AINO-ILIRIM
AINO-ILIIM

idAl
o

EAN3
WOANVY¥/$2S0
A 1Od

X 10d

.Umms
10A/3a0W
1114/538

IH D4

0124

a4y
3SV3133/NIVLSNS
AVD3A/MNDVLLY
934 10¥LINOD
IH Md

01 Md

IH ©3¥4

o1 03344

€ adIop
3SVI134/NIVLSNS
AVD3A/MDVLLY
934 T10¥LINOD
IH Md

o1 Md

H ©344

o1 0344

T 107
ISV3133/NIVLSNS
AVD3a/MDVLLY
934 T0¥LNOD
IH Md

o1 Md

IH ©3¥4

o1 03344

1 93107

JWVN 93¥

°3 ‘3 ‘3 3 '3 3 °3 “
°0 ‘o ‘o i) "o ‘0 °0 ‘0
OAd ‘Ad °Ad EAd "Ad fAd “Ad “Ad
°xd 'xd °Xd £Xd YXd Xd °Xd “Xd
“10A | MOA | “10A | F10A d1 dg dH | d40¢
LInd | Zzamd | eumd | xad | %s3y 's3y ‘s fsay
€4 "4 24 24 “4 834 24 0ty
%4 D4 o4 — — — — —
o571y 'sTy STy E51d | ONLS | 'NLS | ONLS | ENLS
°A0a | "aoa [faoa | Faoa | v | v | v [Sav
avo | ONAS | % 1831 [\ [L1~ | LI | 3SION
SMd | Md [O'"Md | M'md — — — —
°Md 'Md | *Md EMd | "Md | Md | Md | ‘Md
wu_ ou_ o—u_ :n_ N_n_ m_m v_u_ m_u_
%4 '4 ! 4 '4 4 °4 44
o513 's1d ST fs7d [ONus | 'NLS [ONLS | ENLS
°A0a | 'Ada | ‘ada | fADa | v | v | v | S
1vo | ONAS | Q% 1831 | N/ [L1~ | TLILI | 3SION
SMd | Md | O'Md | M'md — — — —
OMd 'Md | ‘Md EMd ["Md | Md | 'Md | ‘md
mm om o_m :m N_m n_u_ v_u_ m_u_
%4 '4 4 4 £ 4 4 “q
o571y 'Sy “S1y E51d | ONLS | 'NLS | ONLS | °NLS
°A2a | 'aoa | Faoa [faoa [Onuv [by | By | Sy
VO | DNAS | 4% 1591 [\ [L1~ | 1 | 3sioN
SMd SMd | O'"Md | "'Md — — — —
°Md 'Md | *Md EMd | "Md | Md | md | ‘md
mu_ ou_ o—u_ :n_ N_n_ m_m v_u_ m_u_
cm —u_ «u_ mu_ «.u_ mu_ cm Nu_
oﬂ —n nﬂ nﬁ vﬂ nﬂ cﬂ hﬂ
viva

ol
dal
Vi
6l

8l
Ll
9L
Sl

vl
€l
4}
Ll
oL
40
30

ao
20
40
Vo0
60
80
40

90
S0
0
€0
z0
)
00

(X3H)

#o3Y

— O — O — O — O

— OO0 ~ O~ o0o~0r~o

O~ O 0 o0

v

O~ — O O - — O

— — OO0~ — O

— OO — — OO

O ©—— O o~

O O O —

— OO OO — — — — OO O O ~— - - - O

©Co0 0o~ —~—

0
v
ssjyaav

© O O ~—

— — O O O O O

O = == — —

© OO oo oo

OO0 — = — = ~—

O OO O o oo

O O O OO oo

8T
L
44
14

144
€
[44

oc
6l
8l
yAl
9l
Sl
vi

€l
cl
L
(o]}

O~ N ™M YT VO

461

APPENDIX O

SID REGISTER DESCRIPTION
VOICE 1
FREQ LO/FREQ HI (Registers 00, 01)

Together these registers form a 16-bit number which linearly controls the
frequency of Oscillator 1. The frequency is determined by the following
equation:

Fout = (Fn X Fak/16777216) Hz

Where Fy, is the 16-bit number in the Frequency registers and Fci is the system
clock applied to the $2 input (pin 6). For a standard 1.0 MHz clock, the frequency
is given by:

Fout = (Fn X 0.059604645) Hz

A complete table of values for generating 8 octaves of the equally tempered
musical scale with concert A (440 Hz) tuning is provided in Appendix E. It should
be noted that the frequency resolution of SID is sufficient for any tuning scale
and allows sweeping from note to note (portamento) with no discernible
frequency steps.

PW LO/PW HI (Registers 02, 03)
Together these registers form a 12-bit number (bits 4 — 7 of PW HI are not used)

which linearly controls the Pulse Width (duty cycle) of the Pulse waveform on
Oscillator 1. The pulse width is determined by the following equation:

PWout = (PWn/40-95) %

Where PW, is the 12-bit number in the Pulse Width registers.

The pulse width resolution allows the width to be smoothly swept with no
discernible stepping. Note that the Pulse waveform on Oscillator 1 must be
selected in order for the Pulse Width registers to have any audible effect. A

value of O or 4095 ($FFF) in the Pulse Width registers will produce a constant
DC output, while a value of 2048 ($800) will produce a square wave.

462 APPENDIX O

CONTROL REGISTER (Register 04)

This register contains eight control bits which select various options on Oscillator
1.

GATE (Bit 0): The GATE bit controls the Envelope Generator for Voice 1. When
this bit is set to a one, the Envelope Generator is Gated (triggered) and the
ATTACK/DECAY /SUSTAIN cycle is initiated. When the bit is reset to a zero, the
RELEASE cycle begins. The Envelope Generator controls the amplitude of
Oscillator 1 appearing at the audio output, therefore, the GATE bit must be set
(along with suitable envelope parameters) for the selected output of Oscillator
1 to be audible. A detailed discussion of the Envelope Generator can be found
at the end of this Appendix.

SYNC (Bit 1): The SYNC bit, when set to a one, synchronizes the fundamental
frequency of Oscillator 1 with the fundamental frequency of Oscillator 3,
producing "Hard Sync" effects.

Varying the frequency of Oscillator 1 with respect to Oscillator 3 produces a
wide range of complex harmonic structures from Voice 1 at the frequency of
Oscillator 3. In order for sync to occur, Oscillator 3 must be set to some frequency
other than zero but preferably lower than the frequency of Oscillator 1. No
other parameters of Voice 3 have any effect on sync.

RING MOD (Bit 2): The RING MOD bit, when set to a one, replaces the Triangle
waveform output of Oscillator 1 with a "Ring Modulated" combination of
Oscillators 1 and 3. Varying the frequency of Oscillator 1 with respect to
Oscillator 3 produces a wide range of non-harmonic overtone structures for
creating bell or gong sounds and for special effects. In order for ring modulation
to be audible, the Triangle waveform of Oscillator 1 must be selected and
Oscillator 3 must be set to some frequency other than zero. No other parameters
of Voice 3 have any effect on ring modulation.

TEST (Bit 3): The TEST bit, when set to a one, resets and locks Oscillator 1 at zero
until the TEST bit is cleared. The Noise waveform output of Oscillator 1 is also
reset and the Pulse waveform output is held at a DC level. Normally this bit is
used for testing purposes, however, it can be used to synchronize Oscillator 1 to
external events, allowing the generation of highly complex waveforms under
real-time software control.

APPENDIX O 463

(Bit 4): When set to a one, the Triangle waveform output of Oscillator 1 is
selected. The Triangle waveform is low in harmonics and has a mellow, flute-like
quality.

(Bit 5): When set to a one, the Sawtooth waveform output of Oscillator 1 is
selected. The Sawtooth waveform is rich in even and odd harmonics and has a
bright, brassy quality.

(Bit 6): When set to a one, the Pulse waveform output of Oscillator 1 is selected.
The harmonic content of this waveform can be adjusted by the Pulse Width
registers, producing tone qualities ranging from a bright, hollow square wave to
a nasal, reedy pulse. Sweeping the pulse width in real-time produces a dynamic
"phasing” effect which adds a sense of motion to the sound. Rapidly jumping
between different pulse widths can produce interesting harmonic sequences.

NOISE (Bit 7): When set to a one, the Noise output waveform of Oscillator 1 is
selected. This output is a random signal which changes at the frequency of
Oscillator 1. The sound quality can be varied from a low rumbling to hissing
white noise via the Oscillator 1 Frequency registers. Noise is useful in creating
explosions, gunshots, jet engines, wind, surf and other unpitched sounds, as well
as snare drums and cymbals. Sweeping the oscillator frequency with Noise
selected produces a dramatic rushing effect.

One of the output waveforms must be selected for Oscillator 1 to be audible,
however, it is NOT necessary to de-select waveforms to silence the output of
Voice 1. The amplitude of Voice 1 at the final output is a function of the Envelope
Generator only.

NOTE: The oscillator output waveforms are NOT additive. If more than one output waveform is
selected simultaneously, the result will be a logical ANDing of the waveforms. Although this
technique can be used to generate additional waveforms beyond the four listed above, it must
be used with care. If any other waveform is selected while Noise is on, the Noise output can "lock
up." If this occurs, the Noise output will remain silent until reset by the TEST bit or by bringing RES
(pin 5) low.

464 APPENDIX O

ATTACK/DECAY (Register 05)

Bits 4 — 7 of this register (ATKO — ATK3) select 1 of 16 ATTACK rates for the
Voice 1 Envelope Generator. The ATTACK rate determines how rapidly the
output of Voice 1 rises from zero to peak amplitude when the Envelope
Generator is Gated. The 16 ATTACK rates are listed in Table 2.

Bits O — 3 (DCYO — DCY3) select 1 of 16 DECAY rates for the Envelope
Generator. The DECAY cycle follows the ATTACK cycle and the DECAY rate
determines how rapidly the output falls from the peak amplitude to the selected
SUSTAIN level. The 16 DECAY rates are listed in Table 2.

SUSTAIN/RELEASE (Register 06)

Bits 4 — 7 of this register (STNO — STN3) select 1 of 16 SUSTAIN levels for the
Envelope Generator. The SUSTAIN cycle follows the DECAY cycle and the output
of Voice 1 will remain at the selected SUSTAIN amplitude as long as the Gate
bit remains set. The SUSTAIN levels range from zero to peak amplitude in 16
linear steps, with a SUSTAIN value of O selecting zero amplitude and a SUSTAIN
value of 15 ($F) selecting the peak amplitude. A SUSTAIN value of 8 would
cause Voice 1 to SUSTAIN at an amplitude one-half the peak amplitude reached
by the ATTACK cycle.

Bits O — 3 (RLSO — RLS3) select 1 of 16 RELEASE rates for the Envelope Generator.
The RELEASE cycle follows the SUSTAIN cycle when the Gate bit is reset to zero.
At this time, the output of Voice 1 will fall from the SUSTAIN amplitude to zero
amplitude at the selected RELEASE rate. The 16 RELEASE rates are identical to
the DECAY rates.

NOTE: The cycling of the Envelope Generator can be altered at any point via the Gate bit. The
Envelope Generator can be Gated and Released without restriction. For example, if the Gate
bit is reset before the envelope has finished the ATTACK cycle, the RELEASE cycle will immediately
begin, starting from whatever amplitude had been reached. If the envelope is then Gated again
(before the RELEASE cycle has reached zero amplitude), another ATTACK cycle will begin, starting
from whatever amplitude had been reached. This technique can be used to generate complex
amplitude envelopes via real-time software control.

APPENDIX O 465

Table 2. Envelope Rates

VALUE ATTACK RATE DECAY/RELEASE RATE
DEC HEX (Time Cycle) (Time Cycle)

0 0 2 ms 6 ms

1 1 8 ms 24 ms

2 2 16 ms 48 ms

3 3 24 ms 72 ms

4 4 38 ms 114 ms

5 5 56 ms 168 ms

6 6 68 ms 204 ms

7 7 80 ms 240 ms

8 8 100 ms 300 ms

9 9 250 ms 750 ms

10 A 500 ms 1.5s

11 B 800 ms 24s

12 C 1s 3s

13 D 3s 9s

14 E 5s 15

15 F 8s 24 s
NOTE: Envelope rates are based on a 1.00 MHz $2 clock. For other $2 frequencies, multiply the
given rate by 1 MHz/$2. The rates refer to the amount of time per cycle. For example, given an
ATTACK value of 2, the ATTACK cycle would take16 ms to rise from zero to peak amplitude. The
DECAY /RELEASE rates refer to the amount of time these cycles would take to fall from peak
amplitude to zero.

VOICE 2

Registers $07 — $0D control Voice 2 and are functionally identical to registers
$00 — $06 with these exceptions:

1. When selected, SYNC synchronizes Oscillator 2 with Oscillator 1.

2. When selected, RING MOD replaces the Triangle output of Oscillator
2 with the ring modulated combination of Oscillators 2 and 1.

466 APPENDIX O

VOICE 3

Registers $OE — $14 control Voice 3 and are functionally identical to registers
$00 — $06 with these exceptions:

1. When selected, SYNC synchronizes Oscillator 3 with Oscillator 2.

2. When selected, RING MOD replaces the Triangle output of Oscillator
3 with the ring modulated combination of Oscillators 3 and 2.

Typical operation of a voice consists of selecting the desired parameters:
frequency, waveform, effects (SYNC, RING MOD) and envelope rates, then
gating the voice whenever the sound is desired. The sound can be sustained for
any length of time and terminated by clearing the Gate bit. Each voice can be
used separately, with independent parameters and gating, or in unison to create
a single, powerful voice. When used in unison, a slight detuning of each oscillator
or tuning to musical intervals creates a rich, animated sound.

FILTER

FC LO/FC HI (Registers $15, $16)

Together these registers form an 11-bit number (bits 3 to 7 of FC LO are not
used) which linearly controls the Cutoff (or Center) Frequency of the
programmable Filter. The approximate Cutoff Frequency ranges from 30 Hz to
12 KHz.

RES/FILT (Register $17)

Bits 4 — 7 of this register (RESO — RES3) control the resonance of the filter.
Resonance is a peaking effect which emphasizes frequency components at the
Cutoff Frequency of the Filter, causing a sharper sound. There are16 resonance
settings ranging linearly from no resonance (0) to maximum resonance (15 or
$F). Bits 0 — 3 determine which signals will be routed through the Filter:

FILT1 (Bit 0): When set to a zero, Voice 1 appears directly at the audio output
and the Filter has no effect on it. When set to a one, Voice 1 will be processed
through the Filter and the harmonic content of Voice 1 will be altered according
to the selected Filter parameters.

FILT2 (Bit 1): Same as bit O for Voice 2.
FILT3 (Bit 2): Same as bit O for Voice 3.

FILTEX (Bit 3): Same as bit O for External audio input (pin 26).

APPENDIX O 467

MODE/VOL (Register $18)
Bits 4 — 7 of this register select various Filter mode and output options:

LP (Bit 4): When set to a one, the Low-Pass output of the Filter is selected and
sent to the audio output. For a given Filter input signal, all frequency components
below the Filter Cutoff Frequency are passed unaltered, while all frequency
components above the Cutoff are attenuated at a rate of 12 dB/Octave. The
Low-Pass mode produces full-bodied sounds.

BP (Bit 5): Same as bit 4 for the Bandpass output. All frequency components
above and below the Cutoff are attenuated at a rate of 6 dB/Octave. The
Bandpass mode produces thin, open sounds.

HP (Bit 6): Same as bit 4 for the High-Pass output. All frequency components
above the Cutoff are passed unaltered, while all frequency components below
the Cutoff are attenuated at a rate of 12 dB/Octave. The High-Pass mode
produces tinny, buzzy sounds.

3 OFF (Bit 7): When set to a one, the output of Voice 3 is disconnected from the
direct audio path. Setting Voice 3 to bypass the Filter (FILT 3 = 0) and setting 3
OFF to a one prevents Voice 3 from reaching the audio output. This allows Voice
3 to be used for modulation purposes without any undesirable output.

NOTE: The Filter output modes ARE additive and multiple Filter modes may be selected
simultaneously. For example, both LP and HP modes can be selected to produce a Notch (or Band
Reject) Filter response. In order for the Filter to have any audible effect, at least one Filter output
must be selected and at least one Voice must be routed through the Filter. The Filter is, perhaps,
the most important element in SID as it allows the generation of complex tone colors via
subtractive synthesis (the Filter is used to eliminate specific frequency components from a
harmonically rich input signal). The best results are achieved by varying the Cutoff Frequency in
real-time.

Bits 0-3 (VOLO — VOL3) select 1 of 16 overall Volume levels for the final
composite audio output. The output volume levels range from no output (0) to
maximum volume (15 or $F) in 16 linear steps. This control can be used as a static
volume control for balancing levels in multi-chip systems or for creating dynamic
volume effects, such as Tremolo. Some Volume level other than zero must be
selected in order for SID to produce any sound.

468 APPENDIX O

MISCELLANEOUS
POTX (Register $19)

This register allows the microprocessor to read the position of the potentiometer
tied to POTX (pin 24), with values ranging from O at minimum resistance, to 255
($FF) at maximum resistance. The value is always valid and is updated every
512 2 clock cycles. See the Pin Description section for information on pot and

capacitor values.

POTY (Register $1A)

Same as POTX for the pot tied to POTY (pin 23).
OSC 3/RANDOM (Register $1B)

This register allows the microprocessor to read the upper 8 output bits of
Oscillator 3. The character of the numbers generated is directly related to the
waveform selected. If the Sawtooth waveform of Oscillator 3 is selected, this
register will present a series of numbers incrementing from O to 255 ($FF) at a
rate determined by the frequency of Oscillator 3. If the Triangle waveform is
selected, the output will increment from O up to 255, then decrement down to O.
If the Pulse waveform is selected, the output will jump between O and 255.
Selecting the Noise waveform will produce a series of random numbers,
therefore, this register can be used as a random number generator for games.
There are numerous timing and sequencing applications for the OSC 3 register,
however, the chief function is probably that of a modulation generator. The
numbers generated by this register can be added, via software, to the Oscillator,
or Filter Frequency registers or the Pulse Width registers in real-time. Many
dynamic effects can be generated in this manner. Siren-like sounds can be
created by adding the OSC 3 Sawtooth output to the frequency control of
another oscillator. Synthesizer "Sample and Hold" effects can be produced by
adding the OSC 3 Noise output to the Filter Frequency control registers. Vibrato
can be produced by setting Oscillator 3 to a frequency around 7 Hz and adding
the OSC 3 Triangle output (with proper scaling) to the Frequency control of
another oscillator. An unlimited range of effects are available by altering the
frequency of Oscillator 3 and scaling the OSC 3 output. Normally, when
Oscillator3 is used for modulation, the audio output of Voice 3 should be
eliminated (3 OFF = 1).

APPENDIX O 469

ENV 3 (Register $1C)

Same as OSC 3, but this register allows the microprocessor to read the output of
the Voice 3 Envelope Generator. This output can be added to the Filter
Frequency to produce harmonic envelopes, WAH-WAH, and similar effects.
"Phaser" sounds can be created by adding this output to the frequency control
registers of an oscillator. The Voice 3 Envelope Generator must be Gated in
order to produce any output from this register. The OSC 3 register, however,
always reflects the changing output of the oscillator and is not affected in any
way by the Envelope Generator.

SID PIN DESCRIPTION
CAP1A, CAPI1B (Pins 1, 2) / CAP2A, CAP2B (Pins 3, 4)

These pins are used to connect the two integrating capacitors required by the
programmable Filter. C1 connects between pins 1 and 2, C2 between pins 3
and 4. Both capacitors should be the same value. Normal operation of the Filter
over the audio range (approximately 30 Hz — 12 kHz) is accomplished with a
value of 2200 pF for C1 and C2. Polystyrene capacitors are preferred and in
complex polyphonic systems, where many SID chips must track each other,
matched capacitors are recommended.

The frequency range of the Filter can be tailored to specific applications by the
choice of capacitor values. For example, a low-cost game may not require full
high-frequency response. In this case, larger values for C1 and C2 could be
chosen to provide more control over the bass frequencies of the Filter. The
maximum Cutoff Frequency of the Filter is given by:

FCqu = 2.6E - 5 /C

Where C is the capacitor value. The range of the Filter extends 9 octaves below
the maximum Cutoff Frequency.

RES (Pin 5)

This TTL-level input is the reset control for SID. When brought low for at least ten
2 cycles, all internal registers are reset to zero and the audio output is silenced.
This pin is normally connected to the reset line of the microprocessor or a power-
on-clear circuit.

470 APPENDIX O

$2 (Pin 6)

This TTL-level input is the master clock for SID. All oscillator frequencies and
envelope rates are referenced to this clock. $2 also controls data transfers
between SID and the microprocessor. Data can only be transferred when $2 is
high. Essentially, $2 acts as a high-active chip select as far as data transfers are
concerned. This pin is normally connected to the system clock, with a nominal
operating frequency of 1.0 MHz.

R/W (Pin 7)

This TTL-level input controls the direction of data transfers between SID and the
microprocessor. If the chip select conditions have been met, a high on this line
allows the microprocessor to Read data from the selected SID register and a low
allows the microprocessor to Write data into the selected SID register. This pin is
normally connected to the system Read/Write line.

CS (Pin 8)

This TTL-level input is a low active chip select which controls data transfers
between SID and the microprocessor. CS must be low for any transfer. A Read
from the selected SID register can only occur if CS is low, $2 is high and R/W is
high. A Write to the selected SID register can only occur if CS is low, $2 is high
and R/W is low. This pin is normally connected to address decoding circuitry,
allowing SID to reside in the memory map of a system.

AO — A4 (Pins 9 - 13)

These TTL-level inputs are used to select one of the 29 SID registers. Although
enough addresses are provided to select 1 of 32 registers, the remaining three
register locations are not used. A Write to any of these three locations is ignored
and a Read returns invalid data. These pins are normally connected to the
corresponding address lines of the microprocessor so that SID may be addressed
in the same manner as memory.

GND (Pin14)
For best results, the ground line between SID and the power supply should be

separate from ground lines to other digital circuitry. This will minimize digital
noise at the audio output.

APPENDIX O 471

DO - D7 (Pins 15 = 22)

These bidirectional lines are used to transfer data between SID and the
microprocessor. They are TTL compatible in the input mode and capable of
driving 2 TTL loads in the output mode. The data buffers are usually in the high-
impedance off state. During a Write operation, the data buffers remain in the
off (input) state and the microprocessor supplies data to SID over these lines.
During a Read operation, the data buffers turn on and SID supplies data to the
microprocessor over these lines. The pins are normally connected to the
corresponding data lines of the microprocessor.

POTX, POTY (Pins 24, 23)

These pins are inputs to the A/D converters used to digitize the position of
potentiometers. The conversion process is based on the time constant of a
capacitor tied from the POT pin to ground, charged by a potentiometer tied
from the POT pin to +5 volts. The component values are determined by:

RC=4.7E- 4
Where R is the maximum resistance of the pot and C is the capacitor.

The larger the capacitor, the smaller the POT value jitter. The recommended
values for R and C are 470 kQ and 1000 pF. Note that a separate pot and cap
are required for each POT pin.

Vce (Pin 25)

As with the GND line, a separate +5V DC line should be run between SID Vcc
and the power supply in order to minimize noise. A bypass capacitor should be
located close to the pin.

EXT IN (Pin 26)

This analog input allows external audio signals to be mixed with the audio output
of SID or processed through the Filter. Typical sources include voice, guitar, and
organ. The input impedance of this pin is on the order of 100 kQ. Any signal
applied directly to the pin should ride at a DC level of 6 volts and should not
exceed 3 volts p—p. In order to pre vent any interference caused by DC level
differences. External signals should be AC-coupled to EXT IN by an electrolytic
capacitor in the 1 — 10 UF range. As the direct audio path (FILTEX = 0) has unity

472 APPENDIX O

gain, EXT IN can be used to mix outputs of many SID chips by daisy-chaining.
The number of chips that can be chained in this manner is determined by the
amount of noise and distortion allowable at the final output. Note that the output
Volume control will affect not only the three SID voices, but also any external
inputs.

AUDIO OUT (Pin 27)

This open-source buffer is the final audio output of SID, comprised of the three
SID voices, the Filter and any external input. The output level is set by the output
Volume control and reaches a maximum of 2 volts p—p at a DC level of 6 volts.
A source resistor from AUDIO OUT to ground is required for proper operation.
The recommended resistance is 1Q for a standard output impedance.

As the output of SID rides at a é volt DC level, it should be AC-coupled to any
audio amplifier with an electrolytic capacitor in the 1-10 UF range.

Vop (Pin 28)

As with Vcc, a separate + 12V DC line should be run to SID Vop and a bypass
capacitor should be used.

6581 SID CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

RATING SYMBOL VALUE UNITS
Supply Voltage Vop —-0.3to +17 VDC
Supply Voltage Vce -0.3to +7 VDC
Input Voltage (analog) ViNA -0.3to +17 VDC
Input Voltage (digital) VinD -0.3t0 +7 VDC
Operating Temperature Ta 0to +70 °C

Storage Temperature Tste -551t0 +150 °C

APPENDIX O 473

DAA 'z = HOA

vrl — — | ooz HO| ‘Buanog {/q - 0d) a0 ybiy Indingo
(yw g°¢ = pro| |

DAdA 70 — aNoD SN xow = A /g - 04) abpjjoA moq indinQ
vrl 00T = pro] |

DAA [£0-PA| — VT HOA ‘ulw = 24 2@ - 0q) abpijoA YBIH indino

DAA 7'Z - 0 = NA wa1ind) aboypaq induj

vr ol — — IS4 (xpw = A 2@ - 0Q) (340) @ipig-224y)
(DAA S -0=NApY - OV

v Sz — — NI SO ‘M/Y ‘zd ‘s3y) jusund) abpipa induj

DA | 80 — | €0 A (£a-0a'vv - OV 3bpyjoA mo7 4nduj

DaA | PA | — z N SO ‘M/d ‘zd ‘s3) 3B04joA YBIH 4ndu|

SLINN| XVW | dAL | NIW [109WAS JILSI¥ILOVAVHD

(0,0£040 ="1'%S FDOAA S = A ‘%S FOAA TL = 99A) SOILSIYILOVAVHD 1VIINLDI13

APPENDIX O

474

Mu 0001 009 - 9 (jos01) uoypdissiq 1Moy
yuw 001 04 — > (>>A) yus1iny Addng Jamoy
yw ST 0z — aq) (99A) wain Ajddng 1emoyg
JVA 0¢ Gl o'l U0 SODIOA |V

JVA 90 S0 v°0 U0 9210/ dUQ
JdA €9 9 LS oA (xpw = awnjoA ‘ppoj

OJ 1 ‘lNnO olanv) abpy|oA indinQ oipny
DVA € S0 —
DAdA €9 9 'S NIA (NI Lx3) abpj|oA indu| oipny
O - osl1 ool NIy (NI 1x3) asuppaduy ynduj
vl — — 00¢ 104) (ALOd ‘X10d) saIn) Huig Jod
DAA — /PN — 104 (ALOd ‘X10d) abpyjoA 196611) Jod
(2za-04a'vv - oV

4d ol — - NS ‘SO ‘M/d ‘2o ‘s3v) soupyPRd) indu)
(DAA ¥'0 = °A

yuw - - AL °) ‘Bupjuis {£q - 0qQ) a1iny mo7 indino

475

APPENDIX O

6581 SID TIMING

2\

R/W

Ao - A4

JARRARAY

Do - D;

[
AN

#Tpcc is measured from the latest occurring of ¢2, CS, Ao - A4

READ CYCLE
SYMBOL | NAME MIN | TYP MAX UNITS
Teve Clock Cycle Time 1 — 20 s
Tc Clock High Pulse Width 450 | 500 | 10,000 ns
Tr, Tr Clock Rise /Fall Time — — 25 ns
Trs Read Set-up Time 0 — — ns
TrH Read Hold Time 0 — — ns
Tacc Access Time — — 300 ns
TaH Address Hold Time 10 _ _ ns
Ten Chip Select Hold Time 0 — — ns
ToH Data Hold Time 20 — — ns

476 APPENDIX O

7\ /‘ .
v AT
T [—f

YXCRXRX |
s JARRARNY

S

*Ty is measured from the latest occurring of ¢2, CS, R/W.

WRITE CYCLE
SYMBOL | NAME MIN | TYP MAX UNITS
Tw Write Pulse Width 300 _ _ ns
TwH Write Hold Time 0 —_ _ ns
Taws Address Set-up Time 0 _ —_ ns
TaH Address Hold Time 10 — — ns
Ten Chip Select Hold Time 0 — — ns
Tvp Valid Data 80 — — ns
ToH Data Hold Time 10 _ —_ ns

APPENDIX O 477

EQUAL-TEMPERED MUSICAL SCALE VALUES

The table in Appendix E lists the numerical values which must be stored in the SID
Oscillator frequency control registers to produce the notes of the equal-
tempered musical scale. The equal-tempered scale consists of an octave
containing 12 semitones (notes): C, D, E, F, G, A, B and C#, D#, F#, G#, A#. The
frequency of each semitone is exactly the 12th root of 2 ('3/2) times the
frequency of the previous semitone. The table shows values based on both a ¢2
clock of 1.02 MHz (shown as NTSC) and 0.985 MHz (shown as PAL). Refer to the
equation given in the Register Description for use of other master clock
frequencies. The scale selected is concert pitch, in which A-4 = 440 Hz.
Transpositions of this scale and scales other than the equal-tempered scale are
also possible.

Although the table in Appendix E provides a simple and quick method for
generating the equal-tempered scale, it is very memory inefficient as it requires
192 bytes for the table alone. Memory efficiency can be improved by
determining the note value algorithmically. Using the fact that each note in an
octave is exactly half the frequency of that note in the next octave, the note
look-up table can be reduced from 96 entries to 12 entries, as there are 12
notes per octave. If the 12 entries (24 bytes) consist of the 16-bit values for the
eighth octave (C-7 through B-7), then notes in lower octaves can be derived by
choosing the appropriate note in the eighth octave and dividing the 16-bit value
by two for each octave of difference. As division by two is nothing more than a
right-shift of the value, the calculation can easily be accomplished by a simple
software routine. Although note B-7 is beyond the range of the oscillators, this
value should still be included in the table for calculation purposes (the MSB of B-
7 would require a special software case, such as generating this bit in the CARRY
before shifting). Each note must be specified in a form which indicates which of
the 12 semitones is desired, and which of the eight octaves the semitone is in.
Since four bits are necessary to select 1 of 12 semitones and three bits are
necessary to select 1 of 8 octaves, the information can fit in one byte, with the
lower nybble selecting the semitone (by addressing the look-up table) and the
upper nybble being used by the division routine to determine how many times
the table value must be right-shifted.

478 APPENDIX O

SID ENVELOPE GENERATORS

The four-part ADSR (ATTACK, DECAY, SUSTAIN, RELEASE) envelope generator
has been proven in electronic music to provide the optimum trade-off between
flexibility and ease of amplitude control. Appropriate selection of envelope
parameters allows the simulation of a wide range of percussion and sustained
instruments. The violin is a good example of a sustained instrument. The violinist
controls the volume by bowing the instrument. Typically, the volume builds slowly,
reaches a peak, then drops to an intermediate level. The violinist can maintain
this level for as long as desired, then the volume is allowed to slowly die away.
A "snapshot" of this envelope is shown below:

S
~— A —TD <— SUSTAIN —}+=— R —+|
PERIOD

PEAK AMPLITUDE ——

INTERMEDIATE
LEVEL

ZERO AMPLITUDE

This volume envelope can be easily reproduced by the ADSR as shown below,

with typical envelope rates:

ATTACK: 10 ($A) 500 ms
DECAY: 8 300 ms
SUSTAIN: 10 ($A)

RELEASE: ¢ 750 ms CATE

Note that the tone can be held at the intermediate SUSTAIN level for as long as

desired. The tone will not begin to die away until GATE is cleared. With minor
alterations, this basic envelope can be used for brass and woodwinds as well as
strings.

An entirely different form of envelope is produced by percussion instruments such
as drums, cymbals and gongs, as well as certain keyboards such as pianos and
harpsichords. The percussion envelope is characterized by a nearly instantaneous
attack, immediately followed by a decay to zero volume. Percussion instruments
cannot be sustained at a constant amplitude. For example, the instant a drum is

APPENDIX O 479

struck, the sound reaches full volume and decays rapidly regardless of how it
was struck. A typical cymbal envelope is shown below:

ATTACK: 2ms

DECAY:

0]

9 750 ms
SUSTAIN: O

9

750 ms CATE

Note that the tone immediately begins to decay to zero amplitude after the
peak is reached, regardless of when GATE is cleared. The amplitude envelope
of pianos and harpsichords is somewhat more complicated, but can be
generated quite easily with the ADSR. These instruments reach full volume when
a key is first struck. The amplitude immediately begins to die away slowly as
long as the key remains depressed. If the key is released before the sound has
fully died away, the amplitude will immediately drop to zero. This envelope is
shown below:

RELEASE:

ATTACK: © 2 ms 3
DECAY: 9 750 ms g .
SUSTAIN: 0

RELEASE: O 6 ms [_‘

Note that the tone decays slowly until GATE is cleared, at which point the
amplitude drops rapidly to zero.

The most simple envelope is that of the organ. When a key is pressed, the tone
immediately reaches full volume and remains there. When the key is released,
the tone drops immediately to zero volume. This envelope is shown below:

ATTACK: O 2ms s
DECAY: 0] 6 ms
SUSTAIN: 15 ($F)

RELEASE: O 6 ms G’*j L

The real power of SID lies in the ability to create original sounds rather than
simulations of acoustic instruments. The ADSR is capable of creating envelopes
which do not correspond to any "real" instruments. A good example would be
the "backwards" envelope. This envelope is characterized by a slow attack and

480 APPENDIX O

rapid decay which sounds very much like an instrument that has been recorded
on tape then played backwards. This envelope is shown below:

ATTACK: 10 ($A) 500 ms s
DECAY: 0 6 ms
SUSTAIN: 15 ($F)

RELEASE: 3 72 ms ‘“j

Many unique sounds can be created by applying the amplitude envelope of one

instrument to the harmonic structure of another. This produces sounds similar to
familiar acoustic instruments, yet notably different. In general, sound is quite
subjective and experimentation with various envelope rates and harmonic
contents will be necessary in order to achieve the desired sound.

TYPICAL 6581/SID APPLICATION

12V 45V
1.0 MHz T T
0 AUDIO
’—{ f' cap, Ve ELECTROLYTIC ~ OUT
2200 pF AUg{ﬁ_ I)
CLOCK RESET | POLYSTYRENE ‘[1.0 WF
" CIRCUIT CIRCUIT CAP,, 1K =
3 CAP AUDIO
T I 2200 oF ” L eecreowynic N
POLYSTYRENE EXT | | (@)
Ve $0 IN capy IN Lo uF
RES [> RES
¢2 OU: > ¢27 6581 POT X ok v
R i A Imoo oF
An =
\| ADDRESS DECODING & PADDLES
A OR ADDRESS LINE | ™| POTY
5 T/
f470K +5v
650X, A 1000 pF
MPU “ A T
A, » Ay =
A, » A,
Ay > A, o,
A, > A,
[Lene D,
D7
VSS DO

APPENDIX O 481

APPENDIX P

GLOSSARY

ADSR
attack
binary

Boolean operators

byte

CHROMA noise
CIA

DDR

decay

decimal

e
envelope
FIFO
hexadecimal
integer
jiffy clock
NMI

octal
operand
oS

pixel
queue
register

release

ROM

SID

signed numbers
subscript
sustain

syntax
truncated

VIC-II

video screen

482 APPENDIX P

Attack/Decay /Sustain/Release envelope.

Rate at which musical note reaches peak volume.
Base-2 number system.

Logical operators.

Memory location.

Color distortion.

Complex Interface Adapter.

Data Direction Register.

Rate at which musical note falls from peak volume to
sustain volume.
Base-10 number system.

Mathematical constant (approx. 2.71828183).
Shape of the volume of a note over time.
First-In/First-Out.

Base-16 number system.

Whole number (without decimal point).
Hardware interval timer.

Non-Maskable Interrupt.

Base-8 number system.

Parameter.

Operating System.

Dot of resolution on the screen.
Single-file line.

Special memory storage location.

Rate at which a musical note fails from sustain volume to

no volume.
Read-Only Memory.

Sound Interface Device

Plus or minus numbers.

Index variable.

Volume level for sustain of musical note.
Programming sentence structure.

Cut off, eliminated (not rounded).
Video Interface Chip.

Television set

INDEX

Abbreviations, BASIC Commands, Statements, and

Functions x, 29,31, 374-375
ABS function 31, 35, 374
Accessories 335-371
Accumulator 213

ACPTR 272-274

ADC 232, 235, 254
Addition 3,9-11,16

Addressing 211, 215-217,411-413
A/D/S/R 183-185, 189, 196-199
AND 232, 235, 254

AND operator 13-16, 31, 35-36, 374
xiii, 153, 166

xiii-xvi

Animation
Applications
Arithmetic expressions 10-12
Arithmetic operators 10-12, 16

Arrays 10-12, 44-45

ASC function 31, 37,374

ASCII character code 31, 38, 340, 374
ASL 232,236, 254

Assembler 215,218, 227, 310
ArcTaNgent function 31, 38, 374
Attack (see A/D/S/R)

Bank selection 101-102, 133

BASIC abbreviations 29, 31, 374-375

BASIC commands 31, 41, 58-60, 62, 81-82, 91
BASIC miscellaneous functions 31, 43-44,
49, 56-57, 61, 69,70, 80, 83-85, 89

BASIC numeric functions 31-35, 37-38, 42, 46-47,
49, 83-84, 88-89

BASIC operators 3, 9-15, 31-36, 63-64, 68, 92
BASIC statements 18-26, 31, 39-55, 57, 62-67,
69-79, 86-87, 92

BASIC string functions 31, 38, 56, 61,79, 87,89
BASIC variables 7-26

BCC 232,236, 254

BCS 232,236,254

BEQ 226-227,232, 237,254

Bibliography 388-390

Binary 69,92,108,112,216-217

Bit 99-148, 290, 298, 300-301, 305, 343-
357,359

BIT 232,237,254
Bitmap mode 121-130
Bitmap mode, multicolor
Bitmapping 121-130
BMI 232,237, 254
BNE 226-227, 232, 238, 254
Boolean arithmetic 14

BPL 232,238,254
Branches and testing
BRK 232, 238, 254
Buffer, keyboard 93

127-130

226-227

Business aids xiii-xvi

BVC 232,239, 254
BVS 232,239, 254
Byte 3,104,108, 117-119, 124-127, 196,

213, 218-220, 222-227, 260-263, 274, 278-
279, 286, 292, 299, 307,357-359

Cassette port 337, 340-342

Cassette, tape recorder xiii, 39-41, 65-67, 81-82,
91,187,192, 283, 294, 297, 320-320, 337-
338, 340-342

Character PEEKs and POKES 104, 106, 109-
111,115,118,120-122,127-130, 134-137,
150, 154-155, 159-161, 165-166

CHAREN 260-261
CHKIN 272,275
CHKOUT 272, 276
CHRGET 272, 307-308
CHRIN 272, 277-278
CHROUT 272, 278-279

CHRS$ function 24, 31, 37-38, 45, 50, 55, 75-76,
93-94, 97, 120, 156, 336-342, 374, 379-381

CINT 272, 280

CIOUT 272, 279-280

CLALL 272, 281

clc 232, 239, 254

CLD 232, 240, 254

cu 232, 240, 254

Clock 80, 89, 314, 320-320, 366, 406-408,

421-427,431, 451

Clock timing diagram 406-408

CLOSE 272,281-282

CLOSE statement 31, 39-41, 348, 354, 374
CLR statement 31, 39-40, 81, 109, 374

CLRCHN 272, 282

CLR/HOME key 220

CLv 232, 240, 254

CMD statement 31, 40-41, 374
CMP 232,241,254

Collision detect 144-145, 180
Color adjustment 113

Color combinations chart 152

Color memory 103

Color register 117,120,128, 135-136,
179

Color screen, background, border
128, 135-137,176, 179-180
Commands, BASIC 31-92
Commodore magazine xvii-xviii, 390
Commodore 64 memory map 310
Complement, twos 63-64

Constants, floating-point, integer, string 4-7, 46,
77-78

CONTinve command 31, 41-42, 46, 81, 86, 374
ConTRol key 58,72,93-97,171
COSine function 31,42,374

115-119,

INDEX 483

CP/M x, xiv, 368-371

CPX 227,232,241, 254
CPY 227,232,241, 254
Crunching BASIC programs

CuRSoR keys 93-97, 336

24-27,156

™ recorder

Datasette
recorder)
DATA statement 26,31,42-43,76-77,
111-114,164, 169,174,374

DEC 232, 242, 254

(see cassette, tape

Decay (see A/D/S/R)

DEFine FuNction statement 31,43-44,
374

DELete key 71-72, 95-96

DEX 226, 232, 242, 254

DEY 226, 232, 242, 254

DiMension statement 3, 31, 44-45, 374
Direct mode 3

Division 3,10-11

Edit mode 93-97
Editor, screen

END statement 31,46,79,93,374
Envelope generator (see A/D/S/R)

EOR 232,243, 254

Equal, not-equal-to signs 3,9-12
Error messages 306, 400-401
Expansion port(s) (also user port, serial
port, RS-232 port), 335-371

EXPonent function 31,46, 374
Exponentiation 5-6,10,12,16

93-97

Files (cassette) 40, 50, 55, 59-60, 65-
66,75,84-85,91, 337-338, 340-342
Files (disk) 40, 50, 55, 59-60, 65-66, 75, 84-
85,91, 337-338, 342
Filtering 183, 189, 199-202
Fire button, joystick/paddle/lightpen

320-320, 343-348
FOR statement 20-21, 31, 39, 47-48,
62-63,77-78,86,110, 155-156, 165-166,
169-171, 198-199, 309, 374
Football 45
FREE function 31,49,109, 374
FuNction function 31,47,374
Functions 31, 35, 37-38, 42, 46-47, 49, 56-
57,61, 69-70,79-80, 83-85, 87-90, 374-375

Game controls and ports 343-348
GET statement 22-24, 31, 37, 49-50,
93, 374-375

GETIN 272,283
GET# statement
341-342, 348, 374
GOSUB statement
85,374

GOTO (GO TO) statement
52-53,64,77,81, 86,374
Graphics keys xiv-xv, 70-74, 95-96,
108-114

31,37,50,55, 65,
31,39,51-52,77,79,

31,37, 48,

484 INDEX

Graphics mode
Graphics mode, bitmapped 121-130
Graphics symbols (see graphics keys)
Greater than, equal toor 3, 12-13, 16

xiv-xv, 99-183

Hexadecimal notation 101, 209, 215-218
Hierarchy of operations 16

|IEEE-488-interface (see serial port)
IF...THEN statement 31, 46-47, 49, 52-53,
64,70,86,172-173, 180, 374

INC 232, 243, 254

Income /expense program 20-21

Indexed-indirect 224-225
Indexing 223-225
Indirect-indexed 223-224

INPUT statement
93,374

INPUT# statement
374

INSerT key 72, 95-96
INTeger function 31, 56, 80, 374
Integer, arrays, constants, variables 4-5, 7-9

18-22, 31, 45, 53-55,

31,55,75, 86, 88, 90,

INX 226-227, 232, 243, 254
INY 226-227, 232, 244, 254
IOBASE 272, 284
1/O Guide 335-375
IOINIT 272, 285

1/O Pinouts 395-397

1/O Ports 214, 260, 335-375

1/O Registers 104-106, 212-214
1/O Statements 39, 50, 54-55, 65-67,

75

IRQ 308

Joysticks 343-345

JMP 228-230, 232, 244, 254, 270, 308
JSR 228-230, 232, 244, 255, 268, 270
KERNAL 2, 94, 209, 228-230, 308, 268-

306, 348-358
Keyboard 93-98
Keywords, BASIC 29-92

LDA 218-220, 232, 245, 255

LDX 232, 245, 255

LDY 232, 246, 255

LEFT$ function 31,56,375

LENgth function 31,57,375

Less than, equal to or 3, 12-13, 16

LET statement 31,57,375

LIST command 31,58, 375

LISTEN 272,285

LOAD 272,286

LOAD command 31, 59-60, 370, 375
Loading programs from tape, disk 59-60, 337-
338, 340-342

LOGarithm function 31,61,375

Lower case characters 72-74, 105

LPX (LPY) 348

LSR 232, 246, 255

Machine language
Mask 92
Mathematics formulas 394
Mathematical symbols 3, 6-17, 394
MEMBOT 272, 287
Memory maps
310-320

Memory map, abbreviated 212
Memory reallocation 101-103
MEMTOP 272, 288

MID$ function 31, 61,375
Modem xiii-xviii, 339-340
Modulation 183, 207-208
Multiplication 3,10-11

Music 183-208

209-320, 411-413

212, 262-267, 272,

NEW command
185,187,375
NEXT command 20-21, 31, 39, 47-48,
62-63,77-78,86,110, 155-156, 165-166,
169-171, 198-199, 309, 375

NOP 232, 246, 255

NOT operator 13-16, 31, 63-64, 375
Note types 190
Numeric variables

18,31,62,111,117,

7-8,26

ON (ON... GOTO/GOSUB) statement
31,64,375

OPEN 272,289

OPEN statement 31, 41, 65-67,75-76,

85, 94, 337-339, 349-352, 375

Operating system 210-211

Operators, arithmetic 3, 9-12, 16

Operators, logical 13-16, 31-31, 35-37,

63-64, 68, 374-375

Operators, relational 3, 10-12, 16

OR operator 13-26, 31, 68, 101-

102, 104, 106, 115, 118, 120, 122, 126-127,

129,134, 136-137,375

ORA 232, 247, 255

Parentheses3, 8, 30, 31, 83-84, 88, 375

PEEK function 31,69,93,101-102,
104,106,108-111,115, 118, 120-122, 126-
130, 134-137, 145, 150, 159-160, 176-177,
180, 185, 211, 361, 375

Peripherals (see |/O Guide)

PHA 232, 247,255

PHP 232, 247,255

Pinouts (also see 1/O Pinouts), 363, 395-
397

PLA 232, 248, 255

PLOT 272,290

PLP 232, 248, 255

POKE statement 25,31, 69-70,94,101-
102, 104,106, 109-111, 115-116, 118, 120-
123,126-130, 134-137, 150, 153-161, 165-
166, 168-170, 172-173,177-178, 180, 184-
186, 194, 198-199, 204-205, 211, 220, 309,
361, 375-376

Ports, /O 214, 335-375, 395-397

POSition function
Power/Play xvi, 390

PRINT statement 13-15, 18-22, 25, 31-
54,56-61, 63, 68-75,79-80, 83-84, 87-89,
94-96, 109, 168,171, 210, 213, 220, 375
PRINT# statement 31, 40-41,75-76, 85,
94, 337, 340-341, 348, 353,375

31,70,375

Printer xv, 338-339
Program counter 214
Program mode 3

Prompt 45

Quotation marks
Quote mode

xi, 3, 23,72, 95, 337
7273, 95-96

RAM 49,100-101, 104-105, 107-108,
110-111, 117, 122, 260-262, 269, 340
RAMTAS 272, 291
Random numbers
RaNDom function
Raster-interrupt
RDTIM 272,291
READST 272,292
READ statement

170, 309, 375
Release (see A/D/S/R)

Register map, CIA chip 428

Register map, SID chip 461

Register map, VIC chip 454-455

REMark statement 25-26, 31, 37-38, 41-
42,45-46, 50,77-78, 93-95,101, 118, 198-
199, 338, 340, 356, 375

Reserved words (see Keywords, BASIC)
RESTOR 272,293
RESTORE key
RESTORE statement 31,78, 375

RETURN key 3,18, 22, 41, 50-51,
74,93-97,154-155, 166, 217, 220, 336-337,
370

RETURN statement
375

ReVerSe ON, OFF keys 97

RIGHT$ function 31,79,375
ROL 232, 248, 255

ROM 261, 268-269

53,80
31,43, 53, 80, 375
131,150-152

31,42,76-77,111,

22,92,126, 353

31, 51-52, 79, 85, 175,

ROM, character generator 103-111,
134

ROR 232, 249, 255

RS-232C 335, 348-359

RTI 232, 249, 255, 308

RTS 232, 249, 255

RUN command 31, 40, 59,81, 113,
154, 375

RUN/STOP key
92, 126, 220, 353

22, 41-42, 52, 58, 86,

SAVE 272,294

SAVE command 31,81-82, 375
SBC 232, 250, 255

SCNKEY 272, 295

SCREEN 272, 295-296

INDEX 485

Screen editor 2,94-97, 211
Screen memory 102-103
Scrolling 128-130, 166

SEC 232, 250, 255

SECOND 272, 296

SED 232, 250, 255

SEl 232,251,255

Serial port (IEEE-488)
366, 432-433

262, 320, 320, 362-

SETLFS 272,297
SETMSG 272, 298
SETNAM 272, 299
SETTIM 272, 299-300
SETTMO 272, 300-301

SGN function 31,83,109, 375

SHIFT key 4, 30,72,74, 94, 96-97, 168, 220
SID chip programming xiv, 183-208

SID chip specifications 457-481

SID chip memory map 223-320

SiNe function 31, 83,375

Sound waves 186-187,192-196
SPaCe function 27,31, 83-84, 336,
375

Sprites x, xiv, 99-100, 131-148, 153-182
Sprite display priorities 144, 161, 179

Sprite positioning
SQuare Root function 31, 84, 375
STA 221,232,251, 255

Stack pointer 214,222
STATUS function 31,84-85, 354, 375
Status register 214,354

STEP keyword, (see FOR...TO)
STOP 272,301-302
STOP command 31,41, 86,375
STOP key (see RUN/STOP key)
String arrays, constants, variables
String expressions 3,17
String operators 3,16-17
STR$ function 31,87,375
STX 232, 251, 255

STY 232,252, 255
Subroutines 222, 228-229, 270, 307

31,86

4,6-9

486 INDEX

137-143,157-161,177

Subtraction 3, 10-11, 16
Sustain (see A/D/S/R)
SYS statement 31,87,121, 307,375

TAB function 27,31, 45, 88, 336,

375

TANgent function 31, 88, 375
TALK 272,302

TAX 232,252,255

TAY 232,252,255

THEN keyword
TIME function
TIME$ function

(see IF...THEN), 31
31,89,375
31,89,375

TKSA 272, 302-303

TO keyword (see FOR...TO), 31
TSX 232, 253, 255

TXA 229, 232, 253, 255

XS 232, 253, 255

TYA 229, 232, 253, 255

UDTIM 272,303

UNLSN 272,304

UNTLK 272,304

User port 355, 359-362

USR function 31,90, 307, 375

VALue function 31,90, 375

VECTOR 272, 305-306

VERIFY command 31,91,375
Vibrato 203

Voices 187-191

Volume control, SID 186
WAIT statement 13-14, 31,92, 375

XOR, (see WAIT statement) 13-14
X-index register 213,223-224
Y-index register 214, 223-224

Z-80 (see CP/M)
Zero page 221-222, 358-359

